Probabilistic graphical models: current research activities

Jirka Vomlel

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic http://www.utia.cz/vomlel

Aalborg, Denmark, November, 20, 2013

A simple Bayesian network model - Chest Clinic

A simple Bayesian network model - Chest Clinic

Conditional probability tables (CPTs)

 $\begin{array}{ll} P({\sf Visit to Asia}) & P({\sf Smoker}) \\ P({\sf Tuberculosis} \mid {\sf Visit to Asia}) & P({\sf Cancer} \mid {\sf Smoker}) \\ P({\sf Bronchitis} \mid {\sf Smoker}) & P({\sf RTG} \mid {\sf Tuberculosis, Cancer}) \\ P({\sf Dyspnoea} \mid {\sf Tuberculosis, Cancer, Bronchitis}) \end{array}$

P(X|Smoker=true)

$P(X|\mathsf{Smoker}=\mathsf{true}, \mathsf{Dyspnoea}=\mathsf{true})$

P(X|Smoker=true, Dyspnoea=true, RTG=true)

P(X|Smoker=true, Dyspnoea=true, RTG=true, Visit to Asia=true)

First, assume a deterministic function. RTG is positive iff the patient has tuberculosis or cancer.

RTG	Tuberculosis	Cancer	p
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

RTG can have other reasons for being positive and RTG need not be positive even if the patient has tuberculosis or cancer.

RTG	Tuberculosis	Cancer	p	p'	
0	0	0	1	p_0	0.95
0	0	1	0	$p_0 * p_1$	0.019
0	1	0	0	$p_0 * p_2$	0.019
0	1	1	0	$p_0 * p_1 * p_2$	0.00038
1	0	0	0	$1 - p_0$	0.05
1	0	1	1	$1 - p_0 * p_1$	0.981
1	1	0	1	$1 - p_0 * p_2$	0.981
1	1	1	1	$1 - p_0 * p_1 * p_2$	0.99962
				$p_0, p_1, p_2 \in \langle 0, 1 \rangle$	

RTG can have other reasons for being positive and RTG need not be positive even if the patient has tuberculosis or cancer.

RTG	Tuberculosis	Cancer	p	p'	
0	0	0	1	p_0	0.95
0	0	1	0	$p_0 * p_1$	0.019
0	1	0	0	$p_0 * p_2$	0.019
0	1	1	0	$p_0 * p_1 * p_2$	0.00038
1	0	0	0	$1 - p_0$	0.05
1	0	1	1	$1 - p_0 * p_1$	0.981
1	1	0	1	$1 - p_0 * p_2$	0.981
1	1	1	1	$1 - p_0 * p_1 * p_2$	0.99962
				$p_0, p_1, p_2 \in \langle 0, 1 \rangle$	

This local model is called "noisy-or".

RTG can have other reasons for being positive and RTG need not be positive even if the patient has tuberculosis or cancer.

RTG	Tuberculosis	Cancer	p	p'	
0	0	0	1	p_0	0.95
0	0	1	0	$p_0 * p_1$	0.019
0	1	0	0	$p_0 * p_2$	0.019
0	1	1	0	$p_0 * p_1 * p_2$	0.00038
1	0	0	0	$1 - p_0$	0.05
1	0	1	1	$1 - p_0 * p_1$	0.981
1	1	0	1	$1 - p_0 * p_2$	0.981
1	1	1	1	$1 - p_0 * p_1 * p_2$	0.99962
				$p_0, p_1, p_2 \in \langle 0, 1 \rangle$	

This local model is called "noisy-or".

Let k be the number of parents. We need to specify k + 1 values p_0, p_1, \ldots, p_k instead of 2^k in a general CPT.

• Model elicitation

- Model elicitation
 - learning models from data (using Integer Programming)
 - learning models with local structure of a noisy-or like type.
 - combination of expert knowledge and data (biological pathways and experimental data)

- Model elicitation
- Efficient inference with special types of probabilistic models

- Model elicitation
- Efficient inference with special types of probabilistic models
 - exploiting determinism
 - exploiting local structure of CPTs

- Model elicitation
- Efficient inference with special types of probabilistic models
- Methods of approximate inference

- Model elicitation
- Efficient inference with special types of probabilistic models
- Methods of approximate inference
 - iterative refinement
 - anytime inference methods

- Model elicitation
- Efficient inference with special types of probabilistic models
- Methods of approximate inference
- Other types of probabilistic graphical models:

- Model elicitation
- Efficient inference with special types of probabilistic models
- Methods of approximate inference
- Other types of probabilistic graphical models:
 - models with continuous variables (other than Gaussian)
 - models with causal interpretation of directed edges
 - models with both directed and undirected edges in the model (e.g. chain graphs)
 - modeling temporal and spatial information.

- Model elicitation
- Efficient inference with special types of probabilistic models
- Methods of approximate inference
- Other types of probabilistic graphical models:
- Finding good strategies with the help of a BN:

- Model elicitation
- Efficient inference with special types of probabilistic models
- Methods of approximate inference
- Other types of probabilistic graphical models:
- Finding good strategies with the help of a BN:
 - Decision-Theoretic Troubleshooting
 - Adaptive Testing

- Model elicitation
- Efficient inference with special types of probabilistic models
- Methods of approximate inference
- Other types of probabilistic graphical models:
- Finding good strategies with the help of a BN:
- Classification and regression for medical applications:

- Model elicitation
- Efficient inference with special types of probabilistic models
- Methods of approximate inference
- Other types of probabilistic graphical models:
- Finding good strategies with the help of a BN:
- Classification and regression for medical applications:
 - mortality prediction
 - prediction of medical care costs