
The SACSO methodology

for troubleshooting
omplex systems

Finn V. Jensen

1

U�e Kj�rul�

1

Brian Kristiansen

2

Helge Langseth

1

Claus Skaanning

2

Ji�r�� Vomlel

1

Marta Vomlelov�a

1

1

Department of Computer S
ien
e

Aalborg University, Denmark

2

Hewlett-Pa
kard Laboratory for Normative Systems, Denmark

22 De
ember 2000

Abstra
t

The paper des
ribes the task of performing eÆ
ient de
ision-theoreti
 trou-

bleshooting of ele
tro-me
hani
al devi
es. In general, this task is NP-
omplete,

but under fairly stri
t assumptions, a greedy approa
h will yield an optimal se-

quen
e of a
tions, as dis
ussed in the paper. This set of assumptions is weaker

than the set proposed by He
kerman et al. (1995). However, the printing system

domain, whi
h motivated the resear
h and whi
h is des
ribed in detail in the paper,

does not meet the requirements for the greedy approa
h, and a heuristi
 method

is used. The method takes value of identi�
ation of the fault into a

ount and it

also performs a partial two-step look-ahead analysis. We
ompare the results of the

heuristi
 method with optimal sequen
es of a
tions, and �nds only minor di�eren
es

between the two.

Keywords: Troubleshooting, de
ision theory, Bayesian network

1 Introdu
tion

SACSO (Systems for Automated Customer Support Operations) is a
ollaboration be-

tween the Resear
h Unit of De
ision Support Systems at Aalborg University and Cus-

tomer Support R&D, Hewlett-Pa
kard Company. A result of SACSO is a de
ision-

theoreti
 system for troubleshooting printing systems. A printing system
onsists of

several
omponents: the appli
ation from whi
h the printing
ommand is sent, the

printer driver, the network
onne
tion, the server
ontrolling the printer, the printer

itself, et
. It is a
omplex task to troubleshoot su
h a system, and the printer indus-

try spends millions of dollars a year on
ustomer support. Therefore, automating the

troubleshooting pro
ess is highly bene�
ial for
ustomer as well as supplier.

Traditionally,
omputer-aided diagnoses or troubleshooting
onsists in using eviden
e

to narrow down the set of possible
auses for observed symptoms and to order them with

1

SACSO Troubleshooting 2

respe
t to likelihood (de Kleer & Williams 1987). In de
ision-theoreti
 troubleshooting

osts and likelihoods are balan
ed in order to �nd the next a
tion.

De
ision-theoreti
 troubleshooting was studied by Kalagnanam & Henrion (1990),

and it was extended to the
ontext of Bayesian networks by He
kerman et al. (1995).

They provide a framework for suggesting sequen
es of questions, repair a
tions, and

on�guration
hanges to obtain further information. By
al
ulating a lo
al eÆ
ien
y

of the possible repair a
tions and
ontinuously
hoosing the one of highest eÆ
ien
y,

a repair sequen
e is established. Assuming only a single fault, perfe
t repair a
tions,

independent a
tions, and independent
osts, the method �nds the optimal sequen
e of

a
tions. With respe
t to questions, He
kerman et al. (1995) suggest a myopi
 one-step

lookahead.

Troubleshooting is addressed in a similar way by Srinivas (1995). In parti
ular,

he addresses the problem of multiple faults, and under the assumption of independent

faults, he provides an e�e
tive way of determining an optimal repair sequen
e.

When troubleshooting printing systems, it is more natural to assume single fault

than to assume independent faults. We exploit the single fault assumption heavily in

knowledge a
quisition as well as in inferen
e: na��ve Bayes models suÆ
e, and probability

updating is very fast, allowing for methods requiring a large set of updates.

However, the repair a
tions for printing systems are imperfe
t, dependent, and a

myopi
 analysis of questions is insuÆ
ient for un
overing the value of asking a question

later in the session. Therefore, we have modi�ed the approa
h of He
kerman et al.

(1995), taking advantage of the opportunity to perform many probability updates. The

SACSO algorithms for sele
tion of troubleshooting steps have been further des
ribed by

Skaanning et al. (2000).

To allow domain experts to eÆ
iently implement their models in pra
ti
e, the SACSO

proje
t has also resulted in a knowledge a
quisition tool des
ribed by Skaanning (2000).

The tool,
alled BATS Author, allows domain expert with no knowledge of Bayesian

networks to
onstru
t troubleshooting models, and thereby eliminates the traditional

knowledge a
quisition bottlene
k for Bayesian networks.

2 The de
ision-theoreti
 troubleshooting task

A fault
ausing a (man-made) devi
e to malfun
tion is identi�ed and eliminated through

a sequen
e of troubleshooting steps. Some steps are repair steps whi
h may or may not

�x the problem, some steps are observation steps whi
h
annot �x the problem, but

may give indi
ations of the
auses of the problem, and some steps have repair aspe
ts

as well as observation aspe
ts. All steps have a
ost in terms of money, time, et
.

or
ombinations thereof. The task is to �nd the
heapest strategy for sequen
ing the

troubleshooting steps. In this paper we deal with pure repair steps and pure observation

steps only, and we shall
all them a
tions and questions, respe
tively.

A troubleshooting problem
an be represented and solved through a de
ision tree.

However, as de
ision trees have a risk of be
oming intra
tably large, we look for ways of

pruning the de
ision tree. Also, a troubleshooting strategy may by itself be intra
tably

SACSO Troubleshooting 3

large, and we look for ways of stepwise expanding the strategy through lo
al
al
ulations

based on the a
tual past.

2.1 A
tion sequen
es

In this se
tion we
onsider a set of steps
onsisting of a
tions only. An a
tion, A

i

, has

two possible out
omes, namely \A

i

= yes" (the problem was �xed) and \A

i

= no" (the

a
tion failed to �x the problem). Ea
h a
tion, A

i

, has a
ost C

A

i

(") whi
h may depend

on eviden
e ". We shall sometimes use C

i

(") (or C

i

) as shorthand for C

A

i

("). As there

are no questions, a troubleshooting strategy is a sequen
e of a
tions s = hA

1

; : : : ; A

n

i

pres
ribing the pro
ess of repeatedly performing the next a
tion until an a
tion �xes

the problem or the last a
tion has been performed.

When solving a troubleshooting problem we have some initial eviden
e " and in the

ourse of exe
uting a
tions in the troubleshooting sequen
e s = hA

1

; : : : ; A

n

i we
olle
t

further eviden
e, namely that the previous a
tions have failed. We let "

i

denote the

eviden
e that the �rst i a
tions have failed, and we shall refer to a set of failed a
tions

as simple eviden
e. In the following we shall not mention the initial eviden
e expli
itly.

De�nition 1 The expe
ted
ost of repair, ECR, of a troubleshooting sequen
e s =

hA

1

; : : : ; A

n

i with
osts C

i

is the mean of the
osts until an a
tion su

eeds or all

a
tions have been performed:

ECR(s) �

X

i

ECR

i

(s);

where

ECR

i

(s) = C

i

("

i�1

)P ("

i�1

): 2

Note that the term \expe
ted
ost of repair" may be misleading as we allow a

situation where all a
tions have been performed without having �xed the problem. If

this happens, it will happen with the same probability no matter the sequen
e, and

therefore we need not estimate a
ost for it. We may also extend the set of a
tions with

a
all servi
e a
tion, CS. We shall return to this in Se
tion 2.3.

Now,
onsider two neighboring a
tions A

i

and A

i+1

in s, and let s

0

be obtained from

s by swapping the two a
tions. The
ontribution to ECR(s) from the two a
tions is

C

i

("

i�1

)P ("

i�1

) + C

i+1

("

i

)P (A

i

= no; "

i�1

); (1)

and the
ontribution to ECR(s

0

) from the two a
tions is

C

i+1

("

i�1

)P ("

i�1

) + C

i

("

i�1

; A

i+1

= no)P (A

i+1

= no; "

i�1

): (2)

As the di�eren
e between (2) and (1) equals ECR(s

0

)� ECR(s), we get

ECR(s

0

)� ECR(s) =

P ("

i�1

) �

�

C

i+1

("

i�1

)� C

i

("

i�1

) + C

i

("

i�1

; A

i+1

= no)P (A

i+1

= no j"

i�1

)�

C

i+1

("

i

)P (A

i

= no j"

i�1

)

�

:

SACSO Troubleshooting 4

If s is an optimal troubleshooting sequen
e, we must have ECR(s) � ECR(s

0

), and

therefore

C

i

("

i�1

) + C

i+1

("

i

)P (A

i

= no j"

i�1

) �

C

i+1

("

i�1

) +C

i

("

i�1

; A

i+1

= no)P (A

i+1

= no j"

i�1

): (3)

If it holds that the
osts are independent of the a
tions taken, (3)
an be rewritten as

P (A

i

= yes j"

i�1

)

C

i

�

P (A

i+1

= yes j"

i�1

)

C

i+1

: (4)

De�nition 2 Let A be a repair a
tion and let " be the eviden
e
ompiled so far. The

eÆ
ien
y of A is de�ned as

ef(A j") =

P (A = yes j")

C

A

(")

: 2

Proposition 1 Let s be an optimal sequen
e of a
tions for whi
h the
osts are inde-

pendent of the a
tions taken. Then it must hold that ef (A

i

j"

i�1

) � ef (A

i+1

j"

i�1

).

In general, (3)
an be used for pruning the de
ision tree, but Proposition 1 makes

it even simpler. Assume that a
tion B

i

has been
hosen at a bran
h where the options

were B

1

; : : : ; B

m

with
urrent eÆ
ien
ies ef(B

1

j"); : : : ; ef(B

m

j"). Now, if B

i

fails, only

B

j

's for whi
h ef(B

i

j") � ef(B

j

j") may be
hosen, but after failure of B

j

any a
tion

may be
hosen.

2.2 The greedy approa
h

It would be mu
h easier to solve the troubleshooting problem if we
ould base the

sequen
ing on a greedy approa
h:
hoose always an a
tion with highest eÆ
ien
y. How-

ever, Proposition 1 does not guarantee that this approa
h will yield an optimal trou-

bleshooting sequen
e.

In Figure 1 there are 4 possible
auses, C

1

, C

2

, C

3

, and C

4

, for a devi
e malfun
-

tioning, and we assume that exa
tly one of the
auses is present, and that the prior

probabilities are 0:2, 0:25, 0:40, and 0:15, respe
tively. Assume that all a
tions have

ost 1. Then a
tion A

2

has the highest eÆ
ien
y, and if A

2

fails, then A

1

has higher

eÆ
ien
y than A

3

. The sequen
e hA

2

; A

1

; A

3

i has ECR = 1:50. However, the sequen
e

hA

3

; A

1

i has ECR = 1:45.

To analyze why the de
reasing eÆ
ien
y approa
h does not guarantee an optimal

sequen
e, let hA

1

; : : : ; A

n

i be a sequen
e ordered by de
reasing eÆ
ien
y. If the sequen
e

is not optimal, there must be two a
tions A

i

and A

j

, i < j, whi
h, in the optimal

sequen
e, are taken in di�erent order. At the time where A

i

is
hosen, we have

P (A

i

= yes j")

C

i

>

P (A

j

= yes j")

C

j

:

SACSO Troubleshooting 5

C

1

C

2

C

3

C

4

A

1

A

2

A

3

0:20

0:25

0:40

0:15

Figure 1: An example of dependent a
tions. Ea
h of C

1

; : : : ; C

4

is a possible
ause of a

parti
ular fault of a devi
e, and ea
h of the a
tions, A

1

; : : : ; A

3

, will eliminate the fault

asso
iated with their parent
auses.

In the optimal sequen
e, where A

j

is
hosen before A

i

, we have

P (A

i

= yes j"

0

)

C

i

<

P (A

j

= yes j"

0

)

C

j

;

where " and "

0

are simple eviden
e (not involving A

i

and A

j

). We
an infer that an

a
tion sequen
e hA

1

; : : : ; A

n

i is optimal if for all i < j it holds that

ef(A

j

j") � ef(A

i

j");

where " is simple eviden
e (not involving A

i

and A

j

).

Proposition 2 Consider the following assumptions.

� The devi
e has n di�erent faults F

1

; : : : ; F

n

and n di�erent repair a
tionsA

1

; : : : ; A

n

.

� Exa
tly one of the faults is present.

� Ea
h a
tion has a spe
i�
 probability of repair, p

i

= P (A

i

= yes jF

i

), and P (A

i

=

yes jF

j

) = 0 for i 6= j.

� The
ost C

i

of a repair a
tion does not depend on the performan
e of previous

a
tions.

If these assumptions hold, then ef (A

j

) � ef (A

i

) implies that ef (A

j

j") � ef (A

i

j"),

where " is simple eviden
e (not in
luding A

i

and A

j

).

Note that we do not assume the repair a
tions to be perfe
t. They may fail to �x a

fault whi
h they are supposed to �x.

SACSO Troubleshooting 6

Proof: Let A

m

be an a
tion whi
h has failed. We shall
al
ulate P (A

i

= yes jA

m

= no)

(for notational
onvenien
e, we omit mentioning of the
urrent eviden
e). Due to the

single-fault assumption, we have P (A

m

= no jA

i

= yes) = 1. Using Bayes' rule we get

P (A

i

= yes jA

m

= no) =

P (A

m

= no jA

i

= yes)P (A

i

= yes)

P (A

m

= no)

=

P (A

i

= yes)

P (A

m

= no)

:

That is, P (A

m

= no) is a normalizing
onstant for the remaining a
tions, and the

relative order of eÆ
ien
ies is preserved. 2

The following theorem
on
ludes the
onsiderations. The theorem is a slight exten-

sion of similar results by Kalagnanam & Henrion (1990) and He
kerman et al. (1995).

Theorem 1 Let s = hA

1

; : : : ; A

n

i be an a
tion sequen
e for a troubleshooting prob-

lem ful�lling the
onditions in Proposition 2. Assume that s is ordered a

ording to

de
reasing initial eÆ
ien
ies. Then s is an optimal a
tion sequen
e and

ECR(s) =

n

X

i=1

C

i

0

�

1�

i�1

X

j=1

p

j

1

A

: (5)

Proof: From the proof of Proposition 2, we have that the relative order of the eÆ
ien
ies

of the a
tions are preserved. For any a
tion sequen
e s

0

whi
h is not ordered a

ording to

ef(A

i

) there will be a j so that ef(A

j

) < ef(A

j+1

) and therefore ef(A

j

j"

j

) < ef(A

j+1

j"

j

).

Hen
e s

0

an be improved by swapping A

j

and A

j+1

. From the de�nition we have

ECR(s) =

n

X

i=1

C

i

P ("

i

):

Due to the single fault assumption we have P ("

i

) = 1�

P

i�1

j=1

p

j

. 2

2.3 Call servi
e

The a
tion
all servi
e (CS) will always solve the problem. The
ost of CS is not the

unknown pri
e of �xing the devi
e, but the possible overhead of having outsiders �xing

a problem you
ould have �xed yourself. The eÆ
ien
y of CS is 1=C

CS

no matter the

set of a
tions performed so far.

Let s = hA

1

; : : : ; A

n

i be an optimal a
tion sequen
e resulting from a situation meet-

ing the assumptions in Proposition 2. It may be so that the sequen
e should be broken

before A

n

and servi
e is
alled. A

ording to Proposition 1, CS shall only be performed

after an a
tion of higher eÆ
ien
y. In SACSO we suggest the CS a
tion as soon as it

has maximal eÆ
ien
y. However, this is not guaranteed to be optimal. The question of

�nding an optimal a
tion sequen
e in
luding CS is of higher
ombinatorial
omplexity.

Instead of looking for a sequen
ing of a
tions ea
h of whi
h must eventually be performed

if the other a
tions fail, we shall now look for a subset of a
tions and a sequen
ing of

them. We shall not go further into this problem.

SACSO Troubleshooting 7

2.4 Questions

The out
ome of a question may shed light on any of the possible faults, or it may be

fo
used on a parti
ular fault.

The troubleshooting task is to interleave a
tions and questions su
h that the expe
ted

ost is minimal. To do so, we need to analyze the value of answers to questions.

Imagine that we are in the middle of a troubleshooting sequen
e; we have so far

gained the eviden
e ", and now we have the option to ask the question Q with
ost C

Q

.

For simpli
ity, we assume that Q has only two out
omes, \yes" and \no". Assume that

no matter the out
ome of Q, we are able to
al
ulate the minimal expe
ted
ost of

repair for the remaining sequen
e. So let ECR be the minimal expe
ted
ost if Q is not

performed, and let ECR

Q=yes

and ECR

Q=no

denote the same for the out
omes \yes"

and \no", respe
tively.

Then the value of observing Q is

V (Q) = ECR�

�

P (Q = yes j")ECR

Q=yes

+ P (Q = no j")ECR

Q=no

�

; (6)

and Q is performed if and only if V (Q) > C

Q

.

In order to determine whether or not to ask a question prior to an a
tion, we have to

analyze all possible su

eeding sequen
es, and if there are several a
tions and questions,

it is in general intra
table: in the future we will also have question options to interleave.

A workable approximation is the myopi
 strategy : assume at any stage of trou-

bleshooting that we allow questions to be asked, but in the future we allow only repair

a
tions. In that
ase, the task redu
es to
al
ulating expe
ted
osts given the various

out
omes of the possible questions, and the approa
hes from the previous se
tion
an

be used.

2.5 Strategy trees

When questions are part of the troubleshooting, then a troubleshooting strategy is a

tree rather than a sequen
e. To emphasize this fa
t, we shall sometimes refer to su
h a

strategy as a strategy tree. Figure 2 provides an example of a strategy tree.

There are two types of nodes in a strategy tree |
han
e nodes and terminal nodes.

Chan
e nodes are displayed as
ir
les, and they are labeled with troubleshooting steps

(a
tions or questions). Edges are labeled with out
omes of the steps, and we let L(")

denote the fun
tion yielding labels to edges, ". Terminals are diamond shaped, and they

indi
ate that the devi
e has been repaired. The set of terminal nodes of a strategy tree

s is denoted L(s).

Let path(n) be the sequen
e of edges
onstituting a path from the root node to node

n in a strategy tree. Then "

n

=

S

"2path(n)

L(") de�nes the eviden
e
orresponding to the

already performed a
tions and questions. Furthermore, let P ("

n

) denote the probability

of eviden
e "

n

, i.e., the probability of getting to node n from the root node. Finally, let

t(n) denote the total
ost of a
tions and questions in the path from the root node to

node n. For example, in Figure 2, the eviden
e
orresponding to node d labeled by A

2

SACSO Troubleshooting 8

b d f

h j l

a

 e g

i k m

Q

1

A

1

A

2

CS

A

2

A

1

CS

Q

1

= no

Q

1

= yes

A

1

= yes A

2

= yes CS = yes

A

2

= yes A

1

= yes CS = yes

A

1

= no A

2

= no

A

2

= no A

1

= no

Figure 2: A strategy tree.

is Q

1

= no, A

1

= no, the probability of getting there is P (Q

1

= no; A

1

= no), and the

total
ost of getting there is C

Q

1

+C

A

1

.

Next, we extend the de�nition of expe
ted
ost of repair to strategy trees.

De�nition 3 The expe
ted
ost of repair of troubleshooting strategy s is de�ned as

ECR(s) =

X

`2L(s)

P ("

`

) � t(`): 2

The goal of the troubleshooting task is to �nd a troubleshooting strategy that min-

imizes the expe
ted
ost of repair among of all possible strategies.

2.6 Complexity of troubleshooting

The sear
h for an optimal de
ision-theoreti
 troubleshooting strategy has appeared to

be an NP-
omplete problem.

Theorem 2 Given a troubleshooting problem with dependent a
tions, the single-fault

assumption, and a
onstant K 2 R

+

, determining if there exists a troubleshooting

sequen
e s with ECR(s) � K is an NP-
omplete problem.

Proof: The idea of the proof is to redu
e the problem to the Exa
t
over by 3-sets (see

So
horov�a & Vomlel (2000) for details). 2

Similar theorems may be proven for questions (even with independent a
tions) and

dependent
osts (even with independent a
tions and without questions).

SACSO Troubleshooting 9

Sin
e we deal with an NP-
omplete problem we must resort to eÆ
ient heuristi
s

to solve the problem within reasonable time. These heuristi
 methods are des
ribed in

Se
tion 4. First, however, we des
ribe the models used for troubleshooting in the printing

domain that motivated the development of the SACSO troubleshooting approa
h.

3 Printing system models

The SACSO printing diagnosis system
onsists of many separate Bayesian networks ea
h

modeling a printing error. If error
onditions overlap and
annot easily be separated,

they have to be represented in the same model. In printer systems there are the following

types of error
onditions:

� Data
ow models | these models
over problems where the
ustomer does not get

any output from the printer, or
orrupted output from the printer when attempting

to print. These errors
an be
aused by any of the
omponents in the
ow from

appli
ation to printer that the print job passes through. Skaanning et al. (1998)

have des
ribed these in detail.

� Error
odes | these models handle all types of error
odes that
an appear on the

ontrol panel of the printer. Skaanning et al. (1998) have des
ribed this
ategory

in detail.

� Unexpe
ted output | these models handle all
ategories of unexpe
ted output

that
an o

ur on the printer, e.g., job not duplexed or spots, stripes, or banding

on the paper.

� Mis
ellaneous | these models handle mis
ellaneous erroneous behavior of the

printer not
overed by the above three, su
h as noise from the printer engine, slow

printing, problems with bi-dire
tional
ommuni
ation, et
.

These error
ategories are related in the way that all error types
an result in a general

printer problem, and \Data
ow problems"
an
ause the three other error types.

Ea
h of the SACSO models in
ludes a
ause variable that de�nes the probability

distribution over the
auses of the error
ondition. The
auses are modeled as the states

of this variable. All a
tions and questions that
an be posed in the troubleshooting

pro
ess are represented as
hildren of the
ause variable. An example is shown in

Figure 3. The bene�t of this na��ve Bayes stru
ture is that all a
tions and questions are

independent given the
auses. This
an be exploited in the algorithms for �nding the

best next step, as shown in Se
tion 4.

3.1 The unexpe
ted-output models

The unexpe
ted-output models represent all the situations where the
ustomer does

not get the expe
ted output. This is usually due to settings not set
orre
tly, or mal-

fun
tioning printer parts. Figure 4 shows an example Bayesian network model for an

SACSO Troubleshooting 10

A
tion 1 A
tion 2 A
tion 3 Question 1 Question 2

Cause node

(
auses as states)

Cause

1

.

.

.

Cause

N

Figure 3: An example of the very simple Bayesian network stru
ture used for trou-

bleshooters.

unexpe
ted output
ategory, Spots. To enfor
e the single fault assumption the
auses

of this network are internally
ollapsed to a single node su
h as in Figure 3.

The
ustomer may experien
e spots on the paper for some of the following reasons:

� The toner
artridge is malfun
tioning either be
ause it is defe
tive or improperly

seated.

� The used media has the wrong spe
i�
ations.

� The environmental
onditions of the printer may be out of spe
i�
ation, e.g., too

humid, warm, et
.

� The transfer roller is malfun
tioning either be
ause it is defe
tive, not seated

orre
tly, or dirty.

� The power
hord of the printer is not earth grounded.

3.2 The troubleshooting layer

The Bayesian network model pi
tured in Figure 4 is not suÆ
ient for troubleshooting as

it only
ontains information about the possible
auses for the various problems with the

printer. They
ontain no information on a
tions that
an be used to resolve the problem

at hand or gather information that
an be used to speed up the troubleshooting. In this

se
tion, it will be des
ribed how variables representing information like this
an be added

to the stru
tures presented in the previous se
tions.

We basi
ally represent two types of troubleshooting steps; namely questions (in
lud-

ing tests), whi
h provide general information that
an
hange the optimal sequen
e of

troubleshooting steps, and a
tions, whi
h
an solve the problem.

In Figure 5, some troubleshooting a
tions and questions have been added to the

model for the \HP MIO1 not ready" error
ode. The experts listed the a
tions and

SACSO Troubleshooting 11

Toner
artridge

PM kit needed

Fuser

Media out of spe

Other problem

Environmental

onditions

Transfer roller

Paper path dirty

Printer not

earth grounded

Spots

Defe
tive toner

artridge

Toner
artridge

improperly seated

Fuser not seated

Defe
tive fuser

Dirty fuser

Temporary

problem

Intermittent

problem

Permanent

problem

Transfer roller

not seated properly

Defe
tive transfer

roller

Dirty transfer

roller

Figure 4: An example of a Bayesian network model of the Spots
ategory of unexpe
ted

output.

SACSO Troubleshooting 12

questions that they would usually perform when troubleshooting this error
ode over

the telephone.

For ea
h a
tion it was determined whi
h
auses it
ould �x:

� Removing the network / IO
able
an solve the problem if the network is the
ause.

� Troubleshooting the entire data
ow
an also solve the problem if the network is the

ause. This a
tion
orresponds to the entire data
ow and all its troubleshooting

steps.

� Waiting 5 minutes for initialization
an solve the problem if the
ustomer did not

wait long enough.

� Cy
ling power
an solve temporary problems and some intermittent. Even though

intermittent problems are not really solved, this is the way it will look to the

ustomer.

For ea
h
ause, �xable by an a
tion, the printer experts have given a probability

that the a
tion would �x the
ause, along with the
ost of performing the a
tion. The

ost is based on 4 measures: the time it takes to perform the a
tion, the risk of breaking

something else while performing the a
tion, themoney involved in performing the a
tion,

and a potential insult by suggesting the a
tion (e.g.,
he
k whether the power is on).

These 4 fa
tors are weighed and
ombined into a single �gure.

3.3 An example run

Below, we have listed the steps generated by a troubleshooting tool
alled BATS Trou-

bleshooter (see Se
tion 4.3) in the presen
e of the error
ode \HP MIO1 not ready".

Assuming that a defe
tive MIO
ard is the
ause of the problem, the troubleshooter will

guide the
ustomer through the following a
tions and questions.

1. Question: Did you wait 5 minutes for initialization? This question is given �rst

to rule out the possibility that there is no problem at all. If the
ustomer answers

\no", he will be told to wait 5 minutes for proper initialization. As this does not

solve the problem, the system
ontinues.

2. Test: Move MIO
ard to another slot in the printer and try printing. This a
tion

tests whether there is a printer hardware problem with a broken MIO
ard slot.

It does not solve the problem, and the system
ontinues.

3. Repair a
tion: Remove network / IO
able. This a
tion
an rule out a relatively

likely
ause (17%) with a very low
ost (1 minute). It does not solve the problem,

and the system
ontinues.

4. Repair a
tion: Ensure that the MIO
ard is supported by the printer. This will

rule out situations where the
ustomer is using a third party
ard or a
ard whi
h is

out of spe
i�
ations. As the
ard is within spe
i�
ations, the system will
ontinue.

SACSO Troubleshooting 13

Remove network /

IO
able

Troubleshoot

data
ow

Wait 5 minutes for

initialization

Cy
le power

Move MIO
ard

to another slot

Reseat MIO
ard

Troubleshoot all

a

essories

Try another HP

in-spe
 MIO
ard

Move MIO
ard to

another printer

Verify MIO
ard is

supp. by printer

Reset MIO
ard

to default

Reload / update

�rmware on MIO

Permanent

problem

Temporary

problem

Intermittent

problem

Not seated

properly

Defe
tive
ard

Does not meet

spe
i�
ations

Third party

NVRAM on
ard

orrupt

Firmware needs

updating

Firmware on

ard
orrupt

MIO init. | did

not wait 5 min.

Network (data
ow)

Other problem

A

essories ex
l.

MIO
ard 1

MIO
ard problem

HP MIO1

not ready

Did you wait

5 minutes?

Third party

MIO
ard?

Figure 5: An error
ode model with added troubleshooting a
tions (re
tangular shaped)

and questions (diamond shaped).

SACSO Troubleshooting 14

5. Test:

(a) Try another supported MIO
ard. This test
an help ruling out one of the

most likely
auses, defe
tive
ard (47%). It does solve the problem, but the

system
annot say for sure whether it was be
ause the original
ard was seated

improperly, is a third party produ
t, is out of spe
i�
ation, is defe
tive, has

orrupt NVRAM, or has
orrupt or out of date �rmware.

(b) Reinsert the old
ard and test whether printing works now. This
he
ks if

the new
ard works be
ause the old
ard was not seated properly. Sin
e the

old
ard is defe
tive, it will obviously still not work.

The troubleshooter �nally
on
ludes that the MIO
ard is defe
tive after ruling out

the possibility of the
ard being seated improperly.

4 The SACSO troubleshooting approa
h

This se
tion des
ribes the SACSO approa
h to troubleshooting, and a tool implement-

ing the approa
h is brie
y des
ribed. We also
ompare the troubleshooting strategies

obtained from the tool (and variants of it) with optimum troubleshooting strategies.

At any time in the troubleshooting pro
ess we wish to sele
t the next step on the

basis of the information gathered so far. Whenever a step has been performed and

information from that step has been in
luded, the same pro
edure for sele
ting the next

step is repeated based on the updated information.

The basi
 idea behind sele
ting the next step is to
ompare the expe
ted result of

performing the repair a
tion of highest eÆ
ien
y with the expe
ted result of asking a

question (or performing a test). Our approa
h to evaluating the expe
ted result of tests

and questions is based on the following idea.

Assume, for example, that the fault is that the user has not installed a printer driver.

Then the answer \no" to the question \Is there a printer driver installed?" will end the

troubleshooting sequen
e. The rest will be instru
tions on how to get an appropriate

driver and how to install it. Therefore, a question without any ability to �x the problem

has a value. Entropy
ould be used as a measure of how fo
used the probability mass is.

However, we have taken another approa
h in SACSO: if some answer q to question Q

will identify the fault with almost
ertainty, then the value, V

Q

, of asking Q is P (Q = q).

Mathemati
ally, we
al
ulate

P

Q

(") = max

i

max

q

P (f

i

jQ = q; ") � P (f

i

j")

1� P (f

i

j")

:

The \good" answer is denoted q

G

. If P

Q

(") ex
eeds a prede�ned threshold, V

Q

is set

to P

Q

(") � P (q

G

); otherwise it is set to zero. If there are several good answers, the

orresponding values are added.

SACSO Troubleshooting 15

We extend De�nition 3 and de�ne the
urrent expe
ted
ost of repair of a trou-

bleshooting strategy s, given eviden
e "
ompiled so far, as

ECR(s j") =

X

`2L(s)

P ("

`

j") � t(`):

When s is
lear from the
ontext, we shall use ECR(") as an abbreviation for ECR(s j").

Let hS

1

; : : : ; S

n

i be the sequen
e of troubleshooting steps ordered a

ording to the

urrent eÆ
ien
ies. As the assumptions in Proposition 2 are not met, it would be mis-

leading to use Formula 5. Instead, we are for
ed to use De�nition 1, and the
al
ulation

of ECR requires probability updating for ea
h step in the sequen
e. Questions (and

tests) are in
luded in the sequen
e if their P

Q

(") is beyond a threshold
lose to 1 and

if

P

Q

(")�P (q

G

)

C

Q

is maximal. When
al
ulating ECR for a sequen
e
ontaining a question,

\the a
tion has failed" means \Q 6= q

G

". That is, Q 6= q

G

is inserted as eviden
e and

used for the steps following Q.

We determine the troubleshooting step, A, of highest eÆ
ien
y and
al
ulate ECR(")

as des
ribed above. Before a
tually performing A, we perform a two-step look-ahead

analysis. Namely, we analyze whether a question should be asked.

For any question (and test) Q, we do the following. To determine the e�e
t of asking

Q, the expe
ted
ost of repair ECR(";Q = q) for ea
h answer q is determined, and we

al
ulate

ECR

Q

(") = C

Q

+

X

q

ECR(";Q = q)P (Q = q j"): (7)

If ECR

Q

(") < ECR("), the question Q should be asked. However, the
omparison is

biased. Unless Q is a question whi
h might identify a
ause, ECR(") does not take Q

into
onsideration, and we have in fa
t analyzed the
hoi
e of asking Q now or never.

Therefore, before it is de
ided to ask Q, it is analyzed whether it may be even better to

ask Q after A has been performed:

ECR

A;Q

(") = C

A

+ ECR

Q

(";A = n)P (A = n j"):

If ECR

A;Q

(") < ECR

Q

("), the question is not asked, and if this holds for all Q with

ECR

Q

(") < ECR("), A is performed. Note that the
al
ulation of ECR

A;Q

(") requires

an entire new analysis. Noti
e also, that in
ase A fails, then a renewed analysis is

performed.

4.1 Logi
al
onstraints and deferred a
tions

There are various
onstraints on the sequen
ing of the a
tions. For example, if the

step \Reseat MIO Card" has been performed, the question \Is the MIO Card prop-

erly seated?" should not be asked. Some of these
onstraints are not
onsequen
es of

the probabilities in the models. Therefore, the system keeps spe
ial a

ount of these

onstraints, and it ensures that they are always met in the analysis of ECR and when

proposing steps.

SACSO Troubleshooting 16

To improve the
exibility of the system, the user has the option of deferring a

proposed a
tion. A deferred a
tion is still one of the options under
onsideration later

unless the user requests for its removal.

4.2 Persisten
e and multiple faults

Often, a troubleshooting step
hanges the
on�guration of the system, and therefore the

question of persisten
e is relevant: is the information a
quired still valid? If not, and if

the information is not updated, the system may go wild or into blind alleys. The printing

system appli
ation was analyzed with respe
t to non-persisten
e, and it was
on
luded

that this was not a problem. A
tually, there are a
tions that
hange the
on�guration

of the system. However, these a
tions either return the system to its original state upon

failure, or modify
omponents that will not be referred to and have an e�e
t on the

system later in the sequen
e.

The modeling and the sequen
ing method rely heavily on the single-fault assumption.

If there are multiple faults, the proposed sequen
e will eventually �x them; perhaps at an

unne
essarily high pri
e. In parti
ular, non-persisten
e may be a real problem in
ase of

multiple faults, as ea
h su

essful repair a
tion de�nitely
hanges the
on�guration of the

system, and maybe even eliminates several faults. So, after ea
h su

essful repair a
tion,

one may be for
ed to dis
ard all previous eviden
e before
ontinuing the troubleshooting.

4.3 BATS Troubleshooter

In this se
tion we brie
y des
ribe BATS

1

Troubleshooter, whi
h implements the SACSO

troubleshooting approa
h des
ribed above.

Figure 6 shows a s
reenshot of BATS Troubleshooter. The troubleshooter guides the

user through a good troubleshooting sequen
e to resolve the error
ondition that he is

urrently experien
ing. The graphi
al user interfa
e allows the experien
ed user to tra
k

the
omputations of the algorithms for �nding the best next step. The troubleshooter

an suggest repair a
tions that may solve the problem, or questions about the printing

system.

The user interfa
e shows the
urrently suggested steps, and waits until the user

provides the result to the step (whether an a
tion solved the problem or not, or the

answer to a question). The
urrently suggested error
ondition is light print | a
ommon

problem on printers. The problem of light print has both hardware and software
auses,

and some of the �rst troubleshooting steps sele
ted by the diagnosti
 engine attempt

to de
ide whether the
ause is in the hardware or software se
tion, e.g., \Is the printer

on�guration page printed light?".

The troubleshooter
ontinuously displays a list of
auses sorted wrt. their probabil-

ities, a list of troubleshooting steps sorted wrt. their eÆ
ien
ies, and a list of questions

(and tests) sorted wrt. ECR

Q

(see (7)).

The user interfa
e of BATS Troubleshooter also supports more advan
ed features

su
h as for
ing
ertain steps to be asked immediately, going ba
k and forward in the

1

Bayesian Automated Troubleshooting System.

SACSO Troubleshooting 17

Figure 6: A s
reenshot of BATS Troubleshooter.

history, saving and loading restartable history �les, logging XML format history �les,

et
. Skaanning et al. (2000) have des
ribed in detail the algorithms behind the sele
tion

of steps in BATS Troubleshooter.

4.4 Comparison of the SACSO approa
h with optimal strategies

As troubleshooting in general is NP-hard we have to use approximate methods. The

spa
e of possible troubleshooting strategies
an be represented as a de
ision tree. There

are basi
ally two approa
hes for
al
ulating approximate strategies: to perform a tree

sear
h using heuristi
s to prune the tree or to rely on a lo
al
omputation whenever a new

troubleshooting step has to be
hosen. As the �rst approa
h requires a representation of

the entire strategy (or frequent re
al
ulations of it) we have
hosen the latter approa
h

in SACSO. In this se
tion we
ompare the strategies provided by the SACSO method

with the optimal strategies.

For
omparison we have
hosen a set of models of a size for whi
h it was tra
table to

determine an optimal strategy. The optimal strategy was determined through a bran
h

& bound algorithm. The bran
h & bound algorithm uses at ea
h point a lower bound

of the ECR for the remaining troubleshooting strategy.

De�nition 4 Let F be the set of all possible
auses of the problem and for every F 2 F

let the strategy s

F

denote an optimal strategy given F = yes. We de�ne a lower bound

of the ECR as

ECR =

X

F2F

P (F = yes) � ECR(s

F

): 2

SACSO Troubleshooting 18

So
horov�a & Vomlel (2000) dis
uss in detail the properties of ECR. The
omputation

of ECR(s

F

) is usually quite easy. If it holds that the su

ess probabilities for the var-

ious a
tions are independent and if we have independent
osts, an optimal sequen
e is

a
hieved by ordering the a
tions a

ording to de
reasing eÆ
ien
y. Under all
ir
um-

stan
es, for the models we are working with, the set of a
tions addressing the same fault

is very small.

Our implementation of the bran
h & bound algorithm performs depth �rst sear
h

with pruning. Suppose that the algorithm gets to a node
orresponding to eviden
e "

ompiled so far, where ECR

0

(") | the lowest value of ECR from all subtrees passed

through | is stored. Further, suppose that the step, S, under
onsideration has out-

omes s

1

; : : : ; s

q

; : : : ; s

r

and that, for eviden
e "

i

= " [fS = s

i

g,

� the optimal value of ECR("

i

) is already known for i = 1; : : : ; q and

� the value of ECR("

i

) is
omputed for i = q + 1; : : : ; r.

The pruning of subtrees
orresponding to strategies starting with troubleshooting step

S is performed as soon as we are sure that these strategies
annot be better than the

urrent lowest one, i.e., when

ECR

0

(") � C

S

+

q

X

i=1

P (S = s

i

j") � ECR("

i

) +

r

X

i=q+1

P (S = s

i

j") � ECR("

i

):

Sin
e the fun
tion ECR provides lower bounds of the optimal ECR, the optimal strategy

annot be missed.

4.5 Results

We have
ompared the strategies provided by the methods listed in Table 1. SACSO-

A and SACSO-B di�er on the
riteria for sele
ting the next step, and SACSO is a

ombination of the two. The
omparison is performed for 9 of the SACSO models for

troubleshooting laser printers.

Table 2 summarizes the
omparisons (details are provided by Vomlel (2000)). The

last row of Table 2 summarizes the
omparison as the average relative deviation from

the optimal strategy. This shows that the troubleshooting strategies suggested by the

SACSO approa
h are very
lose to optimal strategies, although the
omputational
om-

plexity of the SACSO approa
h is orders of magnitude lower than that of an optimal

algorithm.

5 Validation

Validation of troubleshooters based on Bayesian networks poses a potential bottlene
k.

The system des
ribed here allows a number of sequen
es ful�lling various
riteria from

the troubleshooting models to be generated with the so-
alled
ase generator. These

sequen
es
an then be evaluated with the so-
alled
ase evaluator. If a suÆ
ient number

SACSO Troubleshooting 19

Label Approa
h

OPTIM Optimal strategy minimizing ECR

SACSO SACSO approa
h

SACSO-A restri
ted SACSO approa
h where questions are se-

le
ted based on P

Q

only

SACSO-B restri
ted SACSO approa
h where questions are se-

le
ted based on ECR

Q

only

P/C The sequen
e of a
tions ordered a

ording to step by

step updated p=C-ratio

Table 1: Troubleshooting approa
hes.

a
tions # obs. OPTIM SACSO SACSO-A SACSO-B P/C

6 2 433:24 442:39 444:54 442:39 444:54

9 3 129:21 129:21 129:21 129:21 155:10

11 3 106:20 112:35 113:36 108:07 116:80

12 3 38:38 38:42 38:42 40:01 43:05

13 4 124:32 124:37 298:09 125:56 300:85

14 4 115:41 115:86 232:05 115:86 236:58

9 9 70:67 75:03 119:28 77:67 121:10

16 5 161:38 162:25 286:75 162:25 286:75

10 10 250:45 253:31 352:31 256:96 479:96

Av. rel. dev. from opt. 1:81% 48:60% 2:51% 59:16%

Table 2: Comparison of values of ECR.

SACSO Troubleshooting 20

of these sequen
es are a

epted, the model has an a

eptable level of quality. If not, the

model must be revised.

The validation method allows the generation of sequen
es in two di�erent ways, (i)

random sequen
es
an be generated using the probabilities in the model, (ii) spe
ial

sequen
es
an be generated ful�lling various
riteria su
h as sequen
es with the largest

number of steps, sequen
es with the highest total
ost, sequen
es ending with \
all

servi
e", et
.

5.1 The
ase generator

Generation of random sequen
es is performed utilizing two diagnosti
 engines that are

being exe
uted in tandem, one with knowledge of the randomly
hosen
ause used to

generate answers for steps (Engine 2 in Figure 7) and one with no knowledge used to

suggest the sequen
e of steps (Engine 1).

Figure 7 illustrates the pro
ess followed to generate a sequen
e of random steps based

on the probabilities of the model. In the left-hand side of Figure 7, the pro
ess of the

diagnosti
 Engine 1 is shown, and the pro
ess of the diagnosti
 Engine 2 is shown in the

right-hand side. The
ow of
ontrol is illustrated by the arrows.

The
ase generator
an also traverse the possible sequen
es and fet
h the sequen
es

with the highest number of steps or those with the highest total
ost. Traversing all

possible sequen
es may be infeasible, in whi
h
ase the
ase generator
an be stopped

on
e a suÆ
ient number of sequen
es have been traversed.

5.2 The
ase evaluator

For a qui
k overview, the
ase evaluator
an provide a set of random sequen
es for ea
h

ause. When
onfronted with a sequen
e, the expert may a

ept it or dis
ard it with a

omment explaining what should be modi�ed in the model. So far, modi�
ations have to

be performed manually, and it is an issue for further resear
h to
ome up with eÆ
ient

methods for automati

onservative re�nement: how to
hange parameters without

altering the a

epted sequen
es.

If the random sets provided by the
ase generator are a

eptable, the expert
an

start a more systemati
 evaluation by requesting \unfavorable" sequen
es. That may,

for example, be lengthy sequen
es,
ostly sequen
es, sequen
es with high overhead or

onfusing sequen
es.

6 Further resear
h

One type of tasks for further resear
h involves relaxation of the assumptions listed in

Se
tion 2. Although the troubleshooting task is NP-
omplete under relaxed
onditions,

it is still important to �nd eÆ
ient heuristi
s whi
h have good
han
es of providing
lose-

to-optimal sequen
es. Certainly, diagnosing multiple faults is important, but there are

other equally important tasks. For man-made devi
es one often meets the
onditional

ost problem: When �xing or inspe
ting a
ertain part one has dismantled the devi
e

SACSO Troubleshooting 21

Find random

ause

(1)

Suggest best

step without

knowledge

of
ause

(2)

Sele
t random

answer to step

onditional on

ause

(3)

Insert answer

as eviden
e

and propagate

(4)

Insert answer

as eviden
e

and propagate

(5)

Problem

solved or no

more steps?

(6)

Done

(7)

Yes

No

Diagnosti
 Engine 1 Diagnosti
 Engine 2

Figure 7: The
ow of simulating random
ases utilizing two diagnosti
 engines with and

without knowledge of the true
ause.

SACSO Troubleshooting 22

and before putting it together one may just as well perform other troubleshooting steps.

Also, dependent a
tions (see Figure 1) is often seen.

Another type of resear
h tasks has to do with quality of the model. Examples are

onservative re�nement (see Se
tion 5), sensitivity analysis, learning, and adaptation.

For the printer system it turned out that persisten
e was not a problem, but this does

not hold in general: when a part of a system has been
hanged or reinstalled, how mu
h

of the previous eviden
e is then still valid?

A
knowledgements

We thank our
o-workers on SACSO, in parti
ular Olav Bangs�, Thomas Nielsen, Kris-

tian G. Olesen, Lynn Parker, Paul Pelletier, and Lasse Rostrup-Jensen. The resear
h

was supported by the National Centre for IT Resear
h through grant #87.2.

Referen
es

de Kleer, J. & Williams, B. (1987). Diagnosing multiple faults, Arti�
ial Intelligen
e

32: 311{319.

He
kerman, D., Breese, J. S. & Rommelse, K. (1995). De
ision-theoreti
 troubleshooting,

Communi
ations of the ACM 38(3): 49{56. Spe
ial issue on real-world appli
ations

on Bayesian networks.

Kalagnanam, J. & Henrion, M. (1990). A
omparison of de
ision analysis and expert

rules for sequential analysis, in P. Besnard & S. Hanks (eds), Un
ertainty in Arti-

�
ial Intelligen
e 4, North-Holland, New York, pp. 271{281.

Skaanning, C. (2000). A knowledge a
quisition tool for Bayesian-network troubleshoot-

ers, in C. Boutilier & M. Goldszmidt (eds), Pro
eedings of the Sixteenth Conferen
e

on Un
ertainty in Arti�
ial Intelligen
e, Morgan Kaufmann Publishers, San Fran-

is
o, pp. 549{557.

Skaanning, C., Jensen, F. V. & Kj�rul�, U. (2000). Printer troubleshooting using

Bayesian networks, Industrial and Engineering Appli
ations of Arti�
ial Intelligen
e

and Expert Systems .

Skaanning, C., Jensen, F. V., Kj�rul�, U., Pelletier, P. & Rostrup-Jensen, L. (1998).

Printing system diagnosis: A Bayesian network appli
ation, Workshop on Prin
iples

of Diagnosis, Cape God, Massa
hussets.

So
horov�a, M. & Vomlel, J. (2000). Troubleshooting: NP-hardness and solution meth-

ods, The Fifth Workshop on Un
ertainty Pro
essing WUPES'2000, Jind�ri
h�uv

Hrade
, Cze
h Republi
.

Srinivas, S. (1995). A polynomial algorithm for
omputing the optimal repair strategy

in a system with independent
omponent failures, in P. Besnard & S. Hanks (eds),

SACSO Troubleshooting 23

Pro
eedings of the Eleventh Conferen
e on Un
ertainty in Arti�
ial Intelligen
e,

Morgan Kaufmann Publishers, pp. 515{522.

Vomlel, J. (2000). On quality of BATS troubleshooter and other approximative methods,

Te
hni
al report, Department of Computer S
ien
e, Aalborg University, Denmark.

SACSO Troubleshooting 24

Author Biographies

Finn V. Jensen Professor in Computer S
ien
e at Aalborg University, Denmark.

Ph.D. in Mathemati
al Logi
, Warsaw University, Poland (1974). His s
ienti�

ontri-

butions have for the last ten years mainly been in
onne
tion to Bayesian networks and

de
ision graphs. He is one of the founders of the Hugin method and the Hugin Company.

U�e Kj�rul� Asso
iate Professor in Computer S
ien
e at Aalborg University, Den-

mark. Ph.D. in Computer S
ien
e, Aalborg University (1993). His resear
h interest is

reasoning under un
ertainty. His s
ienti�

ontributions relate mostly to methods for

eÆ
ient inferen
e in Bayesian networks.

Brian Kristiansen Resear
h Assistant and Software Engineer at Hewlett-Pa
kard

Company. M.S
. in Computer S
ien
e, Aalborg University, Denmark (1999). He has

worked for Hewlett-Pa
kard on the SACSO proje
t sin
e 1999.

Helge Langseth Resear
h Assistant at the Department of Computer S
ien
e, Aal-

borg University, Denmark. Ph.D. student in mathemati
al statisti
s at the Norwegian

University of S
ien
e and Te
hnology.

Claus Skaanning Resear
h Engineer at Hewlett-Pa
kard Company. Ph.D. in Com-

puter S
ien
e, Aalborg University, Denmark (1997). Worked for Hewlett-Pa
kard on

the SACSO proje
t 1997-2000.

Ji�r�� Vomlel Resear
h Assistant at the Department of Computer S
ien
e of Aal-

borg University, Denmark. Ph.D. in Arti�
ial Intelligen
e, Cze
h Te
hni
al University,

Prague, the Cze
h Republi
 (2000). His resear
h interest is reasoning under un
ertainty.

Marta Vomlelov�a (So
horova) Resear
h assistant at Aalborg University, Denmark;

M.S
. in Arti�
ial Intelligen
e, Charles University, Prague; Ph.D. student at University

of E
onomi
s, Prague. Her resear
h interest is probabilisti
 modeling.

SACSO Troubleshooting 25

Full postal address

Professor Finn V. Jensen

Department of Computer S
ien
e

Aalborg University

Fredrik Bajers Vej 7

DK-9220 Aalborg

Denmark

Telephone: +45 9635 8080

Fax: +45 9815 9889

E-mail: fvj�
s.au
.dk

