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Educational Testing Service (ETS)

ETS is the world’s largest private educational testing organization.
It has 2300 permanent employees.

Number of participants in tests in the school year 2000/2001:
3 185 000 SAT I Reasoning Test and SAT II: Subject Area Tests
2 293 000 PSAT: Preliminary SAT/National Merit Scholarship

Qualifying Test
1 421 000 AP: Advanced Placement Program

801 000 The Praxis Series: Professional Assessments for Be-
ginning Teachers and Pre-Professional Skills Tests

787 000 TOEFL: Test of English as a Foreign Language
449 000 GRE: Graduate Record Examinations General Test

ETS has a research unit doing research on adaptive testing using
Bayesian networks: http://www.ets.org/research/
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Rasch model (G. Rasch,1960)

Model variables

Yn,i binary response variable - its values indicates
whether the answer of person n to question i was
correct

n = 1, . . . ,N person index
i = 1, . . . , I question index

Model parameters

δi difficulty of question i - fixed effects
βn ability (knowledge level) of person n - a random ef-

fect
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Models for the response variable Y

Yn,i =

{
1 if βn ≥ δi
0 otherwise.

P(Yn,i = 1) =
exp(βn − δi)

1 + exp(βn − δi)

P(Yn,i = 1 | βn) for δi = −2
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Probability distribution for random effect βn

P(βn) = N (0, σ2)

a normal (Gaussian) distribution
with the mean equal zero, and variance σ2.
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Computations with the Rasch model

prior Nβ(0,1)
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Computations with the Rasch model

P(Y = 1 | β, δ1 = −2) posterior
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J. Vomlel (ÚTIA AV ČR) CAT 11th July, 2007 6 / 25



Computations with the Rasch model

P(Y = 0 | β, δ2 = 0) posterior
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J. Vomlel (ÚTIA AV ČR) CAT 11th July, 2007 6 / 25



Computations with the Rasch model

P(Y = 0 | β, δ3 = +1) posterior

-3 -2 -1 0 1 2 3

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Nβ(0,1) · P(Y = 1 | β, δ1 = −2) · P(Y = 0 | β, δ2 = 0)

·P(Y = 0 | β, δ3 = +1)

J. Vomlel (ÚTIA AV ČR) CAT 11th July, 2007 6 / 25



Computations with the Rasch model

P(Y = 0 | β, δ4 = +2) posterior
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Student model and evidence models
(R. Almond and R. Mislevy, 1999)

The variables of the models are: (1) skills, abilities,
misconceptions, etc. - for brevity called skills - the vector of skills
is denoted S and (2) items (questions) - the vector of questions is
denoted X .

student model describes relations between student skills.
evidence models - one for each item (question) - describes
relations of the item to the skills.
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J. Vomlel (ÚTIA AV ČR) CAT 11th July, 2007 7 / 25



Building Bayesian network models

Three basic approaches:

Discussions with domain experts: expert knowledge is used to
get the structure and parameters of the model
A dataset of records is collected and a machine learning method
is used to to construct a model and estimate its parameters.
A combination of previous two: e.g. experts suggest the
structure and collected data are used to estimate parameters.
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Example of a simple diagnostic task

We want to diagnose presence/absence of three skills

S1,S2,S3

using three questions
X1,2,X1,3,X2,3 .

The questions depend on skills and their dependence is described by
conditional probability distributions

P(Xi,j = 1|Si = si ,Sj = sj) =

{
1 if (si , sj) = (1,1)
0 otherwise.

Assume all answers were wrong, i.e.,

X1,2 = 0, X1,3 = 0, X2,3 = 0 .
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Reasoning under the assumption of skills’
independence

X1,2

X1,3

X2,3

S1 S3

S2

First, assume the skills are
pairwise independent, i.e.,

P(S1,S2,S3) = P(S1)·P(S2)·P(S3)

and for i = 1,2,3, si = 0,1
P(Si = si) = 0.5

Then conditional probabilities for j = 1,2,3 are

P(Sj = 0 | X1,2 = 0,X1,3 = 0,X2,3 = 0) = 0.75 ,

i.e., we cannot decide with certainty, which skills are present and which
are absent.

J. Vomlel (ÚTIA AV ČR) CAT 11th July, 2007 10 / 25



Reasoning under the assumption of skills’
independence

X1,2

X1,3

X2,3

S1 S3

S2

First, assume the skills are
pairwise independent, i.e.,

P(S1,S2,S3) = P(S1)·P(S2)·P(S3)

and for i = 1,2,3, si = 0,1
P(Si = si) = 0.5

Then conditional probabilities for j = 1,2,3 are

P(Sj = 0 | X1,2 = 0,X1,3 = 0,X2,3 = 0) = 0.75 ,

i.e., we cannot decide with certainty, which skills are present and which
are absent.
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Modeling dependence between skills

X2,3

X1,3

X1,2

S1 S3

S2

Now, assume there is a
deterministic hierarchy among
skills

S1 ⇒ S2, S2 ⇒ S3

Then conditional probabilities are

P(S1 = 0 | X1,2 = 0,X1,3 = 0,X2,3 = 0) = 1
P(S2 = 0 | X1,2 = 0,X1,3 = 0,X2,3 = 0) = 1
P(S3 = 0 | X1,2 = 0,X1,3 = 0,X2,3 = 0) = 0.5

For i = 1,2,3: P(Si | X1,2 = 0,X1,3 = 0,X2,3 = 0) = P(Si | X2,3 = 0).
X2,3 = 0 gives the same information as X1,2 = X1,3 = X2,3 = 0.
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Fixed test vs. adaptive test

wrong correct wrong
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Computerized Adaptive Testing (CAT)

The goal of CAT is to tailor each test so that it brings most information
about each student.

Two basic steps are repeated:

1 estimation of the knowledge level of the tested student
2 selection of appropriate question to ask the student

Entropy as an information measure:
H (P(S)) = −

∑
s P(S = s) · log P(S = s)

0

0.5

1

0 0.5 1

en
tr

op
y

probability

“The lower the entropy the more we know.”
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J. Vomlel (ÚTIA AV ČR) CAT 11th July, 2007 13 / 25



Computerized Adaptive Testing (CAT)

The goal of CAT is to tailor each test so that it brings most information
about each student.
Two basic steps are repeated:

1 estimation of the knowledge level of the tested student
2 selection of appropriate question to ask the student

Entropy as an information measure:
H (P(S)) = −

∑
s P(S = s) · log P(S = s)

0

0.5

1

0 0.5 1

en
tr

op
y

probability

“The lower the entropy the more we know.”
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Building strategies using the models

Visit Denmark.

Visit Norway.

Visit Canary Islands.

Do you like hot climate?

Visit Egypt.

Do you like mountains?

Do you like the sea?

X3 = yes

X2 = no
X1 = yes

X1 = no

X3 = no
X2 = yes

For all terminal nodes (leaves) ` ∈ L(s) of a strategy s we define:

steps that were performed to get to that node (e.g. questions
answered in a certain way). It is called collected evidence e`.
Using the probabilistic model of the domain we can compute
probability of getting to a terminal node P(e`).
Also during the process, when we collected evidence e, we
update the probability of getting to a terminal node to conditional
probability P(e`|e)
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Building strategies using the models

For all terminal nodes ` ∈ L(s) of a strategy s we also define:
an evaluation function f : ∪s∈SL(s) 7→ R,

The evaluation function can be, e.g., the information gain.
Information gain in a node n of a strategy
IG(en) = H(P(S))− H(P(S | en))

For each strategy we can compute:
expected value of the strategy:

Ef (s) =
∑
`∈L(s)

P(e`) · f (e`)

The goal is
to find a strategy that maximizes its expected value.
Specifically, we will maximize the expected information gain,
which corresponds to minimization of expected entropy.
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J. Vomlel (ÚTIA AV ČR) CAT 11th July, 2007 15 / 25



Building strategies using the models

For all terminal nodes ` ∈ L(s) of a strategy s we also define:
an evaluation function f : ∪s∈SL(s) 7→ R,
The evaluation function can be, e.g., the information gain.
Information gain in a node n of a strategy
IG(en) = H(P(S))− H(P(S | en))

For each strategy we can compute:
expected value of the strategy:

Ef (s) =
∑
`∈L(s)

P(e`) · f (e`)

The goal is
to find a strategy that maximizes its expected value.
Specifically, we will maximize the expected information gain,
which corresponds to minimization of expected entropy.
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Space of tests of length 2 of 3 possible questions

X3

X1

X3

X3

X2

X3

X2

X1

X2

X1

X2

X2

X3

X1

X1

Entropy in node n:
H(en) = H(P(S | en))

Expected entropy of a test t
EH(t) =

∑
`∈L(t) P(e`) · H(e`)

Let T be the set of all possible
tests (e.g. of a given length).
A test t? is optimal iff
t? = arg mint∈T EH(t).
Myopically optimal test:
in each step a we select a
question that minimizes
expected entropy of the test
that would terminate after this
question (one step look
ahead).
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Adaptive test of basic operations with fractions

Examples of tasks:

T1:
(

3
4 ·

5
6

)
− 1

8 = 15
24 −

1
8 = 5

8 −
1
8 = 4

8 = 1
2

T2: 1
6 + 1

12 = 2
12 + 1

12 = 3
12 = 1

4

T3: 1
4 · 1

1
2 = 1

4 ·
3
2 = 3

8

T4:
(

1
2 ·

1
2

)
·
(

1
3 + 1

3

)
= 1

4 ·
2
3 = 2

12 = 1
6 .
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Elementary and operational skills

CP Comparison (common numerator or de-
nominator)

1
2 >

1
3 ,

2
3 >

1
3

AD Addition (comm. denom.) 1
7 + 2

7 = 1+2
7 = 3

7

SB Subtract. (comm. denom.) 2
5 −

1
5 = 2−1

5 = 1
5

MT Multiplication 1
2 ·

3
5 = 3

10

CD Common denominator
(1

2 ,
2
3

)
=
(3

6 ,
4
6

)
CL Canceling out 4

6 = 2·2
2·3 = 2

3

CIM Conv. to mixed numbers 7
2 = 3·2+1

2 = 31
2

CMI Conv. to improp. fractions 31
2 = 3·2+1

2 = 7
2
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Misconceptions

Label Description Occurrence

MAD a
b + c

d = a+c
b+d 14.8%

MSB a
b −

c
d = a−c

b−d 9.4%

MMT1 a
b ·

c
b = a·c

b 14.1%

MMT2 a
b ·

c
b = a+c

b·b 8.1%

MMT3 a
b ·

c
d = a·d

b·c 15.4%

MMT4 a
b ·

c
d = a·c

b+d 8.1%

MC ab
c = a·b

c 4.0%
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Student model

ACD

HV2 HV1

AD SB CMI CIM CL CD MT

MMT1 MMT2 MMT3 MMT4MCMAD MSB

ACMI ACIM ACL

CP
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Evidence model for task T 1

(
3
4
· 5

6

)
− 1

8
=

15
24
− 1

8
=

5
8
− 1

8
=

4
8

=
1
2

T1 ⇔ MT & CL & ACL & SB & ¬MMT3 & ¬MMT4 & ¬MSB

X1

P(X1|T1)

MSB

SB

CL ACL

MMT3

MT

MMT4T1
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Evidence model for task T 1 connected with the
student model

MMT1

T1

MMT2 MMT3 MMT4MCMAD MSB

ACMI ACIM ACL ACD

CD MTCLCIMCMISBAD

HV1HV2

X1

CP
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Skill Prediction Quality
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Entropy
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