The SACSO methodology

for troubleshooting complex systems

Finn V. Jensen! Uffe Kjeerulff! Brian Kristiansen?
Helge Langseth® Claus Skaanning? Jiti Vomlel!
Marta Vomlelova!

'Department of Computer Science
Aalborg University, Denmark

?Hewlett-Packard Laboratory for Normative Systems, Denmark

22 December 2000

Abstract

The paper describes the task of performing efficient decision-theoretic trou-
bleshooting of electro-mechanical devices. In general, this task is NP-complete,
but under fairly strict assumptions, a greedy approach will yield an optimal se-
quence of actions, as discussed in the paper. This set of assumptions is weaker
than the set proposed by Heckerman et al. (1995). However, the printing system
domain, which motivated the research and which is described in detail in the paper,
does not meet the requirements for the greedy approach, and a heuristic method
is used. The method takes value of identification of the fault into account and it
also performs a partial two-step look-ahead analysis. We compare the results of the
heuristic method with optimal sequences of actions, and finds only minor differences
between the two.

Keywords: Troubleshooting, decision theory, Bayesian network

1 Introduction

SACSO (Systems for Automated Customer Support Operations) is a collaboration be-
tween the Research Unit of Decision Support Systems at Aalborg University and Cus-
tomer Support R&D, Hewlett-Packard Company. A result of SACSO is a decision-
theoretic system for troubleshooting printing systems. A printing system consists of
several components: the application from which the printing command is sent, the
printer driver, the network connection, the server controlling the printer, the printer
itself, etc. It is a complex task to troubleshoot such a system, and the printer indus-
try spends millions of dollars a year on customer support. Therefore, automating the
troubleshooting process is highly beneficial for customer as well as supplier.
Traditionally, computer-aided diagnoses or troubleshooting consists in using evidence
to narrow down the set of possible causes for observed symptoms and to order them with

SACSO Troubleshooting 2

respect to likelihood (de Kleer & Williams 1987). In decision-theoretic troubleshooting
costs and likelihoods are balanced in order to find the next action.

Decision-theoretic troubleshooting was studied by Kalagnanam & Henrion (1990),
and it was extended to the context of Bayesian networks by Heckerman et al. (1995).
They provide a framework for suggesting sequences of questions, repair actions, and
configuration changes to obtain further information. By calculating a local efficiency
of the possible repair actions and continuously choosing the one of highest efficiency,
a repair sequence is established. Assuming only a single fault, perfect repair actions,
independent actions, and independent costs, the method finds the optimal sequence of
actions. With respect to questions, Heckerman et al. (1995) suggest a myopic one-step
lookahead.

Troubleshooting is addressed in a similar way by Srinivas (1995). In particular,
he addresses the problem of multiple faults, and under the assumption of independent
faults, he provides an effective way of determining an optimal repair sequence.

When troubleshooting printing systems, it is more natural to assume single fault
than to assume independent faults. We exploit the single fault assumption heavily in
knowledge acquisition as well as in inference: naive Bayes models suffice, and probability
updating is very fast, allowing for methods requiring a large set of updates.

However, the repair actions for printing systems are imperfect, dependent, and a
myopic analysis of questions is insufficient for uncovering the value of asking a question
later in the session. Therefore, we have modified the approach of Heckerman et al.
(1995), taking advantage of the opportunity to perform many probability updates. The
SACSO algorithms for selection of troubleshooting steps have been further described by
Skaanning et al. (2000).

To allow domain experts to efficiently implement their models in practice, the SACSO
project has also resulted in a knowledge acquisition tool described by Skaanning (2000).
The tool, called BATS Author, allows domain expert with no knowledge of Bayesian
networks to construct troubleshooting models, and thereby eliminates the traditional
knowledge acquisition bottleneck for Bayesian networks.

2 The decision-theoretic troubleshooting task

A fault causing a (man-made) device to malfunction is identified and eliminated through
a sequence of troubleshooting steps. Some steps are repair steps which may or may not
fix the problem, some steps are observation steps which cannot fix the problem, but
may give indications of the causes of the problem, and some steps have repair aspects
as well as observation aspects. All steps have a cost in terms of money, time, etc.
or combinations thereof. The task is to find the cheapest strategy for sequencing the
troubleshooting steps. In this paper we deal with pure repair steps and pure observation
steps only, and we shall call them actions and questions, respectively.

A troubleshooting problem can be represented and solved through a decision tree.
However, as decision trees have a risk of becoming intractably large, we look for ways of
pruning the decision tree. Also, a troubleshooting strategy may by itself be intractably

SACSO Troubleshooting 3

large, and we look for ways of stepwise expanding the strategy through local calculations
based on the actual past.

2.1 Action sequences

In this section we consider a set of steps consisting of actions only. An action, A;, has
two possible outcomes, namely “A; = yes” (the problem was fixed) and “A; = no” (the
action failed to fix the problem). Each action, A;, has a cost Cy, (¢) which may depend
on evidence £. We shall sometimes use Cj(e) (or C;) as shorthand for Cy, (¢). As there
are no questions, a troubleshooting strategy is a sequence of actions s = (4y,...,4,)
prescribing the process of repeatedly performing the next action until an action fixes
the problem or the last action has been performed.

When solving a troubleshooting problem we have some initial evidence € and in the
course of executing actions in the troubleshooting sequence s = (41,...,A,) we collect
further evidence, namely that the previous actions have failed. We let £/ denote the
evidence that the first ¢ actions have failed, and we shall refer to a set of failed actions
as simple evidence. In the following we shall not mention the initial evidence explicitly.

Definition 1 The expected cost of repair, ECR, of a troubleshooting sequence s =
(A1,...,A,) with costs C; is the mean of the costs until an action succeeds or all
actions have been performed:

ECR(s) = ZECRZ-(S),

where

ECR;(s) = C;(e" 1) P(e"71). O

Note that the term “expected cost of repair” may be misleading as we allow a
situation where all actions have been performed without having fixed the problem. If
this happens, it will happen with the same probability no matter the sequence, and
therefore we need not estimate a cost for it. We may also extend the set of actions with
a call service action, C'S. We shall return to this in Section 2.3.

Now, consider two neighboring actions A; and A;1; in s, and let s’ be obtained from
s by swapping the two actions. The contribution to ECR(s) from the two actions is

Ci(e™HYP(eY) + Cigr1 (€)) P(A; = no, 1), (1)
and the contribution to ECR(s") from the two actions is
Cip1(eHP(eY) 4+ Ci(e" 1, Ay = no)P(Ai, = no, et 1), (2)
As the difference between (2) and (1) equals ECR(s") — ECR(s), we get

ECR(s') — ECR(s) =
P - (Cipr (7Y = Ci(e"™ 1) + Ci(e" 1, Ajy1 = no)P(A;11 = no|e)
Ci+1(e")P(A; = no|e™)).

SACSO Troubleshooting 4

If s is an optimal troubleshooting sequence, we must have ECR(s) < ECR(s), and
therefore

Ci(e"™Y) + Ciy1(eY)P(A; = noe™1) <
Ciz1(e" Y + Ci(e" Y, A1 = 1n0)P(Aj1, = nole). (3)

If it holds that the costs are independent of the actions taken, (3) can be rewritten as

P(A; = yes|e™1) > P(Aj4q = yes|6i*1)‘ (4)
C; Cit1

Definition 2 Let A be a repair action and let € be the evidence compiled so far. The
efficiency of A is defined as

P(A = yes|e)

Cale) -

ef(Ale) =

Proposition 1 Let s be an optimal sequence of actions for which the costs are inde-
pendent of the actions taken. Then it must hold that ef (A;|e'™1) > ef (A;41]e'1).

In general, (3) can be used for pruning the decision tree, but Proposition 1 makes
it even simpler. Assume that action B; has been chosen at a branch where the options
were By, ..., B, with current efficiencies ef(Bj |¢),...,ef(By, |¢). Now, if B; fails, only
Bj’s for which ef(B;|e) > ef(B;|e) may be chosen, but after failure of B; any action
may be chosen.

2.2 The greedy approach

It would be much easier to solve the troubleshooting problem if we could base the
sequencing on a greedy approach: choose always an action with highest efficiency. How-
ever, Proposition 1 does not guarantee that this approach will yield an optimal trou-
bleshooting sequence.

In Figure 1 there are 4 possible causes, C1, Co, C3, and Cy, for a device malfunc-
tioning, and we assume that exactly one of the causes is present, and that the prior
probabilities are 0.2, 0.25, 0.40, and 0.15, respectively. Assume that all actions have
cost 1. Then action A, has the highest efficiency, and if As fails, then A; has higher
efficiency than As. The sequence (A3, A1, A3) has ECR = 1.50. However, the sequence
<A3,A1> has ECR = 1.45.

To analyze why the decreasing efficiency approach does not guarantee an optimal
sequence, let (Aq,..., A,) be a sequence ordered by decreasing efficiency. If the sequence
is not optimal, there must be two actions A; and Aj, ¢ < j, which, in the optimal
sequence, are taken in different order. At the time where A; is chosen, we have

P(A; =yes|e) S P(Aj = yes|e)
Ci C; '

SACSO Troubleshooting 5

0.20 @

0.25 @

0.40 @

0.15 @
Figure 1: An example of dependent actions. Each of C1,...,Cy is a possible cause of a
particular fault of a device, and each of the actions, A1,..., Az, will eliminate the fault

associated with their parent causes.

In the optimal sequence, where A; is chosen before A;, we have

P(A; = yes|ée') < P(Aj = yes|ée')
Ci of ’

where ¢ and ¢’ are simple evidence (not involving A; and A;). We can infer that an
action sequence (A1,...,A,) is optimal if for all 7 < j it holds that

f(4;]¢) < ef(4;2),
where ¢ is simple evidence (not involving A; and A;).

Proposition 2 Counsider the following assumptions.

e The device hasn different faults F, . .., F,, and n different repair actions A1, ..., A,.

Exactly one of the faults is present.

Each action has a specific probability of repair, p; = P(A; = yes|F;), and P(A; =
yes|Fj) =0 fori # j.

The cost C; of a repair action does not depend on the performance of previous
actions.

If these assumptions hold, then ef(A;) < ef(A;) implies that ef(A;|e) < ef(A;|e),
where € is simple evidence (not including A; and Aj).

Note that we do not assume the repair actions to be perfect. They may fail to fix a
fault which they are supposed to fix.

SACSO Troubleshooting 6

Proof: Let Ay, be an action which has failed. We shall calculate P(A4; = yes| A, = no)
(for notational convenience, we omit mentioning of the current evidence). Due to the
single-fault assumption, we have P(A,, = no|A; = yes) = 1. Using Bayes’ rule we get

P(Ay, =no|A; = yes)P(A; = yes) P(A; = yes)
P(A,, = no) ~ P(A;, =no)’

P(A; = yes| Ay, =no) =

That is, P(A; = no) is a normalizing constant for the remaining actions, and the
relative order of efficiencies is preserved. a

The following theorem concludes the considerations. The theorem is a slight exten-
sion of similar results by Kalagnanam & Henrion (1990) and Heckerman et al. (1995).

Theorem 1 Let s = (Ay,...,A,) be an action sequence for a troubleshooting prob-
lem fulfilling the conditions in Proposition 2. Assume that s is ordered according to
decreasing initial efficiencies. Then s is an optimal action sequence and

n i—1
ECR(s)=)» Ci [1-) p; |- (5)
i=1 j=1

Proof: From the proof of Proposition 2, we have that the relative order of the efficiencies
of the actions are preserved. For any action sequence s’ which is not ordered according to
ef(4;) there will be a j so that ef (A;) < ef(A;1) and therefore ef (A; |7) < ef(A;41|e’).
Hence s’ can be improved by swapping A; and A;;1. From the definition we have

ECR(s) = i C;P(").
=1

Due to the single fault assumption we have P(g') = 1 — 23;11 Dj- 0

2.3 Call service

The action call service (C'S) will always solve the problem. The cost of C'S is not the
unknown price of fixing the device, but the possible overhead of having outsiders fixing
a problem you could have fixed yourself. The efficiency of C'S is 1/C¢cs no matter the
set of actions performed so far.

Let s = (A1,...,A;,) be an optimal action sequence resulting from a situation meet-
ing the assumptions in Proposition 2. It may be so that the sequence should be broken
before A,, and service is called. According to Proposition 1, C'S shall only be performed
after an action of higher efficiency. In SACSO we suggest the C'S action as soon as it
has maximal efficiency. However, this is not guaranteed to be optimal. The question of
finding an optimal action sequence including C'S is of higher combinatorial complexity.
Instead of looking for a sequencing of actions each of which must eventually be performed
if the other actions fail, we shall now look for a subset of actions and a sequencing of
them. We shall not go further into this problem.

SACSO Troubleshooting 7

2.4 Questions

The outcome of a question may shed light on any of the possible faults, or it may be
focused on a particular fault.

The troubleshooting task is to interleave actions and questions such that the expected
cost is minimal. To do so, we need to analyze the value of answers to questions.

Imagine that we are in the middle of a troubleshooting sequence; we have so far
gained the evidence €, and now we have the option to ask the question @ with cost Cg.
For simplicity, we assume that () has only two outcomes, “yes” and “no”. Assume that
no matter the outcome of (), we are able to calculate the minimal expected cost of
repair for the remaining sequence. So let ECR be the minimal expected cost if () is not
performed, and let ECRg=yes and ECRg=y, denote the same for the outcomes “yes”
and “no”, respectively.

Then the value of observing @ is

V(Q) = ECR — (P(Q = yes|e)ECRg=yes + P(Q = no| 6)ECRQ:no) ; (6)

and @ is performed if and only if V(Q) > Cq.

In order to determine whether or not to ask a question prior to an action, we have to
analyze all possible succeeding sequences, and if there are several actions and questions,
it is in general intractable: in the future we will also have question options to interleave.

A workable approximation is the myopic strategy: assume at any stage of trou-
bleshooting that we allow questions to be asked, but in the future we allow only repair
actions. In that case, the task reduces to calculating expected costs given the various
outcomes of the possible questions, and the approaches from the previous section can
be used.

2.5 Strategy trees

When questions are part of the troubleshooting, then a troubleshooting strategy is a
tree rather than a sequence. To emphasize this fact, we shall sometimes refer to such a
strategy as a strategy tree. Figure 2 provides an example of a strategy tree.

There are two types of nodes in a strategy tree — chance nodes and terminal nodes.
Chance nodes are displayed as circles, and they are labeled with troubleshooting steps
(actions or questions). Edges are labeled with outcomes of the steps, and we let L(¢)
denote the function yielding labels to edges, e. Terminals are diamond shaped, and they
indicate that the device has been repaired. The set of terminal nodes of a strategy tree
s is denoted L(s).

Let path(n) be the sequence of edges constituting a path from the root node to node
n in a strategy tree. Then e, = J ccpath(n) L(e) defines the evidence corresponding to the
already performed actions and questions. Furthermore, let P(e,) denote the probability
of evidence gy, i.e., the probability of getting to node n from the root node. Finally, let
t(n) denote the total cost of actions and questions in the path from the root node to
node n. For example, in Figure 2, the evidence corresponding to node d labeled by As

SACSO Troubleshooting 8

Figure 2: A strategy tree.

is 1 = no, A; = no, the probability of getting there is P(@Q; = no, A; = no), and the
total cost of getting there is Cg, + Ca,.
Next, we extend the definition of expected cost of repair to strategy trees.

Definition 3 The expected cost of repair of troubleshooting strategy s is defined as
ECR(s) = Y P(eg) - t(0). 0
LeL(s)
The goal of the troubleshooting task is to find a troubleshooting strategy that min-
imizes the expected cost of repair among of all possible strategies.
2.6 Complexity of troubleshooting

The search for an optimal decision-theoretic troubleshooting strategy has appeared to
be an NP-complete problem.

Theorem 2 Given a troubleshooting problem with dependent actions, the single-fault
assumption, and a constant K € R', determining if there exists a troubleshooting
sequence s with ECR(s) < K is an NP-complete problem.

Proof: The idea of the proof is to reduce the problem to the Exact cover by 3-sets (see
Sochorovd & Vomlel (2000) for details). O

Similar theorems may be proven for questions (even with independent actions) and
dependent costs (even with independent actions and without questions).

SACSO Troubleshooting 9

Since we deal with an NP-complete problem we must resort to efficient heuristics
to solve the problem within reasonable time. These heuristic methods are described in
Section 4. First, however, we describe the models used for troubleshooting in the printing
domain that motivated the development of the SACSO troubleshooting approach.

3 Printing system models

The SACSO printing diagnosis system consists of many separate Bayesian networks each
modeling a printing error. If error conditions overlap and cannot easily be separated,
they have to be represented in the same model. In printer systems there are the following
types of error conditions:

e Dataflow models — these models cover problems where the customer does not get
any output from the printer, or corrupted output from the printer when attempting
to print. These errors can be caused by any of the components in the flow from
application to printer that the print job passes through. Skaanning et al. (1998)
have described these in detail.

e Error codes — these models handle all types of error codes that can appear on the
control panel of the printer. Skaanning et al. (1998) have described this category
in detail.

e Unexpected output — these models handle all categories of unexpected output
that can occur on the printer, e.g., job not duplexed or spots, stripes, or banding
on the paper.

e Miscellaneous — these models handle miscellaneous erroneous behavior of the
printer not covered by the above three, such as noise from the printer engine, slow
printing, problems with bi-directional communication, etc.

These error categories are related in the way that all error types can result in a general
printer problem, and “Dataflow problems” can cause the three other error types.

Each of the SACSO models includes a cause variable that defines the probability
distribution over the causes of the error condition. The causes are modeled as the states
of this variable. All actions and questions that can be posed in the troubleshooting
process are represented as children of the cause variable. An example is shown in
Figure 3. The benefit of this naive Bayes structure is that all actions and questions are
independent given the causes. This can be exploited in the algorithms for finding the
best next step, as shown in Section 4.

3.1 The unexpected-output models

The unexpected-output models represent all the situations where the customer does
not get the expected output. This is usually due to settings not set correctly, or mal-
functioning printer parts. Figure 4 shows an example Bayesian network model for an

SACSO Troubleshooting 10

Cause node
(causes as states)

Cause;

Figure 3: An example of the very simple Bayesian network structure used for trou-
bleshooters.

unexpected output category, Spots. To enforce the single fault assumption the causes
of this network are internally collapsed to a single node such as in Figure 3.
The customer may experience spots on the paper for some of the following reasons:

e The toner cartridge is malfunctioning either because it is defective or improperly
seated.

e The used media has the wrong specifications.

e The environmental conditions of the printer may be out of specification, e.g., too
humid, warm, etc.

e The transfer roller is malfunctioning either because it is defective, not seated
correctly, or dirty.

e The power chord of the printer is not earth grounded.

3.2 The troubleshooting layer

The Bayesian network model pictured in Figure 4 is not sufficient for troubleshooting as
it only contains information about the possible causes for the various problems with the
printer. They contain no information on actions that can be used to resolve the problem
at hand or gather information that can be used to speed up the troubleshooting. In this
section, it will be described how variables representing information like this can be added
to the structures presented in the previous sections.

We basically represent two types of troubleshooting steps; namely questions (includ-
ing tests), which provide general information that can change the optimal sequence of
troubleshooting steps, and actions, which can solve the problem.

In Figure 5, some troubleshooting actions and questions have been added to the
model for the “HP MIO1 not ready” error code. The experts listed the actions and

SACSO Troubleshooting 11

Defective toner
cartridge

Toner cartridge

Toner cartridge
improperly seated

PM kit needed

Fuser not seated

Defective fuser

Fuser

A

Media out of spec

Environmental
conditions

Temporary
problem

Intermittent
problem

A

Spots

Permanent
problem

Transfer roller
not seated properly

Defective transfer

Transfer roller -
roller

Dirty transfer
roller

Paper path dirty

Printer not
earth grounded

Figure 4: An example of a Bayesian network model of the Spots category of unexpected
output.

SACSO Troubleshooting 12

questions that they would usually perform when troubleshooting this error code over
the telephone.
For each action it was determined which causes it could fix:

e Removing the network / 10O cable can solve the problem if the network is the cause.

e Troubleshooting the entire dataflow can also solve the problem if the network is the
cause. This action corresponds to the entire dataflow and all its troubleshooting
steps.

e Waiting 5 minutes for initialization can solve the problem if the customer did not
wait long enough.

e Cycling power can solve temporary problems and some intermittent. Even though
intermittent problems are not really solved, this is the way it will look to the
customer.

For each cause, fixable by an action, the printer experts have given a probability
that the action would fix the cause, along with the cost of performing the action. The
cost is based on 4 measures: the time it takes to perform the action, the risk of breaking
something else while performing the action, the money involved in performing the action,
and a potential insult by suggesting the action (e.g., check whether the power is on).
These 4 factors are weighed and combined into a single figure.

3.3 An example run

Below, we have listed the steps generated by a troubleshooting tool called BATS Trou-
bleshooter (see Section 4.3) in the presence of the error code “HP MIO1 not ready”.
Assuming that a defective MIO card is the cause of the problem, the troubleshooter will
guide the customer through the following actions and questions.

1. Question: Did you wait 5 minutes for initialization? This question is given first
to rule out the possibility that there is no problem at all. If the customer answers
“no”, he will be told to wait 5 minutes for proper initialization. As this does not
solve the problem, the system continues.

2. Test: Move MIO card to another slot in the printer and try printing. This action
tests whether there is a printer hardware problem with a broken MIO card slot.
It does not solve the problem, and the system continues.

3. Repair action: Remove network / IO cable. This action can rule out a relatively
likely cause (17%) with a very low cost (1 minute). It does not solve the problem,
and the system continues.

4. Repair action: Ensure that the MIO card is supported by the printer. This will
rule out situations where the customer is using a third party card or a card which is
out of specifications. As the card is within specifications, the system will continue.

SACSO Troubleshooting 13

Did you wait
5 minutes?

Remove network /
1O cable

MIO init. — did
not wait 5 min.

Troubleshoot
dataflow

Permanent Wait 5 minutes for
Network (dataflow) initialization

Temporary

\\ ’ Move MIO card

Intermittent N\
problem

HP MIO1 Other problem
not ready

\“v to another slot

\\ Reseat MIO card

2\

,

properly ' \

Defective card

Accessories excl.
MIO card 1

Troubleshoot all
accessories

Does not meet
specifications

\‘f iTry another HP
W

\ n-spec MIO card

A‘?”'A Move MIO card to

V‘V another printer
)

MIO card problem I .

Verify MIO card is
supp. by printer

\ NVRAM on card
corrupt

Third party
MIO card?

Firmware needs 4
updating

X
Reset MIO card
to default
Firmware on A Reload / update
card corrupt firmware on MIO

Figure 5: An error code model with added troubleshooting actions (rectangular shaped)
and questions (diamond shaped).

SACSO Troubleshooting 14

5. Test:

(a) Try another supported MIO card. This test can help ruling out one of the
most likely causes, defective card (47%). It does solve the problem, but the
system cannot say for sure whether it was because the original card was seated
improperly, is a third party product, is out of specification, is defective, has
corrupt NVRAM, or has corrupt or out of date firmware.

(b) Reinsert the old card and test whether printing works now. This checks if
the new card works because the old card was not seated properly. Since the
old card is defective, it will obviously still not work.

The troubleshooter finally concludes that the MIO card is defective after ruling out
the possibility of the card being seated improperly.

4 The SACSO troubleshooting approach

This section describes the SACSO approach to troubleshooting, and a tool implement-
ing the approach is briefly described. We also compare the troubleshooting strategies
obtained from the tool (and variants of it) with optimum troubleshooting strategies.

At any time in the troubleshooting process we wish to select the next step on the
basis of the information gathered so far. Whenever a step has been performed and
information from that step has been included, the same procedure for selecting the next
step is repeated based on the updated information.

The basic idea behind selecting the next step is to compare the expected result of
performing the repair action of highest efficiency with the expected result of asking a
question (or performing a test). Our approach to evaluating the expected result of tests
and questions is based on the following idea.

Assume, for example, that the fault is that the user has not installed a printer driver.
Then the answer “no” to the question “Is there a printer driver installed?” will end the
troubleshooting sequence. The rest will be instructions on how to get an appropriate
driver and how to install it. Therefore, a question without any ability to fix the problem
has a value. Entropy could be used as a measure of how focused the probability mass is.
However, we have taken another approach in SACSO: if some answer g to question ()
will identify the fault with almost certainty, then the value, Vi, of asking @ is P(Q = q).
Mathematically, we calculate

B P(fi|Q =q,e) — P(file)
Py(e) = max max =P .

The “good” answer is denoted gg. If Pg(e) exceeds a predefined threshold, Vg is set
to Pg(e) - P(qq); otherwise it is set to zero. If there are several good answers, the
corresponding values are added.

SACSO Troubleshooting 15

We extend Definition 3 and define the current expected cost of repair of a trou-
bleshooting strategy s, given evidence € compiled so far, as

ECR(s|e) = Y Plele) - t(0).
LeL(s)

When s is clear from the context, we shall use EC R(¢) as an abbreviation for ECR(s|¢).

Let (Sy,...,S,) be the sequence of troubleshooting steps ordered according to the
current efficiencies. As the assumptions in Proposition 2 are not met, it would be mis-
leading to use Formula 5. Instead, we are forced to use Definition 1, and the calculation
of ECR requires probability updating for each step in the sequence. Questions (and
tests) are included in the sequence if their Pgy(¢e) is beyond a threshold close to 1 and

if w is maximal. When calculating ECR. for a sequence containing a question,

“the action has failed” means “Q) # qg”.
used for the steps following Q).

We determine the troubleshooting step, A, of highest efficiency and calculate ECR(¢)
as described above. Before actually performing A, we perform a two-step look-ahead
analysis. Namely, we analyze whether a question should be asked.

For any question (and test) @, we do the following. To determine the effect of asking
Q, the expected cost of repair ECR(g, Q = ¢) for each answer ¢ is determined, and we
calculate

That is, @ # q¢ is inserted as evidence and

ECRq(c) = Co + Y _ECR(e,Q = q)P(Q = qle). (7)
q
If ECRg(e) < ECR(g), the question () should be asked. However, the comparison is
biased. Unless @ is a question which might identify a cause, ECR(g) does not take Q
into consideration, and we have in fact analyzed the choice of asking () now or never.
Therefore, before it is decided to ask @), it is analyzed whether it may be even better to
ask @ after A has been performed:

ECRag(e) = Ca+ ECRg(e, A =n)P(A =n|e).

If ECR4g(e) < ECRg(¢), the question is not asked, and if this holds for all ¢ with
ECRg(e) < ECR(g), A is performed. Note that the calculation of ECR4 g(€) requires
an entire new analysis. Notice also, that in case A fails, then a renewed analysis is
performed.

4.1 Logical constraints and deferred actions

There are various constraints on the sequencing of the actions. For example, if the
step “Reseat MIO Card” has been performed, the question “Is the MIO Card prop-
erly seated?” should not be asked. Some of these constraints are not consequences of
the probabilities in the models. Therefore, the system keeps special account of these
constraints, and it ensures that they are always met in the analysis of ECR and when
proposing steps.

SACSO Troubleshooting 16

To improve the flexibility of the system, the user has the option of deferring a
proposed action. A deferred action is still one of the options under consideration later
unless the user requests for its removal.

4.2 Persistence and multiple faults

Often, a troubleshooting step changes the configuration of the system, and therefore the
question of persistence is relevant: is the information acquired still valid? If not, and if
the information is not updated, the system may go wild or into blind alleys. The printing
system application was analyzed with respect to non-persistence, and it was concluded
that this was not a problem. Actually, there are actions that change the configuration
of the system. However, these actions either return the system to its original state upon
failure, or modify components that will not be referred to and have an effect on the
system later in the sequence.

The modeling and the sequencing method rely heavily on the single-fault assumption.
If there are multiple faults, the proposed sequence will eventually fix them; perhaps at an
unnecessarily high price. In particular, non-persistence may be a real problem in case of
multiple faults, as each successful repair action definitely changes the configuration of the
system, and maybe even eliminates several faults. So, after each successful repair action,
one may be forced to discard all previous evidence before continuing the troubleshooting.

4.3 BATS Troubleshooter

In this section we briefly describe BATS! Troubleshooter, which implements the SACSO
troubleshooting approach described above.

Figure 6 shows a screenshot of BATS Troubleshooter. The troubleshooter guides the
user through a good troubleshooting sequence to resolve the error condition that he is
currently experiencing. The graphical user interface allows the experienced user to track
the computations of the algorithms for finding the best next step. The troubleshooter
can suggest repair actions that may solve the problem, or questions about the printing
system.

The user interface shows the currently suggested steps, and waits until the user
provides the result to the step (whether an action solved the problem or not, or the
answer to a question). The currently suggested error condition is light print — a common
problem on printers. The problem of light print has both hardware and software causes,
and some of the first troubleshooting steps selected by the diagnostic engine attempt
to decide whether the cause is in the hardware or software section, e.g., “Is the printer
configuration page printed light?”.

The troubleshooter continuously displays a list of causes sorted wrt. their probabil-
ities, a list of troubleshooting steps sorted wrt. their efficiencies, and a list of questions
(and tests) sorted wrt. ECRg (see (7)).

The user interface of BATS Troubleshooter also supports more advanced features
such as forcing certain steps to be asked immediately, going back and forward in the

!Bayesian Automated Troubleshooting System.

SACSO Troubleshooting 17

‘what problem do you have ? Problem sessian Log Miscellaneous History
(&Fl [= | calin: | Logcass || Walidztion —
. = Save prabatilities
invent |L|ght Fritt Start || Stop " Log directany | I Call agent Laad
Current step :
Akl P ; — = ~ Computational detail
¢ the printer configuration page printed light 7 - ceunD m = °>>| Causes
E xplanation: 19.5 Economode/draft made in application -
"""""""" -) IW - 17.2 Toner distibution problem [e.q., low]
O the printer contral panel press the menu button until the 12.7 Paper path dity
;:E:slsh]:ﬁ:rt;rﬂpgs!lso.m until the PCL Configuration Page ves | Mo I [l I 8.7 Wirong diiver used
appears. 7.5 Transter roller defective / dity
Then press the select button. E.9 Media out of spec
[ves nal Unknown I 5.2 Pemnanent prablerm ;I
Diefer I Salution actions : PAC:
Mot avallah\el Ensure that economode is not on in the ap[9.5 (19.1 /fﬂ
Fiemove, shake and reinsert toner cartidg |5.7 [11.3/2
E nsure that 300 dpi is not set in the printer |2.3 [2.3/1]
Ensure that 300 dpi is not set in the applic. 1.9 (3.8/2)
LI Clean ingide of printer per user marual 0.8 (1 2.4»’1L|
Performed steps Defered steps T |E CR: 1289
Ensure that economode is not on in the printer ;I Mo deferred steps ;I st o e seliens - ECO
driver : NO .
|5 the prinker configuration page printed light ? | the printer configuration page printed ligl{102.7 (4.0
|5 the: taner cartidge manufactured by HP [129.4 [1.0]
Did you recently perform the user maintenz|129.6 - [1.0)
|5 the user maintenance due ? 129.8-11.0)
Do you see TONER LOW on the control £|130.3 (1.0]

Figure 6: A screenshot of BATS Troubleshooter.

history, saving and loading restartable history files, logging XML format history files,
etc. Skaanning et al. (2000) have described in detail the algorithms behind the selection
of steps in BATS Troubleshooter.

4.4 Comparison of the SACSO approach with optimal strategies

As troubleshooting in general is NP-hard we have to use approximate methods. The
space of possible troubleshooting strategies can be represented as a decision tree. There
are basically two approaches for calculating approximate strategies: to perform a tree
search using heuristics to prune the tree or to rely on a local computation whenever a new
troubleshooting step has to be chosen. As the first approach requires a representation of
the entire strategy (or frequent recalculations of it) we have chosen the latter approach
in SACSO. In this section we compare the strategies provided by the SACSO method
with the optimal strategies.

For comparison we have chosen a set of models of a size for which it was tractable to
determine an optimal strategy. The optimal strategy was determined through a branch
& bound algorithm. The branch & bound algorithm uses at each point a lower bound
of the ECR for the remaining troubleshooting strategy.

Definition 4 Let F be the set of all possible causes of the problem and for every F € F
let the strategy sp denote an optimal strategy given F' = yes. We define a lower bound
of the ECR as
ECR =) P(F = yes) - ECR(s). O
FeF

SACSO Troubleshooting 18

Sochorova & Vomlel (2000) discuss in detail the properties of ECR. The computation
of ECR(sp) is usually quite easy. If it holds that the success probabilities for the var-
ious actions are independent and if we have independent costs, an optimal sequence is
achieved by ordering the actions according to decreasing efficiency. Under all circum-
stances, for the models we are working with, the set of actions addressing the same fault
is very small.

Our implementation of the branch & bound algorithm performs depth first search
with pruning. Suppose that the algorithm gets to a node corresponding to evidence e
compiled so far, where ECR/(¢) — the lowest value of ECR from all subtrees passed
through — is stored. Further, suppose that the step, S, under consideration has out-
cOIES S1,...,8q,...,S and that, for evidence g, = e U {S = s},

e the optimal value of ECR(g;) is already known for ¢ = 1,...,q and
e the value of ECR(g;) is computed for i = ¢+ 1,...,7.

The pruning of subtrees corresponding to strategies starting with troubleshooting step
S is performed as soon as we are sure that these strategies cannot be better than the
current lowest one, i.e., when

q r
ECR/(e) < Cs+ Y _P(S =s;i|e) - ECR(e;) + Y P(S = s;|¢) - ECR(;).
i=1 1=q+1

Since the function ECR provides lower bounds of the optimal ECR, the optimal strategy
cannot be missed.

4.5 Results

We have compared the strategies provided by the methods listed in Table 1. SACSO-
A and SACSO-B differ on the criteria for selecting the next step, and SACSO is a
combination of the two. The comparison is performed for 9 of the SACSO models for
troubleshooting laser printers.

Table 2 summarizes the comparisons (details are provided by Vomlel (2000)). The
last row of Table 2 summarizes the comparison as the average relative deviation from
the optimal strategy. This shows that the troubleshooting strategies suggested by the
SACSO approach are very close to optimal strategies, although the computational com-
plexity of the SACSO approach is orders of magnitude lower than that of an optimal
algorithm.

5 Validation

Validation of troubleshooters based on Bayesian networks poses a potential bottleneck.
The system described here allows a number of sequences fulfilling various criteria from
the troubleshooting models to be generated with the so-called case generator. These
sequences can then be evaluated with the so-called case evaluator. If a sufficient number

SACSO Troubleshooting 19

Label Approach

OPTIM Optimal strategy minimizing ECR

SACSO SACSO approach

SACSO-A restricted SACSO approach where questions are se-
lected based on FPg only

SACSO-B restricted SACSO approach where questions are se-
lected based on ECRg only

P/C The sequence of actions ordered according to step by
step updated p/C-ratio

Table 1: Troubleshooting approaches.

actions # obs. OPTIM SACSO SACSO-A SACSO-B P/C
6 2 433.24 442.39 444.54 442.39 444.54
9 3 129.21 129.21 129.21 129.21 155.10

11 3 106.20 112.35 113.36 108.07 116.80

12 3 38.38 38.42 38.42 40.01 43.05

13 4 124.32 124.37 298.09 125.56 300.85

14 4 115.41 115.86 232.05 115.86 236.58

9 9 70.67 75.03 119.28 77.67 121.10

16 5 161.38 162.25 286.75 162.25 286.75

10 10 250.45 253.31 352.31 256.96 479.96
Av. rel. dev. from opt. 1.81% 48.60% 2.51% 59.16%

Table 2: Comparison of values of ECR.

SACSO Troubleshooting 20

of these sequences are accepted, the model has an acceptable level of quality. If not, the
model must be revised.

The validation method allows the generation of sequences in two different ways, (i)
random sequences can be generated using the probabilities in the model, (ii) special
sequences can be generated fulfilling various criteria such as sequences with the largest
number of steps, sequences with the highest total cost, sequences ending with “call
service”, etc.

5.1 The case generator

Generation of random sequences is performed utilizing two diagnostic engines that are
being executed in tandem, one with knowledge of the randomly chosen cause used to
generate answers for steps (Engine 2 in Figure 7) and one with no knowledge used to
suggest the sequence of steps (Engine 1).

Figure 7 illustrates the process followed to generate a sequence of random steps based
on the probabilities of the model. In the left-hand side of Figure 7, the process of the
diagnostic Engine 1 is shown, and the process of the diagnostic Engine 2 is shown in the
right-hand side. The flow of control is illustrated by the arrows.

The case generator can also traverse the possible sequences and fetch the sequences
with the highest number of steps or those with the highest total cost. Traversing all
possible sequences may be infeasible, in which case the case generator can be stopped
once a sufficient number of sequences have been traversed.

5.2 The case evaluator

For a quick overview, the case evaluator can provide a set of random sequences for each
cause. When confronted with a sequence, the expert may accept it or discard it with a
comment explaining what should be modified in the model. So far, modifications have to
be performed manually, and it is an issue for further research to come up with efficient
methods for automatic conservative refinement: how to change parameters without
altering the accepted sequences.

If the random sets provided by the case generator are acceptable, the expert can
start a more systematic evaluation by requesting “unfavorable” sequences. That may,
for example, be lengthy sequences, costly sequences, sequences with high overhead or
confusing sequences.

6 Further research

One type of tasks for further research involves relaxation of the assumptions listed in
Section 2. Although the troubleshooting task is NP-complete under relaxed conditions,
it is still important to find efficient heuristics which have good chances of providing close-
to-optimal sequences. Certainly, diagnosing multiple faults is important, but there are
other equally important tasks. For man-made devices one often meets the conditional
cost problem: When fixing or inspecting a certain part one has dismantled the device

SACSO Troubleshooting

21

Diagnostic Engine 1

Y

Suggest best
step without
knowledge
of cause

(2)

Insert answer
as evidence
and propagate

(4)

Problem
solved or no
more steps?

Diagnostic Engine 2

Find random
cause

(1)

Select random

answer to step

conditional on
cause

(3)

Y

Insert answer
as evidence
and propagate

(5)

Figure 7: The flow of simulating random cases utilizing two diagnostic engines with and
without knowledge of the true cause.

SACSO Troubleshooting 22

and before putting it together one may just as well perform other troubleshooting steps.
Also, dependent actions (see Figure 1) is often seen.

Another type of research tasks has to do with quality of the model. Examples are
conservative refinement (see Section 5), sensitivity analysis, learning, and adaptation.
For the printer system it turned out that persistence was not a problem, but this does
not hold in general: when a part of a system has been changed or reinstalled, how much
of the previous evidence is then still valid?

Acknowledgements

We thank our co-workers on SACSO, in particular Olav Bangsg, Thomas Nielsen, Kris-
tian G. Olesen, Lynn Parker, Paul Pelletier, and Lasse Rostrup-Jensen. The research
was supported by the National Centre for I'T Research through grant #87.2.

References

de Kleer, J. & Williams, B. (1987). Diagnosing multiple faults, Artificial Intelligence
32: 311-319.

Heckerman, D., Breese, J. S. & Rommelse, K. (1995). Decision-theoretic troubleshooting,
Communications of the ACM 38(3): 49-56. Special issue on real-world applications
on Bayesian networks.

Kalagnanam, J. & Henrion, M. (1990). A comparison of decision analysis and expert
rules for sequential analysis, in P. Besnard & S. Hanks (eds), Uncertainty in Arti-
ficial Intelligence 4, North-Holland, New York, pp. 271-281.

Skaanning, C. (2000). A knowledge acquisition tool for Bayesian-network troubleshoot-
ers, in C. Boutilier & M. Goldszmidt (eds), Proceedings of the Sixteenth Conference
on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers, San Fran-
cisco, pp. 549-557.

Skaanning, C., Jensen, F. V. & Kjeerulff, U. (2000). Printer troubleshooting using
Bayesian networks, Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems .

Skaanning, C., Jensen, F. V., Kjerulff, U., Pelletier, P. & Rostrup-Jensen, L. (1998).
Printing system diagnosis: A Bayesian network application, Workshop on Principles
of Diagnosis, Cape God, Massachussets.

Sochorovd, M. & Vomlel, J. (2000). Troubleshooting: NP-hardness and solution meth-
ods, The Fifth Workshop on Uncertainty Processing WUPES’2000, Jindrichiiv
Hradec, Czech Republic.

Srinivas, S. (1995). A polynomial algorithm for computing the optimal repair strategy
in a system with independent component failures, in P. Besnard & S. Hanks (eds),

SACSO Troubleshooting 23

Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,
Morgan Kaufmann Publishers, pp. 515-522.

Vomlel, J. (2000). On quality of BATS troubleshooter and other approximative methods,
Technical report, Department of Computer Science, Aalborg University, Denmark.

SACSO Troubleshooting 24

Author Biographies

Finn V. Jensen Professor in Computer Science at Aalborg University, Denmark.
Ph.D. in Mathematical Logic, Warsaw University, Poland (1974). His scientific contri-
butions have for the last ten years mainly been in connection to Bayesian networks and
decision graphs. He is one of the founders of the Hugin method and the Hugin Company.

Uffe Kjaerulff Associate Professor in Computer Science at Aalborg University, Den-
mark. Ph.D. in Computer Science, Aalborg University (1993). His research interest is
reasoning under uncertainty. His scientific contributions relate mostly to methods for
efficient inference in Bayesian networks.

Brian Kristiansen Research Assistant and Software Engineer at Hewlett-Packard
Company. M.Sc. in Computer Science, Aalborg University, Denmark (1999). He has
worked for Hewlett-Packard on the SACSO project since 1999.

Helge Langseth Research Assistant at the Department of Computer Science, Aal-
borg University, Denmark. Ph.D. student in mathematical statistics at the Norwegian
University of Science and Technology.

Claus Skaanning Research Engineer at Hewlett-Packard Company. Ph.D. in Com-
puter Science, Aalborg University, Denmark (1997). Worked for Hewlett-Packard on
the SACSO project 1997-2000.

Jifi Vomlel Research Assistant at the Department of Computer Science of Aal-
borg University, Denmark. Ph.D. in Artificial Intelligence, Czech Technical University,
Prague, the Czech Republic (2000). His research interest is reasoning under uncertainty.

Marta Vomlelova (Sochorova) Research assistant at Aalborg University, Denmark;
M.Sc. in Artificial Intelligence, Charles University, Prague; Ph.D. student at University
of Economics, Prague. Her research interest is probabilistic modeling.

SACSO Troubleshooting

Full postal address
Professor Finn V. Jensen
Department of Computer Science
Aalborg University
Fredrik Bajers Vej 7
DK-9220 Aalborg

Denmark

Telephone: +45 9635 8080
Fax: 445 9815 9889
E-mail: fvjQcs.auc.dk

25

