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An example of a Bayesian network:
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Building Bayesian network models

three basic approaches

• Discussions with domain experts: expert knowledge is used to
get the structure and parameters of the model

• A dataset of records is collected and a machine learning method
is used to to construct a model and estimate its parameters.

• A combination of previous two: e.g. experts helps with the
stucture, data are used to estimate parameters.



An example of a strategy:
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X3 is more difficult question than X2 which is more difficult than X1.



Building strategies using the models

For all terminal nodes ` ∈ L(s) of a strategy s we define:

• steps that were performed to get to that node (e.g. questions
answered in a certain way). It is called collected evidence e`.

• Using the probabilistic model of the domain we can compute
probability of getting to a terminal node P (e`).

• Also during the process, when we have collected certain
evidence e we can update the probability of getting to a terminal
node, which now corresponds to conditional probability P (e`)



Building strategies using the models

For all terminal nodes ` ∈ L(s) of a strategy s we have also defined:

• an evaluation function f : ∪s∈SL(s) 7→ R.

For each strategy we can compute:

• expected value of the strategy:

Ef (s) =
∑

`∈L(s)

P (e`) · f(e`)

The goal:

• find a strategy that maximizes (minimizes) its expected value



Using entropy as an information measure
“The lower the entropy of a probability distribution the more we know.”

H (P (S)) = −
∑
s

P (S = s) · log P (S = s)
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Entropy in node n

H(en) = H(P (S | en))

Expected entropy at the end of test t

EH(t) =
∑

`∈L(t)

P (e`) ·H(e`)

T ... the set of all possible tests

(e.g. of a given length)

A test t? is optimal iff

t? = arg min
t∈T

EH(t) .



Application 1 : Adaptive test of basic
operations with fractions

Examples of tasks:
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Elementary and operational skills
CP Comparison (common nu-

merator or denominator)
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Misconceptions

Label Description Occurrence

MAD a
b + c

d = a+c
b+d 14.8%

MSB a
b −

c
d = a−c

b−d 9.4%

MMT1 a
b ·

c
b = a·c

b 14.1%

MMT2 a
b ·

c
b = a+c

b·b 8.1%

MMT3 a
b ·

c
d = a·d

b·c 15.4%

MMT4 a
b ·

c
d = a·c

b+d 8.1%

MC a b
c = a·b

c 4.0%



Student model
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Evidence model for task T1(
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Skill Prediction Quality
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Application 2: Troubleshooting - Light print problem

F
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Actions
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Q1

Problem

Questions

• Problems: F1 Distribution problem, F2 Defective toner, F3

Corrupted dataflow, and F4 Wrong driver setting.

• Actions: A1 Remove, shake and reseat toner, A2 Try another
toner, and A3 Cycle power.

• Questions: Q1 Is the configuration page printed light?



Troubleshooting strategy

A1 = no

A2 = yes

Q1 = no

A1 = yesA2 = yes

Q1 = yes

A1 = yes

A2 = no

A1 = noA2 = no

A2

Q1

A1

A2 A1

The task is to find a strategy s ∈ S minimising expected cost of repair

ECR(s) =
∑

`∈L(s)

P (e`) · ( t(e`) + c(e`) ) .



Going commercial...

• Hugin Expert A/S.
software product: Hugin - a Bayesian network tool.
http://www.hugin.com/

• Educational Testing Service (ETS)
the world’s largest private educational testing organization
In 2000/2001 more than 3 millions students took the ETS’s
largest exam SAT. Research unit doing research on adaptive test
using Bayesian networks: http://www.ets.org/research/

• SACSO Project
Systems for Automatic Customer Support Operations
- research project of Hewlett Packard and Aalborg University.
The troubleshooter offered as DezisionWorks by Dezide Ltd.
http://www.dezide.com/


