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Quick Medical Reference - Decision Theoretic (QMR-DT)
Miller et al. (1986) and Shwe et al. (1991).

• 570 diseases in the first level

• 4075 observations in the second level

• all variables are binary

• conditional probability tables are noisy-or models

X3 X6X5X4X2

Y1

X1

Y2

Definition (The inference task)

Given a subset of observations (e.g. Y1 and Y2) compute
probabilities of diseases (e.g. P(Xi|Y1 = y1, Y2 = y2), i = 1, . . . , 6.
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Noisy threshold - a generalization of noisy-or

X′k. . .X′2X′1

Y

X1 X2 . . . Xk

Y takes value 1 if at least `
out of k parents take value 1:

P(Y = 1|X ′1 = x ′1, . . . ,X ′k = x ′k)

=

{
1 if x ′1 + . . . + x ′k > `
0 otherwise.

Noise: for i = 1, . . . ,k

P(X ′i = 1|Xi = xi)

=

{
0 if xi = 0
πi otherwise.
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An example for k = 4, ` = 1, and πi = 1, i = 1, . . . ,k
- i.e., for deterministic OR function
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= (1, 1)⊗k − (1, 0)⊗k
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Compilation of the threshold model for ` = 1
- the standard approach

Lauritzen and Spiegelhalter (1988), Jensen et al. (1990), Shafer and Shenoy (1990)
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Y
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X4

X1

The total table size is 25 = 32.
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Compilation of the threshold model for ` = 1
- after the suggested decomposition

D́ıez and Galán (2002), Vomlel (2002), Savický and Vomlel (2007)
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Decomposition of T (`,k) into sum of tensor products
• P(Y = 1|X = x) can be viewed as a tensor T (`,k).

• All dimensions of T (`,k) are equal to 2.
• T (`,k) is symmetric.

Definition (Symmetric rank)

Symmetric rank (srank) is the minimum number r such that

T (`,k) =

r∑
i=1

bi · a⊗ki

where for i = 1, . . . ,k:

• bi ∈ R and

• ai are real-valued vectors of length 2.

• This decomposition is called Canonical Polyadic (CP) or
CANDECOMP-PARAFAC (CP) or tensor rank-one.
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Theoretical results
Results in the proceedings:

• srank(T (0,k)) = 1.

• srank(T (k,k)) = 1.

• srank(T (1,k)) = 2.

• srank(T (k− 1,k)) = k.

• srank(T (`,k)) 6 k for ` = 3, . . . ,k− 2.

• An algorithm for CP-decomposition to k factors.

• For the noisy threshold the above values represent upper
bounds.

New results (not in the proceedings):

• srank(T (`,k)) > k− 1 for ` = 3, . . . ,k− 2.

• An algorithm for CP-decomposition to k− 1 factors. But we
don’t know yet if we can avoid complex numbers for some
values of `.
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Comparisons of the total table size:

• the standard junction tree method versus the CP tensor
decomposition

• using QMR subnetworks networks after 14 observations and
after 28 observations.
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Relation to arithmetic circuits (ACs) of Darwiche et al.

• The model after the CP decomposition can be used as an
input for Ace (Chavira and Darwiche).

• Ace supports parent divorcing for noisy-or (i.e., ` = 1).

• In our PGM’08 paper we reported comparisons of the ACs’
size for random QMR-like networks:

3 4 5 6 7 8 9

3
4

5
6

7
8

9

log10 of the original model AC size

lo
g1

0 
of

 th
e 

tr
an

sf
or

m
ed

 m
od

el
 A

C
 s

iz
e



Relation to arithmetic circuits (ACs) of Darwiche et al.

• The model after the CP decomposition can be used as an
input for Ace (Chavira and Darwiche).

• Ace supports parent divorcing for noisy-or (i.e., ` = 1).

• In our PGM’08 paper we reported comparisons of the ACs’
size for random QMR-like networks:

3 4 5 6 7 8 9

3
4

5
6

7
8

9

log10 of the original model AC size

lo
g1

0 
of

 th
e 

tr
an

sf
or

m
ed

 m
od

el
 A

C
 s

iz
e



Relation to arithmetic circuits (ACs) of Darwiche et al.

• The model after the CP decomposition can be used as an
input for Ace (Chavira and Darwiche).

• Ace supports parent divorcing for noisy-or (i.e., ` = 1).

• In our PGM’08 paper we reported comparisons of the ACs’
size for random QMR-like networks:

3 4 5 6 7 8 9

3
4

5
6

7
8

9

log10 of the original model AC size

lo
g1

0 
of

 th
e 

tr
an

sf
or

m
ed

 m
od

el
 A

C
 s

iz
e



Relation to arithmetic circuits (ACs) of Darwiche et al.

• The model after the CP decomposition can be used as an
input for Ace (Chavira and Darwiche).

• Ace supports parent divorcing for noisy-or (i.e., ` = 1).

• In our PGM’08 paper we reported comparisons of the ACs’
size for random QMR-like networks:

3 4 5 6 7 8 9

3
4

5
6

7
8

9

log10 of the original model AC size

lo
g1

0 
of

 th
e 

tr
an

sf
or

m
ed

 m
od

el
 A

C
 s

iz
e



Conclusions

• Theoretical results that give upper bounds for symmetric rank
of tensors corresponding to threshold functions.

• An algorithm for CP decomposition of these tensors.

• The CP tensor decomposition lead to a computational gain in
the order of several magnitudes and made many intractable
models manageable.
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