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Bayesian network
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Student and evidence models
(R. Almond and R. Mislevy, 1999)
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Sudents solving problems with fractions
• A group of university students from Aalborg University prepared

paper tests that were given to students at Brønderslev High
School.

• Four elementary skills, four operational skills, and abilities to
apply operational skills to complex tasks were tested.

• 149 students solved the test.

• The tests were analyzed in detail so that it was possible for most
of students to decide whether they have or have not the tested
skills.

• Several different models were learned using the PC algorithm

• Models were compared on how well they predict skills using the
leave-one-out method.



Examples of tasks - operations with
fractions
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Elementary and operational skills
CP Comparison (common nu-

merator or denominator)
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Misconceptions

Label Description Occurrence

MAD a
b + c

d = a+c
b+d 14.8%

MSB a
b −

c
d = a−c

b−d 9.4%

MMT1 a
b ·

c
b = a·c

b 14.1%

MMT2 a
b ·

c
b = a+c

b·b 8.1%

MMT3 a
b ·

c
d = a·d

b·c 15.4%

MMT4 a
b ·

c
d = a·c

b+d 8.1%

MC a b
c = a·b

c 4.0%



Student model
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Evidence model for task T1„
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The overal model



See the model in Hugin:
http://www.hugin.com



Tested models

(a) two hidden variables with several restrictions on presence or absence of edges,

(b) two hidden variables and only few restrictions,

(c) one hidden variable and few restrictions,

(d) no hidden variable and few restrictions,

(e) no hidden variable and only obvious logical constraints as restrictions,

(f) no hidden variable and independent skills,

(g) Naı̈ve Bayes model with one hidden variable (with two states) being parent of
all skills,

(h) as above, but the hidden variable has three states,



Comparison of different models using t
values

vs. (b) vs. (c) vs. (d) vs. (e) vs. (f) vs. (g) vs. (h) total

(a) −3.293 −2.650 −2.567 0.308 2.323 −1.318 −2.192 −3

(b) 0.983 0.578 3.579 5.296 1.734 0.759 +3

(c) −0.265 2.612 4.488 1.154 −0.004 +3

(d) 2.839 4.487 1.327 0.091 +3

(e) 3.837 −1.977 −2.739 −4

(f) −4.071 −4.728 −7

(g) −1.641 +2

(h) +3



Fixed Test vs. Adaptive Test
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Entropy as an information criteria
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Entropy of probability distribution P (S) on skills S is defined as

H (P (S)) = −
∑
s

P (S = s) · log P (S = s)

“The lower the entropy the more we know about a student.”
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Entropy in node n

H(en) = H(P (S | en))

Expected entropy at the end of test t

EH(t) =
∑

`∈L(t)

P (e`) ·H(e`)

T ... the set of all possible tests

(e.g. of a given length)

A test t? is optimal iff

t? = arg min
t∈T

EH(t) .



A myopically optimal test t is a test where each question X? of t

minimizes the expected value of entropy after the question is

answered:

X? = arg min
X∈X

EH(t↓X) ,

i.e. it works as if the test finished after the selected question X?.
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Myopic construction of a fixed test

e list := [∅];
test := [ ];

for i := 1 to |X | do counts[i] := 0;

for position := 1 to test lenght do

new e list := [ ];

for all e ∈ e list do

i := most informative X(e);

counts[i] := counts[i] + P (e);

for all xi ∈ Xi do

append(new e list, {e ∪ {Xi = xi}});
e list := new e list;

i? := arg maxi counts[i];

append(test, Xi?);

counts[i?] := 0;

return(test);



Entropy of the probability distributions on the skills
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Skill Prediction Quality
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Conclusions

• Empirical evidence shows that educational testing can benefit
from application of Bayesian networks. Adaptive tests may
substantially reduce the number of questions that are
necessary to be asked.

• Method for the design of a fixed test provided good results on
tested data. It may be regarded as a good cheap alternative to
computerized adaptive tests when they are not suitable.

• One theoretical problem related to application of Bayesian
networks to educational testing is efficient inference exploiting
deterministic relations in the model. This problem is a topic of
our current research.


