Bayesian Networks in Educational Testing Jiří Vomlel

Institute of Information Theory and Automation Academy of Science of the Czech Republic Prague

This presentation is available at: http://www.utia.cas.cz/vomlel/

Contents:

- What is a Bayesian network?
- Student model and evidence models.
- A case study: Students perfoming computations with fractions.
- Variables in the student model.
- Construction of the student model.
- Evidence models.
- Construction of an adaptive test.
- Construction of a fixed test.
- Results of experiments.

Bayesian network

 $P(X_1,\ldots,X_9) =$

- $= P(X_9|X_8,...,X_1) \cdot P(X_8|X_7,...,X_1) \cdot \ldots \cdot P(X_2|X_1) \cdot P(X_1)$
- $= P(X_9|X_6) \cdot P(X_8|X_7, X_6) \cdot P(X_7|X_5) \cdot P(X_6|X_4, X_3)$

 $\cdot P(X_5|X_1) \cdot P(X_4|X_2) \cdot P(X_3|X_1) \cdot P(X_2) \cdot P(X_1)$

Student and evidence models

(R. Almond and R. Mislevy, 1999)

Sudents solving problems with fractions

- A group of university students from Aalborg University prepared paper tests that were given to students at Brønderslev High School.
- Four elementary skills, four operational skills, and abilities to apply operational skills to complex tasks were tested.
- 149 students solved the test.
- The tests were analyzed in detail so that it was possible for most of students to decide whether they have or have not the tested skills.
- Several different models were learned using the PC algorithm
- Models were compared on how well they predict skills using the leave-one-out method.

Examples of tasks - operations with fractions

 $T_{1}: \quad \left(\frac{3}{4} \cdot \frac{5}{6}\right) - \frac{1}{8} \qquad = \quad \frac{15}{24} - \frac{1}{8} = \frac{5}{8} - \frac{1}{8} = \frac{4}{8} = \frac{1}{2}$ $T_{2}: \quad \frac{1}{6} + \frac{1}{12} \qquad = \quad \frac{2}{12} + \frac{1}{12} = \frac{3}{12} = \frac{1}{4}$ $T_{3}: \quad \frac{1}{4} \cdot 1\frac{1}{2} \qquad = \quad \frac{1}{4} \cdot \frac{3}{2} = \frac{3}{8}$ $T_{4}: \quad \left(\frac{1}{2} \cdot \frac{1}{2}\right) \cdot \left(\frac{1}{3} + \frac{1}{3}\right) = \quad \frac{1}{4} \cdot \frac{2}{3} = \frac{2}{12} = \frac{1}{6}$

Elementary and operational skills

СР	Comparison (common nu- merator or denominator)	$\frac{1}{2} > \frac{1}{3}, \frac{2}{3} > \frac{1}{3}$
AD	Addition (comm. denom.)	$\frac{1}{7} + \frac{2}{7} = \frac{1+2}{7} = \frac{3}{7}$
SB	Subtract. (comm. denom.)	$\frac{2}{5} - \frac{1}{5} = \frac{2-1}{5} = \frac{1}{5}$
МТ	Multiplication	$\frac{1}{2} \cdot \frac{3}{5} = \frac{3}{10}$
CD	Common denominator	$\left(\frac{1}{2},\frac{2}{3}\right) = \left(\frac{3}{6},\frac{4}{6}\right)$
CL	Cancelling out	$\frac{4}{6} = \frac{2 \cdot 2}{2 \cdot 3} = \frac{2}{3}$
CIM	Conv. to mixed numbers	$\frac{7}{2} = \frac{3 \cdot 2 + 1}{2} = 3\frac{1}{2}$
СМІ	Conv. to improp. fractions	$3\frac{1}{2} = \frac{3 \cdot 2 + 1}{2} = \frac{7}{2}$

Misconceptions

Label	Description	Occurrence		
MAD	$\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$	14.8%		
MSB	$\frac{a}{b} - \frac{c}{d} = \frac{a-c}{b-d}$	9.4%		
MMT1	$\frac{a}{b} \cdot \frac{c}{b} = \frac{a \cdot c}{b}$	14.1%		
MMT2	$\frac{a}{b} \cdot \frac{c}{b} = \frac{a+c}{b \cdot b}$	8.1%		
ММТ3	$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot d}{b \cdot c}$	15.4%		
MMT4	$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b+d}$	8.1%		
MC	$a\frac{b}{c} = \frac{a \cdot b}{c}$	4.0%		

Student model

Evidence model for task T1 $\left(\frac{3}{4} \cdot \frac{5}{6}\right) - \frac{1}{8} = \frac{15}{24} - \frac{1}{8} = \frac{5}{8} - \frac{1}{8} = \frac{4}{8} = \frac{1}{2}$

 $T1 \hspace{0.1in} \Leftrightarrow \hspace{0.1in} MT \And CL \And ACL \And SB \And \neg MMT3 \And \neg MMT4 \And \neg MSB$

The overal model

See the model in Hugin: http://www.hugin.com

Tested models

- (a) two hidden variables with several restrictions on presence or absence of edges,
- (b) two hidden variables and only few restrictions,
- (c) one hidden variable and few restrictions,
- (d) no hidden variable and few restrictions,
- (e) no hidden variable and only obvious logical constraints as restrictions,
- (f) no hidden variable and independent skills,
- (g) Naïve Bayes model with one hidden variable (with two states) being parent of all skills,
- (h) as above, but the hidden variable has three states,

Comparison of different models using t values

14	vs. (b)	vs. (c)	vs. (d)	vs. (e)	vs. (f)	vs. (g)	vs. (h)	total
(a)	-3.293	-2.650	-2.567	0.308	2.323	-1.318	-2.192	-3
(b)		0.983	0.578	3.579	5.296	1.734	0.759	+3
(C)			-0.265	2.612	4.488	1.154	-0.004	+3
(d)				2.839	4.487	1.327	0.091	+3
(e)					3.837	-1.977	-2.739	-4
(f)						-4.071	-4.728	-7
(g)							-1.641	+2
(h)	Nevre	735	17 M	N=VT	13	1	LISEV 1	+3

Fixed Test vs. Adaptive Test

Entropy as an information criteria

Entropy of probability distribution $P(\mathbf{S})$ on skills \mathbf{S} is defined as

$$H(P(\mathbf{S})) = -\sum_{\mathbf{s}} P(\mathbf{S} = \mathbf{s}) \cdot \log P(\mathbf{S} = \mathbf{s})$$

"The lower the entropy the more we know about a student."

Entropy in node *n*

 $H(\mathbf{e}_n) = H(P(\mathbf{S} \mid \mathbf{e}_n))$

Expected entropy at the end of test \mathbf{t}

$$E_H(\mathbf{t}) = \sum_{\ell \in \mathcal{L}(\mathbf{t})} P(\mathbf{e}_{\ell}) \cdot H(\mathbf{e}_{\ell})$$

 \mathcal{T} ... the set of all possible tests (e.g. of a given length)

A test t^{\star} is **optimal** iff

 $\mathbf{t}^{\star} = \arg\min_{\mathbf{t}\in\mathcal{T}} E_H(\mathbf{t})$.

A myopically optimal test t is a test where each question X^* of t minimizes the expected value of entropy after the question is answered:

$$X^{\star} = \arg \min_{X \in \mathcal{X}} E_H(\mathbf{t}_{\downarrow X})$$
,

i.e. it works as if the test finished after the selected question X^{\star} .

e_list	=	$\{\{X_2 = 0\}, \{X_2 = 1\}\}\$		
counts[3]	=	$P(X_2 = 0) = 0.7$		
counts[1]	=	$P(X_2 = 1) = 0.3$		
$x_2 \rightarrow x_3 \rightarrow \cdots$				

Myopic construction of a fixed test

 $e_list := [\emptyset];$ test := [];for i := 1 to $|\mathcal{X}|$ do counts[i] := 0; for position := 1 to $test_lenght$ do $new_e_list := [];$ for all $e \in e_list$ do $i := most_informative_X(\mathbf{e});$ $counts[i] := counts[i] + P(\mathbf{e});$ for all $x_i \in X_i$ do $append(new_e_list, \{\mathbf{e} \cup \{X_i = x_i\}\});$ $e_list := new_e_list;$ $i^{\star} := \arg \max_i \ counts[i];$ $append(test, X_{i^{\star}});$ $counts[i^{\star}] := 0;$ return(test);

Entropy of the probability distributions on the skills

Skill Prediction Quality

Conclusions

- Empirical evidence shows that educational testing can benefit from application of Bayesian networks. Adaptive tests may substantially reduce the number of questions that are necessary to be asked.
- Method for the design of a fixed test provided good results on tested data. It may be regarded as a good cheap alternative to computerized adaptive tests when they are not suitable.
- One theoretical problem related to application of Bayesian networks to educational testing is efficient inference exploiting deterministic relations in the model. This problem is a topic of our current research.