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A simple Bayesian network model - Chest Clinic

Conditional probability tables (CPTs)

P(Visit to Asia) P(Smoker)

P(Tuberculosis | Visit to Asia) P(Cancer | Smoker)
P(Bronchitis | Smoker) P(RTG | Tuberculosis, Cancer)
P

Dyspnoea | Tuberculosis, Cancer, Bronchitis)



Probabilistic inference with the Bayesian network
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Probabilistic inference with the Bayesian network
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Probabilistic inference with the Bayesian network
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Probabilistic inference with the Bayesian network
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CPT P(RTG | Tuberculosis, Cancer)

First, assume a deterministic function. RTG is positive iff the
patient has tuberculosis or cancer.
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CPT P(RTG | Tuberculosis, Cancer)

RTG can have other reasons for being positive and RTG need not
be positive even if the patient has tuberculosis or cancer.

RTG Tuberculosis Cancer | p P’
0 0 0 1 po | 0.95
0 1 0 0 po *x p2 | 0.019
0 1 1 0 po * p1 * pa | 0.00038
1 0 0 0 1—po | 0.05
1 0 1 1 1—po=*p | 0.981
1 1 1 1 1—po*pr*xpy | 0.99962
po, p1,p2 € (0,1)
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This local model is called "noisy-or".



CPT P(RTG | Tuberculosis, Cancer)

RTG can have other reasons for being positive and RTG need not
be positive even if the patient has tuberculosis or cancer.

RTG Tuberculosis Cancer | p P’
0 0 0 1 po | 0.95
0 1 0 0 po *x p2 | 0.019
0 1 1 0 po * p1 * pa | 0.00038
1 0 0 0 1—po | 0.05
1 0 1 1 1—po=*p | 0.981
1 1 1 1 1—po*pr*xpy | 0.99962
po, p1,p2 € (0,1)

This local model is called "noisy-or".
Let k£ be the number of parents. We need to specify k& + 1 values
D0, 1, - - -, P instead of 2% in a general CPT.
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Current research activities

e Model elicitation
— learning models from data (using Integer Programming)
— learning models with local structure of a noisy-or like type.
— combination of expert knowledge and data (biological
pathways and experimental data)
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Current research activities

Model elicitation

Efficient inference with special types of probabilistic models
— exploiting determinism

— exploiting local structure of CPTs
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Model elicitation
Efficient inference with special types of probabilistic models
Methods of approximate inference

— iterative refinement
— anytime inference methods
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Current research activities

Model elicitation

Efficient inference with special types of probabilistic models
Methods of approximate inference

Other types of probabilistic graphical models:

— models with continuous variables (other than Gaussian)
— models with causal interpretation of directed edges

— models with both directed and undirected edges in the
model (e.g. chain graphs)

— modeling temporal and spatial information.
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Model elicitation

Efficient inference with special types of probabilistic models
Methods of approximate inference

Other types of probabilistic graphical models:

Finding good strategies with the help of a BN:
— Decision-Theoretic Troubleshooting
— Adaptive Testing
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Current research activities

Model elicitation

Efficient inference with special types of probabilistic models
Methods of approximate inference

Other types of probabilistic graphical models:

Finding good strategies with the help of a BN:

Classification and regression for medical applications:
— mortality prediction
— prediction of medical care costs



