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A simple Bayesian network model - Chest Clinic

Conditional probability tables (CPTs)

P(Visit to Asia) P(Smoker)
P(Tuberculosis | Visit to Asia) P(Cancer | Smoker)
P(Bronchitis | Smoker) P(RTG | Tuberculosis, Cancer)
P(Dyspnoea | Tuberculosis, Cancer, Bronchitis)
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Probabilistic inference with the Bayesian network

P(X |Smoker=true)



Probabilistic inference with the Bayesian network

P(X |Smoker=true, Dyspnoea=true)



Probabilistic inference with the Bayesian network

P(X |Smoker=true, Dyspnoea=true, RTG=true)



Probabilistic inference with the Bayesian network

P(X |Smoker=true, Dyspnoea=true, RTG=true, Visit to Asia=true)



CPT P(RTG | Tuberculosis, Cancer)

First, assume a deterministic function. RTG is positive iff the
patient has tuberculosis or cancer.

RTG Tuberculosis Cancer p
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

RTG can have other reasons for

being positive and RTG need not be positive even if the patient
has tuberculosis or cancer.

RTG Tuberculosis Cancer p p′

0 0 0 1 p0 0.95
0 0 1 0 p0 ∗ p1 0.019
0 1 0 0 p0 ∗ p2 0.019
0 1 1 0 p0 ∗ p1 ∗ p2 0.00038
1 0 0 0 1− p0 0.05
1 0 1 1 1− p0 ∗ p1 0.981
1 1 0 1 1− p0 ∗ p2 0.981
1 1 1 1 1− p0 ∗ p1 ∗ p2 0.99962

p0, p1, p2 ∈ 〈0, 1〉

This local model is called ”noisy-or”.
Let k be the number of parents. We need to specify k + 1 values
p0, p1, . . . , pk instead of 2k in a general CPT.
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Current research activities

• Model elicitation

• Efficient inference with special types of probabilistic models
• Methods of approximate inference
• Other types of probabilistic graphical models:
• Finding good strategies with the help of a BN:
• Classification and regression for medical applications:
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– models with continuous variables (other than Gaussian)
– models with causal interpretation of directed edges
– models with both directed and undirected edges in the
model (e.g. chain graphs)
– modeling temporal and spatial information.
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Current research activities

• Model elicitation
• Efficient inference with special types of probabilistic models
• Methods of approximate inference
• Other types of probabilistic graphical models:
• Finding good strategies with the help of a BN:
• Classification and regression for medical applications:

– mortality prediction
– prediction of medical care costs


