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all variables are binary
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Definition (The inference task)

Given a subset of observations (e.g. Y; and Y2) compute
probabilities of diseases (e.g. P(Xi|Y1 =y1,Yo=1y2),1=1,..., 6.
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Y takes value 1 if at least {
out of k parents take value 1:

L x>t
o 0 otherwise.

Noise: fori=1,...,k

P(X{ =11Xi = x1)

[0 ifxi=0
o m;  otherwise.
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- i.e., for deterministic OR function

P(Y = 1|X1 =X1,.-., X4 = X4)
0 1 11
(1) (i)
- 11 11
(11) (11)
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Compilation of the threshold model for { =1
- the standard approach
Lauritzen and Spiegelhalter (1988), Jensen et al. (1990), Shafer and Shenoy (1990)
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Compilation of the threshold model for { =1
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Diez and Galdn (2002), Vomlel (2002), Savicky and Vomlel (2007)
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Compilation of the threshold model for { =1
- after the suggested decomposition
Diez and Galdn (2002), Vomlel (2002), Savicky and Vomlel (2007)
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The total table size is 5 - 22 = 20.
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Decomposition of T({, k) into sum of tensor products

e P(Y =1|X =x) can be viewed as a tensor T({, k).
e All dimensions of T({, k) are equal to 2.
e T({, k) is symmetric.

Definition (Symmetric rank)

Symmetric rank (srank) is the minimum number 1 such that

T(tk) = ) bi-af"
i=1

e @, are real-valued vectors of length 2.

e This decomposition is called Canonical Polyadic (CP) or
CANDECOMP-PARAFAC (CP) or tensor rank-one.
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Theoretical results

Results in the proceedings:

e stank(T(0,k)) = 1.

e stank(T(k, k)) =1.

e stank(T(1,k)) =2

e stank(T(k—1,k)) =k

e srank(T({,k)) <k forl =3, ..., k—2

e An algorithm for CP-decomposition to k factors.
e For the noisy threshold the above values represent upper
bounds.
New results (not in the proceedings):
o stank(T(¢,k)) >k—1for{=3,..., k — 2.

e An algorithm for CP-decomposition to k — 1 factors. But we
don’t know yet if we can avoid complex numbers for some
values of (.
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Comparisons of the total table size:

e the standard junction tree method versus the CP tensor
decomposition

e using QMR subnetworks networks
after 28 observations.
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input for Ace (Chavira and Darwiche).

e Ace supports parent divorcing for noisy-or (i.e., { =1).

e In our PGM'08 paper we reported comparisons of the ACs’
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Conclusions

e Theoretical results that give upper bounds for symmetric rank
of tensors corresponding to threshold functions.

e An algorithm for CP decomposition of these tensors.

e The CP tensor decomposition lead to a computational gain in
the order of several magnitudes and made many intractable
models manageable.
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