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Probabilistic belief revision with new evidence

• We conducted a study on smoking S and lung cancer C.

• We get the counts n(S = s, C = c) for s, c ∈ {yes, no}.

• Let n = ∑s,c∈{yes,no} n(S = s, C = c).

• We estimate probabilities P(S = s, C = c) = n(S=s,C=c)
n for

s, c ∈ {yes, no}.

• What is the probability of a person with lung cancer?
P(C = yes) = P(S = yes, C = yes) + P(S = no, C = yes)

• We learn that the person we see is a smoker - we get an
additional evidence e = (S = yes).

• What is the probability of this person having lung cancer?

P(C = yes | e) = P(C=yes,e)
P(e) = n(S=yes,C=yes)

n(S=yes)



The problem with uncertain evidence

• How should we revise our beliefs with uncertain evidence?

Examples

• “Based on what the physician sees on an x-ray she believes it is
highly probable that the patient has cancer.”

• “The color of this cloth seems red, but I’m not sure, since it is
quite dark and it is far away.”

• “The alarm in my house went on. There is a chance of burglary,
but I know that reliability of the sensors is only 60%.”

• “An intelligence agency got report from an agent. They know that
this source is usually very reliable.”

Our goal is to use the standard probability framework (with
frequentist or subjective belief interpretation) to deal with uncertain
evidence (in cases where it is suitable).



Reliability of information sources

A ... a variable of our interest,
T ... a test, a report, or an observation.

accuracy P(A = T) = tp+tn
tp+tn+ f p+ f n

positive predictive value (precision) P(A = yes | T = yes) = tp
tp+ f p

negative predictive value P(A = no | T = no) = tn
f n+tn

true positive rate (recall or sensitivity) P(T = yes | A = yes) = tp
tp+ f n

true negative rate (specificity) P(T = no | A = no) = tn
f p+tn

false positive rate P(T = yes | A = no) = f p
f p+tn

false negative rate P(T = no | A = yes) = f n
tp+ f n



Belief revision based on sources’ reliability

• sensitivity of T, i.e. P(T = yes | A = yes) = P(t+ | a+)

• specificity of T, i.e. P(T = no | A = no) = P(t− | a−), and

• an observed result of T

Virtual evidence method (Pearl, 1988)

P(a+ | t+) =
P(t+ | a+) · P(a+)

P(t+)

=
P(t+ | a+) · P(a+)

P(t+ | a+) · P(a+) + (1 − P(t− | a−)) · P(a−)



Example of two conditionally independent tests



Example of two conditionally independent tests



Probability kinematics (Jeffrey, 1988)

Assume
Ω a finite set of elementary events

A set of all subsets of Ω

P, Q two probability distributions on A

e1, . . . , en a set of mutually exclusive and exhaustive events

Definition
A probability distribution Q is said to come from P by
probability kinematics on e1, . . . , en if for every event a ∈ A

P(a | ei) = Q(a | ei), for i = 1, . . . , n .



Jeffrey’s rule

Assume
P a probability distribution on A

e1, . . . , en a set of mutually exclusive and exhaustive events

such that P(ei) > 0 for i = 1, . . . , n

Q(ei) posterior probability of event ei, for i = 1, . . . , n

Note that ∑i Q(ei) = 1.

Definition
A probability distribution Q comes from P by Jeffrey’s rule if for all
a ∈ A

Q(a) =
n

∑
i=1

Q(ei) · P(a | ei) .



Jeffrey’s rule obeys probability kinematics

Theorem
Probability distribution Q given by Jeffrey’s rule is
the only distribution :

• having Q(ei) = P(ei) and

• obtained by probability kinematics from P on e1, . . . , en.



Observation variable (Valtorta, Kim, and Vomlel, 2002)

O observation variable with states o1, . . . , on

oi state of O corresponding to event ei, for i = 1, . . . , n

P(O = oi | a) = 1 iff a = ei for i = 1, . . . , n

Q(O = oi) = Q(ei)

Assertion
A probability distribution Q comes from P by probability kinematics
on e1, . . . , en if for all a ∈ A

Q(a) =
n

∑
i=1

Q(O = oi) · P(a | O = oi) .

Remark
This is what we get by standard probability update with new probability

distribution Q(O) on observation variable O.



Example: Tom and Mary go to a party (Pearl, 1990)

At the begining we know that

• there is a 50% chance that Tom goes to a party,

• there is a 50% chance that Mary goes to a party, and

• these two events are independent.

Latter we learn that

• “Tom and Mary probably won’t go together” with probability 0.9.

How should we revise probabilistic beliefs using the principle of
probability kinematics?



Tom and Mary go to a party

model with an observational variable



Tom and Mary go to a party - initial beliefs



Tom and Mary go to a party - revised beliefs

Q(T = t, M = m)

=
2

∑
i=1

Q(O = oi) · P(T = t, M = m | O = oi)

=
2

∑
i=1

Q(O = oi) ·
1

P(O = oi)
· P(O = oi | T = t, M = m) · P(T = t, M = m)

Q(T, M) T = y T = n

M = y 0.1 0.3

M = n 0.3 0.3

I-projection of P to the set of distributions with Q(T = y, M = y) = 0.1



Belief revision in a complex probabilistic model P(V)

Expert calculations:

Q(O) = P(O | T1, . . . , Tn)

= c · P(O) · P(T1 | O) · P(T2 | O)

Belief revision in the model:

Q(V) = ∑
O

P(V | O) · Q(O)



Belief vs. Model revision

a fundamental difference

• The posterior probabilities after belief revision inform about the
properties of a tested individual, a performed event, etc.

• The posterior probabilities after a model revision still correspond
to the properties of the tested population of individuals, events,
etc.



Model revision

revision of a model parameter

• for each parameter only one value
→ maximum likelihood estimation

• posterior probabilities defined over the model parameters
→ Bayesian statistics



Example - maximum likelihood estimate of a parameter

Two variables (their states are known in the tested population):

• test result T (positive/negative)

• illness A (sick/non-sick).

Likelihood of observed data D for a given model P(T, A)

L(P | D) = ∏
(t,a)

P(T = t, A = a)n(t,a)

Sensitivity r of test T was defined as P(T = yes | A = yes).
Maximum likelihood estimate:

r̂ = arg max
r

L(P | D)



Example - combining two maximum likelihood estimates

Two experts evaluated sensitivity r of a test. They computed their
maximum likelihood estimate

r̂i =
ni(T = yes, A = yes)

ni(A = yes)
for i = 1, 2.

L(P | D) = ∏
(t,a)

P(T = t, A = a)n1(t,a) · P(T = t, A = a)n2(t,a)

Maximum likelihood estimate of r is weighted average of r̂1 and r̂2

r̂ =
n1(A = yes)

n1(A = yes) + n2(A = yes)
· r̂1 +

n2(A = yes)
n1(A = yes) + n2(A = yes)

· r̂2

= w1(yes) · r̂1 + (1 − w1(yes)) · r̂2



Example - posterior probability of model parameters

Instead of a single value r̂ we take the whole distribution.

(1) n1(A = yes) = n2(A = yes) = 2

(2) n1(A = yes) = n2(A = yes) = 10

In both cases r̂1 = 0.7 and r̂2 = 0.8 and the prior distribution is
uniform.
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Summary

• Bayesian networks are suitable for reasoning with uncertainty.

• Standard efficient methods for belief revision with certain
evidence are available (since 90’s).

• Different methods for belief revision with uncertain evidence can
be used depending on what is the reported belief referring to.

• When beliefs are reported in natural language it may be tricky to
find out what the number actually means.

• There is a fundamental difference between belief and model
revision.

• Sometimes most likely values of model parameters are sufficient
while in some situation it is more appropriate to use whole
posterior probability distribution of parameter values.


