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Independence

If two discrete random variables are independent, the probability of

the joint occurrence of values of two variables is equal to the product

of the probabilities individually:

P(X = x, Y = y) = P(X = x) · P(Y = y).

Also,

P(X = x|Y = y) = P(X = x)

- learning the value of Y does not influence your belief about X.

Example: two_coins.net



Conditional independence
If two variables are conditionally independent, the conditional

probability of the joint occurrence given the value of another variable

is equal to the product of the conditional probabilities:

P(X = x, Y = y|Z = z) = P(X = x|Z = z) · P(Y = y|Z = z) .

• Also, learning the value of Z may influence your belief about X
and about Y,

• but if you know the value of Z, learning the value of Y does not
influence your belief about X.

P(X = x|Y = y, Z = z) = P(X = x|Z = z) .

Example: two_biased_coins.net



Pearl on Conditional independence (Pearl, 1988, p. 44)

• Conditional independence is not a grace of nature for which we
must wait passively, but rather a psychological necessity which
we satisfy actively by organizing our knowledge in a specific way.

• An important tool in such organization is the identification of
intermediate variables that induce conditional independence
among observables; if they are not in our vocabulary, we create
them. In medical diagnosis when some symptoms directly influence

one another, the medical profession invents a name for that interaction

(e.g., “syndrome”, “complication,” “pathological state”) and treats it as a

new auxiliary variable that induces conditional independence;

• dependency between any two interacting systems is fully
attributed to the dependencies of each on the auxiliary variable.



Building up complex networks

• Relationships among many variables are modeled in terms of
important relationships among smaller subsets of variables.

Example: Wet grass on Holmes’ lawn can be caused either by rain or
by his sprinkler.

P(Holmes, Watson, Rain, Sprinkler)

= P(Holm|Wat, Rn, Sprnk) · P(Wat|Rn, Sprnk) · P(Rn|Sprnk) · P(Sprnk)

= P(Holm|Rn, Sprnk) · P(Wat|Rn) · P(Rn) · P(Sprnk)

Example: wet_grass.net



Building up complex Bayesian networks

• Acyclic directed graphs (DAGs):

• Nodes correspond to variables

• Directed edges represent explicit dependence relationships

• No edges means no explicit dependence, although there can be
dependence through relationships with other variables.

Example: asia.net



Building Bayesian network models

three basic approaches

• Discussions with domain experts: expert knowledge is used to
get the structure and parameters of the model

• A dataset of records is collected and a machine learning method
is used to to construct a model and estimate its parameters.

• A combination of previous two: e.g. experts helps with the
stucture, data are used to estimate parameters.



Typical tasks solved using Bayesian
networks

Bayesian networks are used:

• to model and explain a domain.

• to update beliefs about states of certain variables when some
other variables were observed, i.e., computing conditional
probability distributions, e.g., P(X23|X17 = yes, X54 = no).

• to find most probable configurations of variables

• to support decision making under uncertainty

• to find good strategies for solving tasks in a domain with
uncertainty.



Example of a strategy

X2 : 1
5 < 1

4 ?

X3 : 1
4 < 2

5 ?

X2 = no
X1 : 1

5 < 2
5 ?

X3 = yes

X1 = yes

X1 = no

X3 = no
X2 = yes

X3 is more difficult question than X2 which is more difficult than X1.



Building strategies using the models

For all terminal nodes ` ∈ L(s) of a strategy s we have defined:

• steps that were performed to get to that node together with their
outcomes. It is called collected evidence e`.

• Using the probabilistic model of the domain we can compute
probability of getting to that terminal node P(e`).

During the process of collecting evidence e we update the probability
of getting to a terminal node, which corresponds to conditional
probability P(e` | e), where e is evidence collected as far.



Building strategies using the models

For all terminal nodes ` ∈ L(s) of a strategy s we have also defined:

• an evaluation function f : ∪s∈SL(s) 7→ R.

For each strategy we can compute:

• expected value of the strategy:

E f (s) = ∑
`∈L(s)

P(e`) · f (e`)

The goal:

• find a strategy that maximizes (minimizes) its expected value



Using entropy as an information measure
“The lower the entropy of a probability distribution the more we know.”
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Entropy in node n

H(en) = H(P(S | en))

Expected entropy at the end of test t

EH(t) = ∑
`∈L(t)

P(e`) · H(e`)
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T ... the set of all possible tests

A test t? is optimal iff

t? = arg min
t∈T

EH(t) .

A test t is myopically optimal iff each

question X? of t minimizes the ex-

pected value of entropy after the ques-

tion is answered:

X? = arg min
X∈X

EH(t↓X) ,

i.e. it works as if the test finished after
the selected question X?.



Application 1 : Adaptive test of basic
operations with fractions

Examples of tasks:

T1:
( 3

4 ·
5
6

)
− 1

8 = 15
24 −

1
8 = 5

8 −
1
8 = 4

8 = 1
2

T2: 1
6 + 1

12 = 2
12 + 1

12 = 3
12 = 1

4

T3: 1
4 · 1 1

2 = 1
4 ·

3
2 = 3

8

T4:
( 1

2 ·
1
2

)
·
( 1

3 + 1
3

)
= 1

4 ·
2
3 = 2

12 = 1
6 .



Elementary and operational skills
CP Comparison (common nu-

merator or denominator)

1
2 > 1

3 , 2
3 > 1

3

AD Addition (comm. denom.) 1
7 + 2

7 = 1+2
7 = 3

7

SB Subtract. (comm. denom.) 2
5 −

1
5 = 2−1

5 = 1
5

MT Multiplication 1
2 ·

3
5 = 3

10

CD Common denominator
(

1
2 , 2

3

)
=

(
3
6 , 4

6

)
CL Cancelling out 4

6 = 2·2
2·3 = 2

3

CIM Conv. to mixed numbers 7
2 = 3·2+1

2 = 3 1
2

CMI Conv. to improp. fractions 3 1
2 = 3·2+1

2 = 7
2



Misconceptions

Label Description Occurrence

MAD a
b + c

d = a+c
b+d 14.8%

MSB a
b −

c
d = a−c

b−d 9.4%

MMT1 a
b ·

c
b = a·c

b 14.1%

MMT2 a
b ·

c
b = a+c

b·b 8.1%

MMT3 a
b ·

c
d = a·d

b·c 15.4%

MMT4 a
b ·

c
d = a·c

b+d 8.1%

MC a b
c = a·b

c 4.0%



Student model

MMT1

HV1

CP MT

MMT4 MMT2MMT3 MC MAD MSB

SBADCDCIMCMICL

ACL ACMI ACIM ACD



Evidence model for task T1(
3
4
· 5

6

)
− 1

8
=

15
24

− 1
8

=
5
8
− 1

8
=

4
8

=
1
2

T1 ⇔ MT & CL & ACL & SB & ¬MMT3 & ¬MMT4 & ¬MSB

CL

MMT4

MSB

SB

MMT3

ACL MT

T1

X1

P(X1 | T1)



Skill Prediction Quality
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Total entropy of probability of skills
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Application 2: Troubleshooting



Application 2: Troubleshooting - Light print problem

F
F3

F2

F1

F4

Faults
Actions

A3

A2

A1

Q1

Problem

Questions

• Problems: F1 Distribution problem, F2 Defective toner, F3

Corrupted dataflow, and F4 Wrong driver setting.

• Actions: A1 Remove, shake and reseat toner, A2 Try another
toner, and A3 Cycle power.

• Questions: Q1 Is the configuration page printed light?



Troubleshooting strategy

A1 = no

A2 = yes

Q1 = no

A1 = yesA2 = yes

Q1 = yes

A1 = yes

A2 = no

A1 = noA2 = no

A2

Q1

A1

A2 A1

The task is to find a strategy s ∈ S minimising expected cost of repair

ECR(s) = ∑
`∈L(s)

P(e`) · ( t(e`) + c(e`) ) .



Expected cost of repair for a given strategy

A1 = no

A2 = yes

Q1 = no

A1 = yesA2 = yes

Q1 = yes

A1 = yes

A2 = no

A1 = noA2 = no

A2

Q1

A1

A2 A1

ECR(s) =

P(Q1 = no, A1 = yes) ·
(
cQ1 + cA1

)
+P(Q1 = no, A1 = no, A2 = yes) ·

(
cQ1 + cA1 + cA2

)
+P(Q1 = no, A1 = no, A2 = no) ·

(
cQ1 + cA1 + cA2 + cCS

)
+P(Q1 = yes, A2 = yes) ·

(
cQ1 + cA2

)
+P(Q1 = yes, A2 = no, A1 = yes) ·

(
cQ1 + cA2 + cA1

)
+P(Q1 = yes, A2 = no, A1 = no) ·

(
cQ1 + cA2 + cA1 + cCS

)

Demo: light_print_problem



Commercial applications of Bayesian networks in
educational testing and troubleshooting

• Hugin Expert A/S.
software product: Hugin - a Bayesian network tool.
http://www.hugin.com/

• Educational Testing Service (ETS)
the world’s largest private educational testing organization
Research unit doing research on adaptive tests using Bayesian
networks: http://www.ets.org/research/

• SACSO Project
Systems for Automatic Customer Support Operations
- research project of Hewlett Packard and Aalborg University.
The troubleshooter offered as DezisionWorks by Dezide Ltd.
http://www.dezide.com/



...and it is time to end.


