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Educational Testing Service (ETS)
• Educational Testing Service is the world’s largest private educational

testing organization with 2,300 regular employees.

• Volumes for ETS’s Largest Exams in 2000-2001:

3,185,000 SAT I Reasoning Test and SAT II: Subject Area Tests

(the SAT test is the standard college admission test in US)

2,293,000 PSAT: Preliminary SAT/National Merit Scholarship Qualifying
Test

1,421,000 AP: Advanced Placement Program

801,000 The Praxis Series: Professional Assessments for Beginning Teach-
ers and Pre-Professional Skills Tests

787,000 TOEFL: Test of English as a Foreign Language

449,000 GRE: Graduate Record Examinations General Test

etc.



Fixed Test vs. Adaptive Test
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Computerized Adaptive Testing (CAT)

Objective: An optimal test for each examinee

Two basic steps: (1) examinee’s knowledge level is estimated

(2) questions appropriate for the level are selected.

R. Almond and R. Mislevy from ETS proposed to use graphical
models in CAT.

• one student model (relations between skills, abilities, etc.)

• several evidence models, one for each task or question.



CAT for basic operations with fractions

Examples of tasks:

T1:
(

3
4 ·

5
6

)
− 1

8 = 15
24 −

1
8 = 5

8 −
1
8 = 4

8 = 1
2

T2: 1
6 + 1

12 = 2
12 + 1

12 = 3
12 = 1

4

T3: 1
4 · 1 1

2 = 1
4 ·

3
2 = 3

8

T4:
(

1
2 ·

1
2

)
·
(

1
3 + 1

3

)
= 1

4 ·
2
3 = 2

12 = 1
6 .



Elementary and operational skills
CP Comparison (common nu-

merator or denominator)

1
2 > 1

3 , 2
3 > 1

3

AD Addition (comm. denom.) 1
7 + 2

7 = 1+2
7 = 3

7

SB Subtract. (comm. denom.) 2
5 −

1
5 = 2−1

5 = 1
5

MT Multiplication 1
2 ·

3
5 = 3

10

CD Common denominator
(

1
2 , 2

3

)
=

(
3
6 , 4

6

)
CL Cancelling out 4

6 = 2·2
2·3 = 2

3

CIM Conv. to mixed numbers 7
2 = 3·2+1

2 = 3 1
2

CMI Conv. to improp. fractions 3 1
2 = 3·2+1

2 = 7
2



Misconceptions
Label Description Occurrence

MAD a
b + c

d = a+c
b+d 14.8%

MSB a
b −

c
d = a−c

b−d 9.4%

MMT1 a
b ·

c
b = a·c

b 14.1%

MMT2 a
b ·

c
b = a+c

b·b 8.1%

MMT3 a
b ·

c
d = a·d

b·c 15.4%

MMT4 a
b ·

c
d = a·c

b+d 8.1%

MC a b
c = a·b

c 4.0%



Process that lead to the student model
• decision on what skills will be tested, preparation of paper tests

• paper tests given to students at Brønderslev high school, 149
students did the test.

• analysis of results, finding misconceptions, summarizing results
into a data file,

• learning a Bayesian network model using the PC-algorithm and
the EM-algorithm,

• attempts to explain some relations between skills and
misconceptions using hidden variables,

• a new learning phase with hidden variables included, certain
edges required to be part of the learned model.



Student model
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Evidence model for task T1(
3
4
· 5

6

)
− 1

8
=

15
24

− 1
8

=
5
8
− 1

8
=

4
8

=
1
2

T1 ⇔ MT & CL & ACL & SB & ¬MMT3 & ¬MMT4 & ¬MSB

MSB

P(X1 | T1)

SB

CL ACL MT

MMT3

MMT4T1

X1



Student + Evidence model
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X2 = yes

X2 = no

X1 = no

X2 : 1
5 < 1

4 ?

X3 : 1
4 < 2

5 ?

X1 : 1
5 < 2

5 ?

X1 = yes

X3 = no

Example of an adaptive test
X3 = yes

Entropy of a probability distribution P(Si)

H (P(Si)) = − ∑
si∈Si

P(Si = si) · log P(Si = si)

Total entropy in a node n: H(en) = ∑Si∈S H(P(Si | en)).

Expected entropy at the end of a test t is
EH(t) = ∑`∈L(t) P(e`) · H(e`).
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A selected test

X1

Let T be the set of all possible tests.
A test t? is optimal iff

t? = arg min
t∈T

EH(t) .

A myopically optimal test t is a test
where each question X? of t minimizes
the expected value of entropy after the
question is answered:

X? = arg min
X∈X

EH(t↓X) ,

i.e. it works as if the test finished after
the selected question X?.



X3

X1

X3

X3

X2

X3

X2

X1

X2

X1

X2

X2

X3

X1

P(X2 = 1)

X1

P(X2 = 0)

e list = {{X2 = 0}, {X2 = 1}}
counts[3] = P(X2 = 0) = 0.7

counts[1] = P(X2 = 1) = 0.3

X2 X3 . . .

Myopic construction of a fixed test

e list := [∅];
test := [ ];

for i := 1 to |X | do counts[i] := 0;

for position := 1 to test lenght do

new e list := [ ];

for all e ∈ e list do

i := most in f ormative X(e);

counts[i] := counts[i] + P(e);

for all xi ∈ Xi do

append(new e list, {e ∪ {Xi = xi}});

e list := new e list;

i? := arg maxi counts[i];

append(test, Xi? );

counts[i?] := 0;

return(test);



Skill Prediction Quality
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Total entropy of probability of skills
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Question Prediction Quality

70

75

80

85

90

95

100

0 2 4 6 8 10 12 14 16 18

Q
ua

lit
y 

of
 q

ue
st

io
n 

pr
ed

ic
ti

on
s

Number of answered questions

adaptive
average

descending
ascending



An example of a simple diagnostic task
Diagnosis of the absence or the presence of three skills

S1, S2, S3

by use of a bank of three questions

X1,2, X1,3, X2,3 .

such that

P(Xi, j = 1|Si = si , S j = s j) =

 1 if (si , s j) = (1, 1)

0 otherwise.

Assume answers to all questions from the item bank are wrong, i.e.

X1,2 = 0, X1,3 = 0, X2,3 = 0 .



Reasoning assuming skill independency

X1,2

X1,3

X2,3

S1 S3

S2

All skills are independent

P(S1, S2, S3) = P(S1) · P(S2) · P(S3)

and P(Si), i = 1, 2, 3 are uniform.

Then the probabilities for j = 1, 2, 3 are:

P(S j = 0 | X1,2 = 0, X1,3 = 0, X2,3 = 0) = 0.75 ,

i.e. we can not decide which skills are present and which are missing.



Modeling dependence between skills

X2,3

X1,3

X1,2

S1 S3

S2

with deterministic hierarchy

S1 ⇒ S2, S2 ⇒ S3

P(S1 = 0 | X1,2 = 0, X1,3 = 0, X2,3 = 0) = 1

P(S2 = 0 | X1,2 = 0, X1,3 = 0, X2,3 = 0) = 1

P(S3 = 0 | X1,2 = 0, X1,3 = 0, X2,3 = 0) = 0.5

Observe, that for i = 1, 2, 3

P(Si | X1,2 = 0, X1,3 = 0, X2,3 = 0) = P(Si | X2,3 = 0) , i.e.

X2,3 = 0 gives the same information as X1,2 = 0, X1,3 = 0, X2,3 = 0.



Conclusions

• Empirical evidence shows that educational testing can benefit
from application of Bayesian networks.

• Adaptive tests may substantially reduce the number of
questions that are necessary to be asked.

• The new method for the design of a fixed test provided good
results on tested data. It may be regarded as a good cheap
alternative to computerized adaptive tests when they are not
suitable.

• One theoretical problem related to application of Bayesian
networks to educational testing is efficient inference exploiting
deterministic relations in the model. This problem was
addressed in our UAI 2002 paper.



... and this is the END.

It’s time to have a beer.

... or are there any questions?


