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Student and evidence models
(R Almond and R. Mislevy, 1999)
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Entropy of probability distribution P(S
Z P(S=s)-log P(S =s)

“The lower the entropy the more we know about a student.”
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Entropy In node n

H(e,) = H(P(S|en))

Expected entropy at the end of test t

7 ... the setof all possible tests
(e.g. of a given length)
A test t* is optimal iff

= argItIg}lE g(t) .



A myopically optimal test t is a test where each question X ™ of t
minimizes the expected value of entropy after the question is

answered:

= arg)r?égEH(th),

i.e. it works as if the test finished after the selected question X *.
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Myopic construction of a fixed test

e_list := [(];
pest . =4"|8
for i :== 1to |X| do counts|i] := O;
for position := 1 to test_lenght do
new-_e_list := [ |;
forall e € e_list do
i := most_in formative_X (e);
counts|i] := countsli| + P(e);

forall z; € X; do

append(new_e_list, {e U{X; = x;}});

e_list := new_e_list;

i* := arg max; counts|i|;
append(test, X;+);
counts[i*] := 0;

return(test);




CAT for basic operations with fractions

Examples of tasks:
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Elementary and operational skills

Comparison (common nu- = >1 2>2
merator or denominator)
Addition (comm. denom.) T4+2=12=3
Subtract. (comm. denom.) z_1l=21-1
Multiplication - 2=2
CD  Common denominator (3,2) =(2,2)
CL  Cancelling out t=22 2
CIM  Conv. to mixed numbers ' == 3B
CMI  Conv. to improp. fractions 31 = 22t =




Misconceptions

Label  Description  Occurrence
FIAD o oA 14.8%
MSB B - = 9.4%
MMTL &.¢ = ac 14.1%
MMT2 &.¢ = adc 8.1%
MMT3 &.< = ad 15.4%
MMT4 ¢ .2 = &% 8.1%
MC a2 = b 4.0%




Student model
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Evidence model for task T'1
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Quality of skill predictions
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Conclusions

e Empirical evidence shows that educational testing can benefit
from application of Bayesian networks. Adaptive tests may
substantially reduce the number of questions that are
necessary to be asked.

e Method for the design of a fixed test provided good results on
tested data. It may be regarded as a good cheap alternative to
computerized adaptive tests when they are not suitable.

e One theoretical problem related to application of Bayesian
networks to educational testing is efficient inference exploiting
deterministic relations in the model. This problem was topic of
our UAI 2002 paper.



