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Matching euivalent components from pricelists

Definition
The task is to find a computer component described by partially
structured text in different pricelists of computer components.



Matching euivalent components from pricelists

Definition
The task is to find a computer component described by partially
structured text in different pricelists of computer components.

Example (1)

category IS printers OR category IS UNKNOWN

AND producer IS hp OR producer IS UNKNOWN

description IS SIMILAR TO

Toner Cartridge pro LJ4/M/+/4M+/5/5M/5N 92298X



Matching euivalent components from pricelists

Definition
The task is to find a computer component described by partially
structured text in different pricelists of computer components.

Example (1)

category IS printers OR category IS UNKNOWN

AND producer IS hp OR producer IS UNKNOWN

description IS SIMILAR TO

Toner Cartridge pro LJ4/M/+/4M+/5/5M/5N 92298X

Toner pro LaserJet 4/4M, 4/4M Plus, 5/5N/5M (8800)
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Definition
The task is to find a computer component described by partially
structured text in different pricelists of computer components.
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Matching euivalent components from pricelists

Definition
The task is to find a computer component described by partially
structured text in different pricelists of computer components.

Example (2)

category IS accesories OR category IS UNKNOWN

AND producer IS logitech OR producer IS UNKNOWN

description IS SIMILAR TO

Pilot Optical Mouse, USB+PS/2, 3 tlačítka, černá

Logitech myš Pilot Optical Mouse Black, USB/PS/2, retail



Problem description

• We have pricelists of computer components from seven
different resellers - some with more than 30,000 components.

• Most pricelists are partially structured, with producer,
product category, price, and product description.

• We use one additional category of unclassified components.
• Some suppliers provide also part number for some

components. It should be unique.
• Part numbers provide a very reliable matching.
• Unfortunatelly, many items in pricelists do not have any part

number assigned.
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A fulltext search method

• As a reference method we used the fulltext search of MySQL:
http://dev.mysql.com/doc/refman/5.0/en/

fulltext-search.html

• The search string is treated as a phrase in free text.
• The MySQL stopword list was applied.
• Words present in more than 50% of the records were

considered common and were not matched.
• Also words shorter than four characters were not matched.
• We denote the similarity value of two strings S1 and S2

provided by this fulltext search method as Sim1(S1,S2).
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A string edit distance measure

• This method is described in detail in our previous paper on
this topic, which is part of the proceedings of the Eighth
Czech-Japan Seminar in 2005.

• We measure the similarity Sim(S1,S2) of two strings S1,S2 by
the total length of substrings of S1 that are substrings of
string S2.

• We do not require the substrings of S1 to be disjoint, which
means that parts of substrings of S1 longer than two are
counted several times.

• In the experiments we used the relative string similarity
defined as

Sim2(S1, S2) =
Sim(S1,S2)
Sim(S1,S1)
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A vector based method

• Every string is encoded as a vector of real numbers whose
components are formed by weights of individual tokens
(groups of characters) presented in the string.

• The string is divided into tokens by special characters - tokens
separators (e.g., space, comma, semicolon, etc.)

• A popular method for computing the weights is the TF-IDF
method.

• Let n(x ,S) be the number of occurrences of token x in string
S (often, it is 0 and 1),

• n(S) be the total number of tokens in string S ,
• m be the total number of all strings in the data, and
• m(x) be the number of strings containing token x .
• The weight of a token x in string S is defined as

w(x ,S) =
n(x ,S)
n(S)

log
m
m(x)
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A vector based method

• Let d be the total number of different tokens in the entire
data.

• Then w(S) = (w(x1,S), . . .w(xd ,S))
T is a vector that

characterizes string S .
• By v(S) we will denote the normalized weight vector

v(S) =
w(S)√∑d
i=1 w(xi ,S)2

• Similarity of two strings S1 and S2 is then computed as the
scalar product of normalized weight vectors v(S1) and v(S2)

Sim3(S1,S2) =
d∑
i=1

v(xi ,S1) · v(xi ,S2) = v(S1)T · v(S2) .

• Note that since both vectors are sparse the computation of
the scalar product can be efficiently implemented.
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The vector based method

Example

S1 toner magenta pro clp-510/510n, az 5000 stran

S2 samsung toner magenta pro clp510/n (5000str )

• For simplicity assume tokens from these two strings only:
toner, magenta, pro, clp, 510, 510n, az, 5000, stran, samsung, clp510, n, 5000str

• w(toner,S1) = 1
9 log 36478274 = 0.236

• w(toner,S2) = 1
7 log 36478274 = 0.303

• w(magenta,S1) = 1
9 log 3647859 = 0.310

• w(magenta,S2) = 1
7 log 3647859 = 0.399

• w(S1) = (0.236, 0.310, 0.285, 0.420, 0.235, 0.345, 0.034, 0.121, 0.097, 0.000, 0.000, 0.000, 0.000)

• w(S2) = (0.303, 0.399, 0.366, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.056, 0.451, 0.023, 0.456)
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• v(S1) = w(S1)√∑d
i=1 w(xi ,S1)2

= w(S1)
0.780

• v(S2) = w(S2)√∑d
i=1 w(xi ,S2)2

= w(S2)
0.794

• v(S1) = (0.302, 0.397, 0.365, 0.538, 0.301, 0.442, 0.044, 0.155, 0.124, 0.000, 0.000, 0.000, 0.000)

• v(S2) = (0.339, 0.446, 0.409, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.063, 0.504, 0.026, 0.510)

Sim3(S1,S2) = v(S1)T · v(S2)
= 0.302 · 0.339 + 0.397 · 0.446 + 0.365 · 0.409 = 0.429
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A linear combination of methods

• Each method uses a different approach for finding equivalent
components.

• Therefore one can hope that their combination can provide
better results.

• We have tested linear combinations of

• the fulltext search Sim1,
• string similarity Sim2, and
• the vector based method Sim3

Sim4(S1,S2) = c1 ·Sim1(S1,S2)+c2 ·Sim2(S1,S2)+c3 ·Sim3(S1, S2)

where c = (c1, c2, c3) was set to (0.3, 1, 1), (0, 1, 1), and (0, 1, 2).
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Experiments

• We selected two pricelists of computer components from two
different suppliers.

• They contained together 64566 components.
• From these two pricelists we selected only those components

that were given a part number in both pricelists - we have got
7060 different part numbers.

• From these we randomly selected 500 part numbers.
• These part numbers defined our test pairs of components.
• For each of 500 components from the first pricelist we used

the tested methods to find k (k = 1, 2, . . . , 15) most similar
components in the (complete) second pricelist.

• Then we checked whether the component with the same part
number is among those k selected ones.

• We counted the number of these cases and computed the
relative success rate for each method with respect to k .
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Results of experiments



Examples of unmatched components

Example (Acer server)

AAG320 PD 940 (3.2 GHz, 2x 2MB, 800 MHz FSB),
1x 512 MB DDR2 533/16x DVD-ROM
Acer Altos G320-PD940 3.2GHz/2x2MB,800F/512MB/DVD/noHDD/noKB

• Acer Altos is abbreviated to AA.
• Different token separators (comma, space, slash, dash, braces)

are used.
• Whether a symbol is a separator depends on its context.
• For example, the space symbol is a separator between PD940

and 3.2 GHz but “3.2 GHz” should be one token.
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Example (Ink cartridge)

Ink. náplň No. 84 pro DesignJet 10PS/20PS/50PS
C5016A Black ink Cartridge pro DSJ x0ps

• Cartridge is náplň in Czech,
• 10PS/20PS/50PS is abbreviated to x0ps, and
• DesignJet is abbreviated to DSJ.
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Example (Cable)

Kabel Pure AV Blue series Firewire 4pin/6pin, 1.8m
PureAV kabel FireWire, 4/6 kolíků - 1,8 m - Řada Blue

• series is Řada in Czech,
• 4pin/6pin corresponds to 4/6 kolíků since pin is kolík in

Czech, and
• 1.8m corresponds to 1,8m.
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Examples of unmatched components

Example (Mail antispam and antivirus)

SYMANTEC BRIGHTMAIL ANTISPAM + ANTIV 6.0 SUBS
+ GOLD MAINT 1YR IN VALUE BAND F(5
Sym. Bright.Antispam + Antivirus 6.0 IN F(500-999) + 1YR GM

• Sym. Bright.Antispam + Antivirus corresponds to
SYMANTEC BRIGHTMAIL ANTISPAM + ANTIV and

• GM is an abbreviation for GOLD MAINT.
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Conclusions

• We performed experiments with three string similarity
measures on real data

• We observed the best performance for the vector based
method.

• At 62% of cases found the correct component first and in
83% of cases it was among the first five.

• It was slightly improved when combinined with the string
similarity measure.

• At 67% of cases found the correct component first and in
85% of cases it was among the first five.

• a smarter method for separating strings into tokens
• the vector method as a basis for further improvements
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Future work

• One way to go is to work with a matrix P that would provide
for all pairs of tokens their similarity.

• We could assume that the values of matrix P are zero unless
specified otherwise.

• There are several ways of having the values different from zero
and they could be combined together. We could use:

• a dictionary of synonyms,
• Czech-English dictionary,
• a system of rules used for making common abbreviations, etc.

• This leads to a natural generalization of the vector method:

Sim(S1,S2) =
d∑
i=1

d∑
j=1

v(xi , S1) · Pi ,j · v(xj ,S2)

= v(S1)T · P · v(S2) .

• Since the matrix P and vectors v(S1), v(S2) are sparse the
computations can be efficiently implemented.
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