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Learning probabilities from a database

We have:

➤ A Bayesian network structure.

➤ A database of cases over (some of) the variables.

We want:

➤ A Bayesian network model (with probabilities) representing the database.

Pr
Pr

Ut
Ut

Bt
Bt

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?

P(Bt | Pr)

P(Pr)

P(Ut | Pr)
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Complete data: Maximum likelihood estimation

We have tossed a thumb tack 100 times. It has landed pin up 80 times, and we now look for
the model that best fits the observations/data:

T T T

0.1 0.2 0.3

M0.1 M0.2 M0.3Model

Structure

Probability, P (pin up) =
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Complete data: Maximum likelihood estimation

We have tossed a thumb tack 100 times. It has landed pin up 80 times, and we now look for
the model that best fits the observations/data:

T T T

0.1 0.2 0.3

M0.1 M0.2 M0.3Model

Structure

Probability, P (pin up) =

We can measure how well a model fits the data using:

P (D|Mθ) = P (pin up, pin up, pin down, . . . , pin up|Mθ)

= P (pin up|Mθ)P (pin up|Mθ)P (pin down|Mθ) · . . . · P (pin up|Mθ)

This is also called the likelihood of Mθ given D.
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Complete data: Maximum likelihood estimation

We have tossed a thumb tack 100 times. It has landed pin up 80 times, and we now look for
the model that best fits the observations/data:

T T T

0.1 0.2 0.3

M0.1 M0.2 M0.3Model

Structure

Probability, P (pin up) =

We select the parameter θ̂ that maximizes:

θ̂ =arg max
θ

P (D|Mθ)

= arg max
θ

100
Y

i=1

P (di|Mθ)

= arg max
θ

µ · θ80(1 − θ)20.
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Complete data: Maximum likelihood estimation

We have tossed a thumb tack 100 times. It has landed pin up 80 times, and we now look for
the model that best fits the observations/data:

T T T

0.1 0.2 0.3

M0.1 M0.2 M0.3Model

Structure

Probability, P (pin up) =

By setting:
d

dθ
µ · θ80(1 − θ)20 = 0

we get the maximum likelihood estimate:

θ̂ = 0.8.
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Complete data: maximum likelihood estimation

In general, you get a maximum likelihood estimate as the fraction of counts over the total
number of counts.

B C

A

We want P (A = a |B = b, C = c)!

To find the maximum likelihood estimate P̂ (A = a |B = b, C = c) we simply calculate:

P̂ (A = a |B = b, C = c) =
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Complete data: maximum likelihood estimation

In general, you get a maximum likelihood estimate as the fraction of counts over the total
number of counts.

B C

A

We want P (A = a |B = b, C = c)!

To find the maximum likelihood estimate P̂ (A = a |B = b, C = c) we simply calculate:

P̂ (A = a |B = b, C = c) =
P̂ (A = a, B = b, C = c)

P̂ (B = b, C = c)
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Complete data: maximum likelihood estimation

In general, you get a maximum likelihood estimate as the fraction of counts over the total
number of counts.

B C

A

We want P (A = a |B = b, C = c)!

To find the maximum likelihood estimate P̂ (A = a |B = b, C = c) we simply calculate:

P̂ (A = a |B = b, C = c) =
P̂ (A = a, B = b, C = c)

P̂ (B = b, C = c)
=

h

N(A=a,B=b,C=c)
N

i

h

N(B=b,C=c)
N

i
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Complete data: maximum likelihood estimation

In general, you get a maximum likelihood estimate as the fraction of counts over the total
number of counts.

B C

A

We want P (A = a |B = b, C = c)!

To find the maximum likelihood estimate P̂ (A = a |B = b, C = c) we simply calculate:

P̂ (A = a |B = b, C = c) =
P̂ (A = a, B = b, C = c)

P̂ (B = b, C = c)
=

h

N(A=a,B=b,C=c)
N

i

h

N(B=b,C=c)
N

i

=
N(A = a, B = b, C = c)

N(B = b, C = c)
.

So we have a simple counting problem!
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Complete data: maximum likelihood estimation

Unfortunately, maximum likelihood estimation has a drawback:

Last three letters
aaa aab aba abb baa bba bab bbb

First
two

letters

aa 2 2 2 2 5 7 5 7

ab 3 4 4 4 1 2 0 2

ba 0 1 0 0 3 5 3 5

bb 5 6 6 6 2 2 2 2

By using this table to estimate e.g. P (T1 = b, T2 = a, T3 = T4 = T5 = a) we get:

P̂ (T1 = b, T2 = a, T3 = T4 = T5 = a) =
N(T1 = b, T2 = a, T3 = T4 = T5 = a)

N
= 0

This is not reliable!
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Complete data: maximum likelihood estimation

An even prior distribution corresponds to adding a virtual count of 1:

Last three letters
aaa aab aba abb baa bba bab bbb

First
two

letters

aa 2 2 2 2 5 7 5 7

ab 3 4 4 4 1 2 0 2

ba 0 1 0 0 3 5 3 5

bb 5 6 6 6 2 2 2 2

From this table we get:

T1

a b

T2
a 32 17

b 20 31

⇒

T1

a b

T2
a 32 + 1 17 + 1

b 20 + 1 31 + 1

⇒

T1

a b

T2
a

`

33
54

´ `

18
50

´

b
`

21
54

´ `

32
50

´

N(T1, T2) N ′(T1, T2) P (T2 |T1)= N′(T1,T2)
N′(T1)
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Incomplete data

How do we handle cases with missing values:

➤ Faulty sensor readings.

➤ Values have been intentionally removed.

➤ Some variables may be unobservable.

Why don’t we just throw away the cases with missing values?
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Incomplete data

How do we handle cases with missing values:

➤ Faulty sensor readings.

➤ Values have been intentionally removed.

➤ Some variables may be unobservable.

Why don’t we just throw away the cases with missing values?

A B A B

a1 b1 a2 b1

a1 b1 a2 b1

a1 b1 a2 b1

a1 b1 a2 b1

a1 b1 a2 b1

a1 b1 a2 ?

a1 b1 a2 ?

a1 b1 a2 ?

a1 b1 a2 ?

a1 b1 a2 ?

⇒

Using the entire database:

P̂ (a1) =
N(a1)

N(a1) + N(a2)
=

10

10 + 10
= 0.5.

Having removed the cases with missing val-
ues:

P̂ ′(a1) =
N ′(a1)

N ′(a1) + N ′(a2)
=

10

10 + 5
= 2/3.
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How is the data missing?

We need to take into account how the data is missing:

Missing completely at random The probability that a value is missing is independent of both the
observed and unobserved values.

Missing at random The probability that a value is missing depends only on the observed val-
ues.

Non-ignorable Neither MAR nor MCAR.

What is the type of missingness:

➤ In an exit poll, where an extreme right-wing party is running for parlament?

➤ In a database containing the results of two tests, where the second test has only per-
formed (as a “backup test”) when the result of the first test was negative?

➤ In a monitoring system that is not completely stable and where some sensor values are
not stored properly?
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The EM algorithm

Pr

UtBt

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?

Estimate the required probability distributions for the network
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The EM algorithm

Pr

UtBt

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?

If the database was complete we would estimate the required probabilities, P (Pr), P (Ut |Pr)
and P (Bt |Pr) as:

P (Pr = yes) =
N(Pr = yes)

N

P (Ut = yes |Pr = yes) =
N(Ut = yes, Pr = yes)

N(Pr = yes)

P (Bt = yes |Pr = no) =
N(Bt = yes, Pr = no)

N(Pr = no)

So estimating the probabilities is basically a counting problem!
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The EM algorithm

Pr

UtBt

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?

Estimate P (Pr) from the database above:

Case 2, 3 and 4 contributes with a value 1 to N(Pr = yes), but what is the contribution from
case 1 and 5?

➤ Case 1 contributes with P (Pr = yes|Bt = pos, Ut = pos).

➤ Case 5 contributes with P (Pr = yes|Bt = neg).

To find these probabilities we assume some initial distributions, P0(·), have been assigned to
the network.

We are basically calculating the expectation for N(Pr = yes), denoted E[N(Pr = yes)]
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The EM algorithm

Pr

UtBt

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?

Using P0(Pr) = (0.5, 0.5), P0(Bt |Pr = yes) = (0.5, 0.5) etc., as starting distributions we get:

E[N(Pr = yes)] = P0(Pr = yes |Bt = Ut = pos) + 1 + 1 + 1 + P0(Pr = yes |Bt = neg)

= 0.5 + 1 + 1 + 1 + 0.5 = 4

E[N(Pr = no)] = P0(Pr = no |Bt = Ut = pos) + 0 + 0 + 0 + P0(Pr = no |Bt = neg)

= 0.5 + 0 + 0 + 0 + 0.5 = 1

So we e.g. get: P̂1(Pr = yes) =
E[N(Pr = yes)]

N
=

4

5
= 0.8
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The EM algorithm

Pr

UtBt

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?

To estimate P̂1(Ut |Pr) = E[N(Ut, Pr)]/ E[N(Pr)] we e.g. need:

E[N(Ut = p, Pr = y)] =P0(Ut = p, Pr = y |Bt = Ut = p) + 1 + P0(Ut = p, Pr = y |Bt = p, Pr = y)

+ 0 + P0(Ut = p, Pr = y |Bt = n) = 0.5 + 1 + 0.5 + 0 + 0.25 = 2.25

E[N(Pr = yes)] =P0(Pr = yes |Bt = Ut = pos) + 1 + 1 + 1 + P0(Pr = yes |Bt = neg)

=0.5 + 1 + 1 + 1 + 0.5 = 4

So we e.g. get:

P̂1(Ut = pos |Pr = yes) =
E[N(Ut = p, Pr = y)]

E[N(Pr = yes)]
=

2.25

4
= 0.5625
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The EM algorithm

Pr

UtBt

P0(Pr) = (0.5, 0.5)

P0(Ut = pos |Pr) = (0.5, 0.5)

P0(Bt = pos |Pr) = (0.5, 0.5)

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?
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The EM algorithm

E-step 1

Pr

UtBt

P0(Pr) = (0.5, 0.5)

P0(Ut = pos |Pr) = (0.5, 0.5)

P0(Bt = pos |Pr) = (0.5, 0.5)

E0[N(Pr)] = (4, 1)

E0[N(Ut = pos, P r)] = (2.25,

0.5 + 0 + 0 + 0 + 0.25)

E0[N(Bt = pos, P r)] = (0.5 + 0 + 1 + 1 + 0 = 2.5

, 0.5 + 0 + 0 + 0 + 0 = 0.5)

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?
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The EM algorithm

E-step 1

M-step 2

Pr

UtBt

P0(Pr) = (0.5, 0.5)

P0(Ut = pos |Pr) = (0.5, 0.5)

P0(Bt = pos |Pr) = (0.5, 0.5)

P1(Pr) = ( 4
5
, 1

5
)

P1(Ut = pos |Pr) = ( 2.25
4

, 0.75
1

)

P1(Bt = pos |Pr) = ( 2.5
4

, 0.5
1

)

E0[N(Pr)] = (4, 1)

E0[N(Ut = pos, P r)] = (2.25,

0.5 + 0 + 0 + 0 + 0.25)

E0[N(Bt = pos, P r)] = (0.5 + 0 + 1 + 1 + 0 = 2.5

, 0.5 + 0 + 0 + 0 + 0 = 0.5)

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?
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The EM algorithm

E-step 1

M-step 2

E-step 3

Pr

Pr

Ut

Ut

Bt

Bt

P0(Pr) = (0.5, 0.5)

P0(Ut = pos |Pr) = (0.5, 0.5)

P0(Bt = pos |Pr) = (0.5, 0.5)

P1(Pr) = ( 4
5
, 1

5
)

P1(Ut = pos |Pr) = ( 2.25
4

, 0.75
1

)

P1(Bt = pos |Pr) = ( 2.5
4

, 0.5
1

)

E0[N(Pr)] = (4, 1)

E0[N(Ut = pos, P r)] = (2.25,

0.5 + 0 + 0 + 0 + 0.25)

E0[N(Bt = pos, P r)] = (0.5 + 0 + 1 + 1 + 0 = 2.5

, 0.5 + 0 + 0 + 0 + 0 = 0.5)

E1[N(Pr)] = ( , )

E1[N(Ut = pos, P r)] = ( , )

E1[N(Bt = pos, P r)] = ( , )

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?
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The EM algorithm

Until convergence

E-step 1

M-step 2

E-step 3

M-step 4

Pr

Pr

Ut

Ut

Bt

Bt

P0(Pr) = (0.5, 0.5)

P0(Ut = pos |Pr) = (0.5, 0.5)

P0(Bt = pos |Pr) = (0.5, 0.5)

P1(Pr) = ( 4
5
, 1

5
)

P1(Ut = pos |Pr) = ( 2.25
4

, 0.75
1

)

P1(Bt = pos |Pr) = ( 2.5
4

, 0.5
1

)

P2(Pr) = (·, .·)

P2(Ut = pos |Pr) = (·, .·)

P2(Bt = pos |Pr) = (·, .·)

E0[N(Pr)] = (4, 1)

E0[N(Ut = pos, P r)] = (2.25,

0.5 + 0 + 0 + 0 + 0.25)

E0[N(Bt = pos, P r)] = (0.5 + 0 + 1 + 1 + 0 = 2.5

, 0.5 + 0 + 0 + 0 + 0 = 0.5)

E1[N(Pr)] = ( , )

E1[N(Ut = pos, P r)] = ( , )

E1[N(Bt = pos, P r)] = ( , )

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?
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The EM algorithm

Pr

UtBt

Cases Pr Bt Ut

1. ? pos pos
2. yes neg pos
3. yes pos ?
4. yes pos neg
5. ? neg ?

1. Let θ
0 = {θijk} be some start estimates (P (Xi = j | pa(Xi = k) = θijk).

4. Repeat until convergence:

E-step: For each variable Xi calculate the table of expected counts:

E

θ
t

[N(Xi, pa(Xi) | D] =
X

d ∈ D

P (Xi, pa(Xi) |d, θt).

M-step: Use the expected counts as if they were actual counts:

θ̂ijk =
E

θ
i [N(Xi = k, pa(Xi) = j | D]

P|sp(Xi)|
k=1 E

θ
i [N(Xi = k, pa(Xi) = j | D]

.
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Adaptation

Adapt the tables to experience (cases):

B C

A

Social env. (or expert) t1: P1(A|B, C)

Social env. (or expert) tk: Pk(A|B, C)
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Adaptation

Adapt the tables to experience (cases):

B C

A

Social env. (or expert) t1: P1(A|B, C)

Social env. (or expert) tk: Pk(A|B, C)

B C

A

T Variable T : t1, . . . , tk
P (T ) reflects the credibility of t1, . . . , tk
P (A|B, C, T = ti) = Pi(A|B, C)

Any case e will yield a P (T |e):
This is used as prior for the next case.
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Fractional updating

B C

A

I am uncertain about P (A|B, C).

Idea: I can represent my uncertainty by assuming that P (A|bi, cj) are frequencies from a
virtual sample of n cases.

IThe larger I put n, the more certain I am, i.e.,P (A|bi, cj) =
`n1

n
, n2

n
, . . . , nm

n

´

.
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Fractional updating

B C

A

I am uncertain about P (A|B, C).

Idea: I can represent my uncertainty by assuming that P (A|bi, cj) are frequencies from a
virtual sample of n cases.

IThe larger I put n, the more certain I am, i.e.,P (A|bi, cj) =
`n1

n
, n2

n
, . . . , nm

n

´

.

I update P (A|bi, cj) when a new case arrives:

a) New case: B = bi, C = cj , A = a1, . . .:

P ∗(A|bi, cj) =

„

n1 + 1

n + 1
,

n2

n + 1
, . . . ,

nm

n + 1

«
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Fractional updating

B C

A

I am uncertain about P (A|B, C).

Idea: I can represent my uncertainty by assuming that P (A|bi, cj) are frequencies from a
virtual sample of n cases.

IThe larger I put n, the more certain I am, i.e.,P (A|bi, cj) =
`n1

n
, n2

n
, . . . , nm

n

´

.

I update P (A|bi, cj) when a new case arrives:

b) New case: B = bi, C = cj , . . . . and P (A|case) = (x1, . . . , xm):

P ∗(A|bi, cj) =

„

n1 + x1

n + 1
,
n2 + x2

n + 1
, . . . ,

nm + xm

n + 1

«
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Fractional updating

B C

A

I am uncertain about P (A|B, C).

Idea: I can represent my uncertainty by assuming that P (A|bi, cj) are frequencies from a
virtual sample of n cases.

IThe larger I put n, the more certain I am, i.e.,P (A|bi, cj) =
`n1

n
, n2

n
, . . . , nm

n

´

.

I update P (A|bi, cj) when a new case arrives:

c) New case: . . . , A = a1, . . . . and P (bi, cj |case) = x:

P ∗(A|bi, cj) =

„

n1 + x

n + x
,

n2

n + x
, . . . ,

nm

n + x

«
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Fractional updating

B C

A

I am uncertain about P (A|B, C).

Idea: I can represent my uncertainty by assuming that P (A|bi, cj) are frequencies from a
virtual sample of n cases.

IThe larger I put n, the more certain I am, i.e.,P (A|bi, cj) =
`n1

n
, n2

n
, . . . , nm

n

´

.

I update P (A|bi, cj) when a new case arrives:

d) New (general) case: . . . ⇒ P (A|case) = (x1, . . . , xm) and P (bi, cj |case) = x:

P ∗(A|bi, cj) =

„

n1 + x · x1

n + x
,
n2 + x · x2

n + x
, . . . ,

nm + x · xm

n + x

«

Chapter 6 – p. 13/17



Fractional updating

B C

A

I am uncertain about P (A|B, C).

Idea: I can represent my uncertainty by assuming that P (A|bi, cj) are frequencies from a
virtual sample of n cases.

IThe larger I put n, the more certain I am, i.e.,P (A|bi, cj) =
`n1

n
, n2

n
, . . . , nm

n

´

.

I update P (A|bi, cj) when a new case arrives:

e) New case: B = bi, C = cj and this is all!!

P ∗(A|bi, cj) =

 

n1 +
`

n1

n

´

n + 1
,
n2 +

`

n2

n

´

n + 1
, . . . ,

nm +
`

nm

n

´

n + 1

!

=
“n1

n
, . . . ,

nm

n

”

Unjustified, we thereby confirm our belief in our present distribution.
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Assumptions

What is the situation?

• We are uncertain about P (A|B, C).
• We get a new case with B = b1 and C = c2.

When updating we have that:
• P (A|b1, c2) is changed.

• All other P (A|bi, cj) are unaffected.

This involves the following two assumptions:

Local independence: The (second order) uncertainty on P (A|bi, cj) is independent of the
(second order) uncertainty on P (A|b′i, c

′
j).

Global independence: The (second order) uncertainty for the various variables is
independent.
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Example: Spoofing

Estimate: P (#chosen|#in-hand = 2) = (0.2, 0.6, 0.2)

Virtual sample size = 20 (corresponding to (4,12,4)).

New case: #chosen= 0

P (#chosen|#in-hand = 2) = ( 5
21

, 12
21

, 4
21

)

23 new cases: (7, 8, 8)

P (#chosen|#in-hand = 2) = ( 12
44

, 20
44

, 12
44

) = (0.27, 0.46, 0.27)

Apparently, she plays ( 1
3
, 1

3
, 1
3
)!!
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Do I have to take the (wrong) past with me?

We have two situations:
• The initial probabilities are wrong.
• The probabilities change over time.

Fading: Multiply the old set of counts with a fading factor q < 1.

“n1

n
,
n2

n
,
n3

n

”

M

(x1, x2, x3)
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Do I have to take the (wrong) past with me?

We have two situations:
• The initial probabilities are wrong.
• The probabilities change over time.

Fading: Multiply the old set of counts with a fading factor q < 1.

“n1

n
,
n2

n
,
n3

n

”

M

(x1, x2, x3) (with x =
X

i

xi)

Updating proceeds as follows:

The counts:
(n1, n2, n3) → (n1 · q, n2 · q, n3 · q)

n → n · q

The probabilities: P (·) =

„

n1 · q + x1

n · q + x
,
n2 · q + x2

n · q + x
,
n3 · q + x3

n · q + x

«

This technique is very efficient for implementing adaptive agents for games with perfect
recall.
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Interpreting the fading factor

With the fading factor we have:

(n1, n2, n3) → (n1 · q, n2 · q, n3 · q)

n → n · q

If all counts will be updated with the value 1, then the past will fade away exponentially and
the limit (the effective sample size) will be:

n∗ =
1

1 − q

If n = n∗ and a new case arrives, we get:

n := n∗ · q + 1 =
q

1 − q
+ 1 =

1

1 − q
= n∗

So instead of declaring a fading factor we can specify an effective sample size, and the
fading factor is then:

q =
n∗ − 1

n∗
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