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Conditional Independence

Example (CI model)
Assume three variables:

person’s length of hair, denoted by H,

person’s stature, denoted by S, and
person’s gender, denoted by G.

We can describe relations between these three variables as follows:
Seeing the length of hair of a person will tell us more about his/her
gender and conversely. It means, the value of G is dependent on
the value of H.
Knowing more about the gender will focus our belief on his/her
stature - S is dependent on G and (through G) also on H.
Nevertheless, if we know the gender of a person then length of
hair of that person gives us no extra clue on his/her stature - H is
independent of S given G.
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J. Vomlel (ÚTIA AV ČR) Learning BN 10th July, 2007 2 / 14



Conditional Independence

Example (CI model)
Assume three variables:

person’s length of hair, denoted by H,
person’s stature, denoted by S, and
person’s gender, denoted by G.

We can describe relations between these three variables as follows:
Seeing the length of hair of a person will tell us more about his/her
gender and conversely. It means, the value of G is dependent on
the value of H.
Knowing more about the gender will focus our belief on his/her
stature - S is dependent on G and (through G) also on H.
Nevertheless, if we know the gender of a person then length of
hair of that person gives us no extra clue on his/her stature - H is
independent of S given G.
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Conditional Independence Statements

Definition (CI statement)
Let A, B, C be pairwise disjoint subsets of a set of variables N. Then
the statement “A is conditionally independent of B given C” is a CI
statement (over N), written as I(A, B, C).

Example (CI statement)
In Example 1 we have indicated only one CI statement, I(H, S, G). On
the other hand, we have indicated two dependence statements,
namely ¬I(G, H) = ¬I(G, H, ∅) and ¬I(S, G).
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Conditional Independence (CI) model

Definition (CI in PDs)
Let P be a discrete probability distribution over N. Given any A ⊆ N, let
xA denote a configuration of values of variables X A = {Xi}i∈A and for
B ⊆ N \ A let P(xA | xB) denote the conditional probability for X A = xA
given X B = xB. The CI statement I(A, B, C) is induced by probability
distribution P over N if for all xA, xB, xC such that P(xC) > 0

P(xA, xB | xC) = P(xA | xC) · P(xB | xC) .

Example
In Example 1 we have indicated CI statement, I(H, S, G). For all
values h, s, g of variables H, S, G it holds that

P(h, s | g) = P(h | g) · P(s | g) or, equivalently
P(h | g, s) = P(h | g)
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What CI-statements are represented by a DAG?

Definition (d-separation criteria)
Two nodes a and b in a DAG G are d-seprated by a set C if for all paths
between a and b there is a node c (c 6= a and c 6= b) such that either:

the path contains a node c ∈ C, in which edges do not meet
“head-to-head” or
the path contains a node c in which edges meet “head-to-head”
and neither c nor any of its descendants belong to C.

Example
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Equivalence classes of Bayesian networks

What independence statements are represented by these three
models?

B

A C

B

A C

B

A C

Different graphs may represent the same set of CI-statements!

Definition (Equivalence class)
We say that Bayesian networks with DAGs representing the same set
of CI-statements belong to an equivalence class.

Example
B

A C

B

A C

B

A C belong to the same equivalence class.
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Equivalence classes of Bayesian networks

Definition (Immorality)
An immorality in a DAG G is a induced subgraph of G for a set
{A, B, C}, where A, B, C are distinct nodes of G such that there are
edges A→ C and B → C and there is no edge between A and B in G.

Definition (Underlaying graph)
An underlaying graph of a DAG is the undirected graph that has the
same set of nodes and all directed edges A→ B are replaced by
undirected edges A− B.

Theorem
Bayesian networks belong to the same equivalence class iff they have
the same underlaying graph and the same set of immoralities.
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Essential graphs

Definition (Essential graph)
The essential graph G∗ of an equivalence class G of DAGs over N is a
hybrid graph over N defined as follows:

a→ b in G∗ if a→ b in G for every G ∈ G,

a− b in G∗ if ∃G1, G2 ∈ G such that a→ b in G1 and a← b in G2.

Example
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Inclusion neigbourhood

MG will denote the set of CI-statements generated by a DAG G.

Definition
Given two DAGs K , L over N, we say that they are inclusion neighbors
and writeMK <ML ifMK ⊂ML and there is no DAG G such that
MK <MG <ML. We say then thatML is an upper neighbor ofMK
or, dually, thatMK is a lower neighbor ofML.

The inclusion neigborhood allows us to define a greedy search
procedure that finds a globally optimal Bayesian network.
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J. Vomlel (ÚTIA AV ČR) Learning BN 10th July, 2007 9 / 14



Search space for models of three variables

Example
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J. Vomlel (ÚTIA AV ČR) Learning BN 10th July, 2007 10 / 14



Likelihood of data

Let D = {xm, m = 1, . . . , M} be the learning dataset, where x is
the vector of values of variable X = {Xi}Ni=1,

Xi , i = 1, . . . , N be the variables and nodes of the graph G of
Bayesian network,
r(i) denote number of states of variable Xi ,
q(i , G) denote number of parent configurations for parents X pa(i)
of variable Xi , and
N(i , j , k) denote ocurrance of the corresponding configuration in
the learning dataset D.

The likelihood of D given G is the probability of data D being generated
from the Bayesian network model with the structure given by directed
acyclic graph G and representing joint probability distribution P is

P(D|G) =
M∏

m=1

P(X = xm)
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Scores

Lemma (Maximum loglikelihood)
The maximum log-likelihood for a given Bayesian network with graph
G is

MLL(G|D) =
N∑

i=1

r(i)∑
k=1

q(i,G)∑
j=1

N(i , j , k) log
N(i , j , k)

N(i , j)

Let d(G) be the number of free parameters in the Bayesian network
model with graph G. It is given by

d(G) =
N∑

i=1

(r(i)− 1)q(i , G)
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Scores

Definition (Akaike Information Criterion)

AIC(G|D) = MLL(G|D)− d(G)

Definition (Bayesian Information Criterion)

BIC(G|D) = MLL(G|D)− log M
2

d(G)
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Greedy Equivalence Search (GES) algorithm

The GES algorithm starts with an empty graph and has two stages:
1 deleting CI-statements, which corresponds to edge additions and

directing some other edges

2 adding CI-statements, which corresponds to edge removal.
In each step of the GES algorithm:

we search only in the inclusion neigborhood,
select the model that maximizes the criteria, and
if there is no better model than the current one we start the
second stage or terminate if we are in the second stage,

Theorem
When the greedy equivalent search algorithm terminates, the current
model is the global optimum. If the dataset is “faithfull” with respect to
the generative model then the algorithm terminates in this model.

Demo of GES in R.
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J. Vomlel (ÚTIA AV ČR) Learning BN 10th July, 2007 14 / 14


