Integrating inconsistent data in a probabilistic model

Jiří Vomlel

University of Economics
Academy of Science

Prague, Czech Republic
Knowledge integration

- Discrete random variables X_i indexed by natural numbers from $V = \{1, \ldots, n\} \subset \mathbb{N}$.
- Low-dimensional probability distributions $P_j, j = 1, \ldots, k$ defined on variables $\{X_\ell\}_{\ell \in E_j}, E_j \subseteq V$.
- *Knowledge integration* is the process of building a joint probability distribution $Q(X_1, \ldots, X_n)$ from a set of low-dimensional probability distributions $\mathcal{P} = \{P_1, \ldots, P_k\}$.
Consistent case

\[\alpha = \frac{4}{20} \]
• input set $\mathcal{P} = \{P_1, \ldots, P_k\}$

• set of all distributions having P_j as its marginal
 $S_j = \{Q : Q^{E_j} = P_j\}$

• set of all distributions having $\{P_1, \ldots, P_k\}$ as its marginals
 $S = \bigcap_{j=1}^{k} S_j$

• I-projection of Q_0 to S
 $\pi(Q_0, S) = \text{arg min}_{Q \in S} I(Q \parallel Q_0)$

• Kullback-Leibler divergence

$$I(P \parallel Q) = \sum_x P(X = x) \log \frac{P(X = x)}{Q(X = x)}$$
Iterative Proportional Fitting Procedure (IPFP)
Deming & Stephan, 1940

\[\pi(Q_{(0)}, S_1) \]
\[\pi(Q_{(1)}, S_2) \]
\[\pi(Q_{(2)}, S_3) \]

\[\pi(Q, S_j) = Q \frac{P_j}{Q^{E_j}} \]
Inconsistent case

\[\alpha = \frac{3}{20} \]
Inconsistent input set $\mathcal{P} = \{P_1, \ldots, P_k\}$

It means that $S = \bigcap_{j=1}^{k} S_j = \emptyset$.

$Q(X_1, \ldots, X_n)$ is required to:

- **minimize** I-aggregate with respect to \mathcal{P}:

$$\sum_{P_j \in \mathcal{P}} w_j \cdot I(P_j \| Q^{E_j})$$

- **factorize** with respect to $\mathcal{E} = \{E_1, \ldots, E_k\}$:

there exist potentials $\psi_{E_i} : X^{E_i} \mapsto \mathbb{R}, i = 1, 2, \ldots, k$ such that for all $x \in X$

$$Q(x) = \prod_{E_i \in \mathcal{E}} \psi_{E_i}(x^{E_i})$$
IPFP and GEMA on the consistent input set
IPFP and GEMA on the inconsistent input set

![Graph showing the comparison between IPFP and GEMA.]