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Student and evidence models
(R. Almond and R. Mislevy, 1999)
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Entropy of probability distribution P (S)

H (P (S)) = −
∑
s

P (S = s) · log P (S = s)

“The lower the entropy the more we know about a student.”



Fixed Test vs. Adaptive Test
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Entropy in node n

H(en) = H(P (S | en))

Expected entropy at the end of test t

EH(t) =
∑

`∈L(t)

P (e`) ·H(e`)

T ... the set of all possible tests

(e.g. of a given length)

A test t? is optimal iff

t? = arg min
t∈T

EH(t) .



A myopically optimal test t is a test where each question X? of t

minimizes the expected value of entropy after the question is

answered:

X? = arg min
X∈X

EH(t↓X) ,

i.e. it works as if the test finished after the selected question X?.
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e list = {{X2 = 0}, {X2 = 1}}

counts[3] = P (X2 = 0) = 0.7

counts[1] = P (X2 = 1) = 0.3

X2 X3 . . .

Myopic construction of a fixed test

e list := [∅];
test := [ ];

for i := 1 to |X | do counts[i] := 0;

for position := 1 to test lenght do

new e list := [ ];

for all e ∈ e list do

i := most informative X(e);

counts[i] := counts[i] + P (e);

for all xi ∈ Xi do

append(new e list, {e ∪ {Xi = xi}});
e list := new e list;

i? := arg maxi counts[i];

append(test, Xi?);

counts[i?] := 0;

return(test);



CAT for basic operations with fractions

Examples of tasks:

T1:
(

3
4
· 5

6

)
− 1

8
= 15

24
− 1

8
= 5

8
− 1

8
= 4

8
= 1

2

T2: 1
6

+ 1
12

= 2
12

+ 1
12

= 3
12

= 1
4

T3: 1
4
· 11

2
= 1

4
· 3

2
= 3

8

T4:
(

1
2
· 1

2

)
·
(

1
3

+ 1
3

)
= 1

4
· 2

3
= 2

12
= 1

6
.



Elementary and operational skills
CP Comparison (common nu-

merator or denominator)

1
2

> 1
3
, 2

3
> 1

3

AD Addition (comm. denom.) 1
7

+ 2
7

= 1+2
7

= 3
7

SB Subtract. (comm. denom.) 2
5
− 1

5
= 2−1

5
= 1

5

MT Multiplication 1
2
· 3

5
= 3

10

CD Common denominator
(

1
2
, 2

3

)
=

(
3
6
, 4

6

)
CL Cancelling out 4

6
= 2·2

2·3 = 2
3

CIM Conv. to mixed numbers 7
2

= 3·2+1
2

= 3 1
2

CMI Conv. to improp. fractions 3 1
2

= 3·2+1
2

= 7
2



Misconceptions

Label Description Occurrence

MAD a
b + c

d = a+c
b+d 14.8%

MSB a
b −

c
d = a−c

b−d 9.4%

MMT1 a
b ·

c
b = a·c

b 14.1%

MMT2 a
b ·

c
b = a+c

b·b 8.1%

MMT3 a
b ·

c
d = a·d

b·c 15.4%

MMT4 a
b ·

c
d = a·c

b+d 8.1%

MC a b
c = a·b

c 4.0%



Student model
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Evidence model for task T1(
3

4
· 5

6

)
− 1

8
=

15

24
− 1

8
=

5

8
− 1

8
=

4

8
=

1
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T1 ⇔ MT & CL & ACL & SB & ¬MMT3 & ¬MMT4 & ¬MSB
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Skill Prediction Quality
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Conclusions

• Empirical evidence shows that educational testing can benefit
from application of Bayesian networks. Adaptive tests may
substantially reduce the number of questions that are
necessary to be asked.

• Method for the design of a fixed test provided good results on
tested data. It may be regarded as a good cheap alternative to
computerized adaptive tests when they are not suitable.

• One theoretical problem related to application of Bayesian
networks to educational testing is efficient inference exploiting
deterministic relations in the model. This problem was topic of
our UAI 2002 paper.


