Computationally efficient probabilistic inference with noisy threshold models based on a CP tensor decomposition

Jirka Vomlel and Petr Tichavský

Institute of Information Theory and Automation (ÚTIA)
Academy of Sciences of the Czech Republic

Motivation

- Motivation
- Noisy threshold models

- Motivation
- Noisy threshold models
- CP-decomposition of conditional probability tables

- Motivation
- Noisy threshold models
- CP-decomposition of conditional probability tables
- Experiments

- Motivation
- Noisy threshold models
- CP-decomposition of conditional probability tables
- Experiments
- Conclusions

• 570 diseases in the first level

- 570 diseases in the first level
- 4075 observations in the second level

- 570 diseases in the first level
- 4075 observations in the second level
- all variables are binary

- 570 diseases in the first level
- 4075 observations in the second level
- all variables are binary
- conditional probability tables are noisy-or models

- 570 diseases in the first level
- 4075 observations in the second level
- all variables are binary
- conditional probability tables are noisy-or models

- 570 diseases in the first level
- 4075 observations in the second level
- all variables are binary
- conditional probability tables are noisy-or models

Definition (The inference task)

Given a subset of observations (e.g. Y_1 and Y_2) compute probabilities of diseases (e.g. $P(X_i|Y_1=y_1,Y_2=y_2)$, $i=1,\ldots,6$.

Noisy threshold - a generalization of noisy-or

Noisy threshold - a generalization of noisy-or

Y takes value 1 if at least ℓ out of k parents take value 1:

$$\begin{split} P(Y = 1 | X_1' = x_1', \dots, X_k' = x_k') \\ = \begin{cases} 1 & \text{if } x_1' + \dots + x_k' \geqslant \ell \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Noisy threshold - a generalization of noisy-or

Y takes value 1 if at least ℓ out of k parents take value 1:

$$\begin{split} P(Y = 1 | X_1' = x_1', \dots, X_k' = x_k') \\ = \begin{cases} 1 & \text{if } x_1' + \dots + x_k' \geqslant \ell \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Noise: for i = 1, ..., k

$$\begin{split} P(X_i' = 1 | X_i = x_i) \\ = & \left\{ \begin{array}{ll} 0 & \text{if } x_i = 0 \\ \pi_i & \text{otherwise.} \end{array} \right. \end{split}$$

$$P(Y = 1|X_1 = x_1, ..., X_4 = x_4)$$

$$P(Y = 1 | X_1 = x_1, ..., X_4 = x_4)$$

$$= \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \end{pmatrix}$$

$$\begin{split} P(Y = 1 | X_1 = x_1, \dots, X_4 = x_4) \\ &= \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \end{pmatrix} \\ &= \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & - \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \end{split}$$

$$\begin{split} P(Y = 1 | X_1 = x_1, \dots, X_4 = x_4) \\ &= \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \end{pmatrix} \\ &= \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \otimes (1, 1) \otimes (1, 1) - (1, 0) \otimes (1, 0) \otimes (1, 0) \otimes (1, 0) \end{split}$$

$$\begin{split} P(Y = 1 | X_1 = x_1, \dots, X_4 = x_4) \\ &= \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \end{pmatrix} \\ &= \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1, 1 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \end{pmatrix} - \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \\ &= (1, 1) \otimes (1, 1) \otimes (1, 1) \otimes (1, 1) & - (1, 0) \otimes (1, 0) \otimes (1, 0) \otimes (1, 0) \\ &= (1, 1)^{\otimes k} - (1, 0)^{\otimes k} \end{split}$$

Compilation of the threshold model for $\ell=1$ - the standard approach

Lauritzen and Spiegelhalter (1988), Jensen et al. (1990), Shafer and Shenoy (1990)

Compilation of the threshold model for $\ell=1$ - the standard approach

Lauritzen and Spiegelhalter (1988), Jensen et al. (1990), Shafer and Shenoy (1990)

Compilation of the threshold model for $\ell=1$ - the standard approach

Lauritzen and Spiegelhalter (1988), Jensen et al. (1990), Shafer and Shenoy (1990)

The total table size is $2^5 = 32$.

Compilation of the threshold model for $\ell=1$ - after the suggested decomposition

Díez and Galán (2002), Vomlel (2002), Savický and Vomlel (2007)

Compilation of the threshold model for $\ell=1$ - after the suggested decomposition

Díez and Galán (2002), Vomlel (2002), Savický and Vomlel (2007)

Compilation of the threshold model for $\ell=1$ - after the suggested decomposition

Díez and Galán (2002), Vomlel (2002), Savický and Vomlel (2007)

The total table size is $5 \cdot 2^2 = 20$.

• P(Y = 1|X = x) can be viewed as a **tensor** $T(\ell, k)$.

- P(Y = 1 | X = x) can be viewed as a **tensor** $T(\ell, k)$.
- All dimensions of $T(\ell, k)$ are equal to 2.

- P(Y = 1 | X = x) can be viewed as a **tensor** $T(\ell, k)$.
- All dimensions of $T(\ell, k)$ are equal to 2.
- $T(\ell, k)$ is symmetric.

- P(Y = 1 | X = x) can be viewed as a **tensor** $T(\ell, k)$.
- All dimensions of $T(\ell, k)$ are equal to 2.
- $T(\ell, k)$ is symmetric.

Definition (Symmetric rank)

Symmetric rank (srank) is the minimum number r such that

$$T(\ell, k) = \sum_{i=1}^{r} b_i \cdot a_i^{\otimes k}$$

where for i = 1, ..., k:

- $b_i \in \mathbb{R}$ and
- a_i are real-valued vectors of length 2.

- P(Y = 1 | X = x) can be viewed as a **tensor** $T(\ell, k)$.
- All dimensions of $T(\ell, k)$ are equal to 2.
- $T(\ell, k)$ is symmetric.

Definition (Symmetric rank)

Symmetric rank (srank) is the minimum number r such that

$$\mathsf{T}(\ell,k) = \sum_{i=1}^{r} b_{i} \cdot \mathbf{a}_{i}^{\otimes k}$$

where for $i = 1, \ldots, k$:

- $b_i \in \mathbb{R}$ and
- a_i are real-valued vectors of length 2.
- This decomposition is called Canonical Polyadic (CP) or CANDECOMP-PARAFAC (CP) or tensor rank-one.

Results in the proceedings:

• srank(T(0, k)) = 1.

- srank(T(0, k)) = 1.
- $\operatorname{srank}(\mathbf{T}(k, k)) = 1$.

- srank(T(0, k)) = 1.
- $\operatorname{srank}(\mathbf{T}(\mathbf{k}, \mathbf{k})) = 1.$
- $\operatorname{srank}(\mathbf{T}(1,k)) = 2$.

- $\operatorname{srank}(T(0,k)) = 1$.
- $\operatorname{srank}(\mathbf{T}(\mathbf{k}, \mathbf{k})) = 1.$
- srank(T(1, k)) = 2.
- $\operatorname{srank}(\mathbf{T}(k-1,k)) = k$.

- srank(T(0, k)) = 1.
- $\operatorname{srank}(\mathbf{T}(k, k)) = 1$.
- srank(T(1, k)) = 2.
- $\operatorname{srank}(\mathbf{T}(k-1,k)) = k$.
- $\operatorname{srank}(\mathbf{T}(\ell, k)) \leq k$ for $\ell = 3, ..., k-2$.

Results in the proceedings:

- srank(T(0, k)) = 1.
- $\operatorname{srank}(\mathbf{T}(k, k)) = 1$.
- srank(T(1, k)) = 2.
- $\operatorname{srank}(\mathbf{T}(k-1,k)) = k$.
- $\operatorname{srank}(\mathbf{T}(\ell, k)) \leqslant k \text{ for } \ell = 3, \ldots, k-2.$
- An algorithm for CP-decomposition to k factors.

Results in the proceedings:

- srank(T(0, k)) = 1.
- $\operatorname{srank}(\mathbf{T}(k, k)) = 1$.
- srank(T(1, k)) = 2.
- $\operatorname{srank}(\mathbf{T}(k-1,k)) = k$.
- $\operatorname{srank}(\mathbf{T}(\ell, k)) \leqslant k \text{ for } \ell = 3, \dots, k-2.$
- An algorithm for CP-decomposition to k factors.
- For the noisy threshold the above values represent upper bounds.

Results in the proceedings:

- $\operatorname{srank}(\mathbf{T}(0,k)) = 1.$
- $\operatorname{srank}(\mathbf{T}(k, k)) = 1$.
- srank(T(1, k)) = 2.
- $\operatorname{srank}(\mathbf{T}(k-1,k)) = k$.
- $\operatorname{srank}(\mathbf{T}(\ell, k)) \leqslant k \text{ for } \ell = 3, \ldots, k-2.$
- An algorithm for CP-decomposition to k factors.
- For the noisy threshold the above values represent upper bounds.

New results (not in the proceedings):

Results in the proceedings:

- srank(T(0, k)) = 1.
- $\operatorname{srank}(\mathbf{T}(k, k)) = 1$.
- srank(T(1, k)) = 2.
- $\operatorname{srank}(\mathbf{T}(k-1,k)) = k$.
- $\operatorname{srank}(\mathbf{T}(\ell, k)) \leqslant k \text{ for } \ell = 3, \ldots, k-2.$
- An algorithm for CP-decomposition to k factors.
- For the noisy threshold the above values represent upper bounds.

New results (not in the proceedings):

• $\operatorname{srank}(\mathbf{T}(\ell, k)) \geqslant k-1 \text{ for } \ell = 3, \ldots, k-2.$

Results in the proceedings:

- $\operatorname{srank}(\mathbf{T}(0,k)) = 1.$
- $\operatorname{srank}(\mathbf{T}(k, k)) = 1$.
- srank(T(1, k)) = 2.
- $\operatorname{srank}(\mathbf{T}(k-1,k)) = k$.
- $\operatorname{srank}(\mathbf{T}(\ell, k)) \leqslant k \text{ for } \ell = 3, \dots, k-2.$
- An algorithm for CP-decomposition to k factors.
- For the noisy threshold the above values represent upper bounds.

New results (not in the proceedings):

- $\operatorname{srank}(\mathbf{T}(\ell, k)) \geqslant k-1 \text{ for } \ell = 3, \ldots, k-2.$
- An algorithm for CP-decomposition to k-1 factors. But we don't know yet if we can avoid complex numbers for some values of ℓ .

Experimental results

Comparisons of the total table size:

the standard junction tree method versus the CP tensor decomposition

Experimental results

Comparisons of the total table size:

- the standard junction tree method versus the CP tensor decomposition
- using QMR subnetworks networks after 14 observations and after 28 observations.

Experimental results

Comparisons of the total table size:

- the standard junction tree method versus the CP tensor decomposition
- using QMR subnetworks networks after 14 observations and after 28 observations.

• The model after the CP decomposition can be used as an input for Ace (Chavira and Darwiche).

- The model after the CP decomposition can be used as an input for Ace (Chavira and Darwiche).
- Ace supports parent divorcing for noisy-or (i.e., $\ell = 1$).

- The model after the CP decomposition can be used as an input for Ace (Chavira and Darwiche).
- Ace supports parent divorcing for noisy-or (i.e., l = 1).
- In our PGM'08 paper we reported comparisons of the ACs' size for random QMR-like networks:

- The model after the CP decomposition can be used as an input for Ace (Chavira and Darwiche).
- Ace supports parent divorcing for noisy-or (i.e., l = 1).
- In our PGM'08 paper we reported comparisons of the ACs' size for random QMR-like networks:

Conclusions

 Theoretical results that give upper bounds for symmetric rank of tensors corresponding to threshold functions.

Conclusions

- Theoretical results that give upper bounds for symmetric rank of tensors corresponding to threshold functions.
- An algorithm for CP decomposition of these tensors.

Conclusions

- Theoretical results that give upper bounds for symmetric rank of tensors corresponding to threshold functions.
- An algorithm for CP decomposition of these tensors.
- The CP tensor decomposition lead to a computational gain in the order of several magnitudes and made many intractable models manageable.

Acknowledgments

Thanks to:

 Frank Jensen from Hugin for providing the Hugin optimal triangulation method and

Acknowledgments

Thanks to:

- Frank Jensen from Hugin for providing the Hugin optimal triangulation method and
- Gregory F. Cooper from University of Pittsburgh for the structural part of QMR-DT model.