Decision theoretic troubleshooting

Jiří Vomlel

Academy of Sciences of the Czech Republic

11th July, 2007

J. Vomlel (ÚTIA AV ČR)

Troubleshooting

11th July, 2007 1 / 26

DQC

Your trouble:

Our trouble-shooter:

"The page that came out of your printer is light." "Perform these steps that will help you solve the trouble."

Problem description:

- problem causes $C \in C$
- actions $A \in \mathcal{A}$ troubleshooting steps that may solve the problem
- questions $Q \in Q$ troubleshooting steps that help identify the problem cause.
- every action and question has assigned a cost:
 - c_A ... cost of an action A
 - c_Q ... cost of a question Q

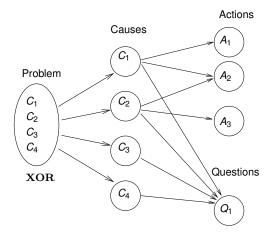
э

	Causes of light print	$p(C_i)$		
	\mathcal{C}_1 : Distribution problem	0.4		
	\mathcal{C}_2 : Defective toner	0.3		
	C_3 : Corrupted dataflow	0.2		
	\mathcal{C}_4 : Wrong driver setting	0.1		
Actions and questions				
A_1 : Remove, shake and reseat toner				
A_2 : Try another toner				
A ₃ :Cycle power				
Q_1 : Is the printer configuration page printed light?				

590

1 ∃ > э

Light Print Problem - Bayesian Network



J. Vomlel (ÚTIA AV ČR)

Troubleshooting

11th July, 2007 4 / 26

æ

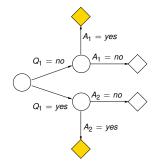
DQC

Light Print - conditional probability tables (CPT)

- for every action A_i and for every parent cause C_j an expert provides a CPT for p(A_i = yes|C_j)
- for every answer q_k to every question Q_k and for every parent cause C_i the expert provides a CPT for p(Q_k = q_k|C_i)

C_j	$p(A_2 = yes C_j)$		C_{j}	$p(Q_1 = yes C_j)$
<i>C</i> ₁	0.9	-	C_1	1
C_2	0.9		C_2	1
C_3	-		C_3	0
C_4	-		C_4	0

Troubleshooting strategy



J. Vomlel (ÚTIA AV ČR)

Troubleshooting

11th July, 2007 6 / 26

æ

DQC

<ロト < 回ト < 回ト < 回ト

• by giving up (e.g. if there are no further steps left)

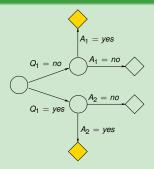
- by giving up (e.g. if there are no further steps left)
 - a penalty function $c(\mathbf{e}_{\ell})$ applies

- by giving up (e.g. if there are no further steps left)
 - a penalty function $c(\mathbf{e}_{\ell})$ applies
 - can be interpreted as a cost of calling service

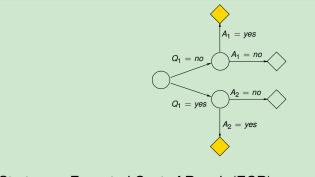
- by giving up (e.g. if there are no further steps left)
 - a penalty function $c(\mathbf{e}_{\ell})$ applies
 - can be interpreted as a cost of calling service
- by solving the problem: $c(\mathbf{e}_{\ell}) \stackrel{\text{def}}{=} 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

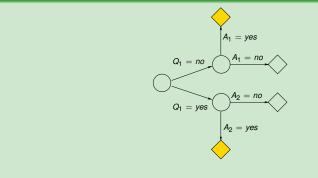


Example



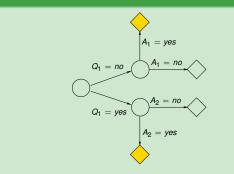
Strategy Expected Cost of Repair (ECR) $p(Q_1 = no, A_1 = yes) \cdot (c_{Q_1} + c_{A_1} + 0)$ $Q_1 \begin{cases} A_1 \\ A_2 \end{cases}$

Example



Strategy Expected Cost of Repair (ECR) $p(Q_1 = no, A_1 = yes) \quad \cdot \quad (c_{Q_1} + c_{A_1} + 0)$ $+ \quad p(Q_1 = no, A_1 = no) \quad \cdot \quad (c_{Q_1} + c_{A_1} + c_{CS})$

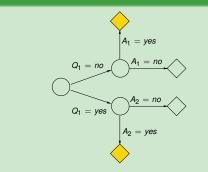
Example



 Strategy
 Expected Cost of Repair (ECR)

 $p(Q_1 = no, A_1 = yes)$ \cdot $(c_{Q_1} + c_{A_1} + 0)$
 $Q_1 \begin{cases} A_1 & + p(Q_1 = no, A_1 = no) \\ A_2 & + p(Q_1 = yes, A_2 = yes) \end{cases}$ \cdot $(c_{Q_1} + c_{A_1} + c_{CS})$

Example



Strategy Expected Cost of Repair (ECR)

$$Q_{1} \begin{cases} A_{1} & p(Q_{1} = no, A_{1} = yes) & \cdot & (c_{Q_{1}} + c_{A_{1}} + 0) \\ + & p(Q_{1} = no, A_{1} = no) & \cdot & (c_{Q_{1}} + c_{A_{1}} + c_{CS}) \\ + & p(Q_{1} = yes, A_{2} = yes) & \cdot & (c_{Q_{1}} + c_{A_{2}} + 0) \\ + & p(Q_{1} = yes, A_{2} = no) & \cdot & (c_{Q_{1}} + c_{A_{2}} + c_{CS}) \end{cases}$$

J. Vomlel (ÚTIA AV ČR)

Node
$$n \mapsto \mathbf{e}_n = \begin{cases} (A = yes/no)_{A \in \{performed actions\}}, \\ (Q = yes/no)_{Q \in \{performed questions\}} \end{cases}$$

æ

DQC

Node
$$n \mapsto \mathbf{e}_n = \begin{cases} (A = yes/no)_{A \in \{performed actions\}}, \\ (Q = yes/no)_{Q \in \{performed questions\}} \\ \mapsto p(\mathbf{e}_n) \dots \text{ probability of getting to node } n \end{cases}$$

1

DQC

Node
$$n \mapsto \mathbf{e}_n = \begin{cases} (A = yes/no)_{A \in \{performed actions\}}, \\ (Q = yes/no)_{Q \in \{performed questions\}} \end{cases}$$

 $\mapsto p(\mathbf{e}_n) \dots \text{ probability of getting to node } n$
 $\mapsto t(\mathbf{e}_n) \dots \text{ total cost of actions and questions performed}$ (to get to node n)

æ

DQC

Node
$$n \mapsto \mathbf{e}_n = \begin{cases} (A = yes/no)_{A \in \{performed \ actions\}}, \\ (Q = yes/no)_{Q \in \{performed \ questions\}} \end{cases}$$

 $\mapsto p(\mathbf{e}_n) \dots \text{ probability of getting to node } n$
 $\mapsto t(\mathbf{e}_n) \dots \text{ total cost of actions and questions performed} (to get to node $n)$
 $ECR(\mathbf{s}) = \sum_{\ell \in \{terminal \ nodes \ of \ \mathbf{s}\}} p(\mathbf{e}_\ell) \cdot [t(\mathbf{e}_\ell) + c(\mathbf{e}_\ell)]$$

DQC

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

Optimal strategy s*

$\textbf{s}^{\star} ~=~ \text{arg min}_{\textbf{s} \in \{\textit{all possible strategies}\}} \textit{ECR}(\textbf{s})$

J. Vomlel (ÚTIA AV ČR)

Troubleshooting

11th July, 2007 10 / 26

3

Theorem (1)

Assume decision-theoretic troubleshooting problem with fixed costs and dependent actions. The decision whether there exists a troubleshooting sequence with ECR $\leq K$ for a given constant K is NP-complete problem for both single fault assumption and independent faults.

Proof:

• The problem is NP: if we guess a good sequence we calculate ECR and compare whether $ECR \leq K$. It takes polynomial time to calculate ECR of a sequence.

Theorem (1)

Assume decision-theoretic troubleshooting problem with fixed costs and dependent actions. The decision whether there exists a troubleshooting sequence with ECR $\leq K$ for a given constant K is NP-complete problem for both single fault assumption and independent faults.

Proof:

- The problem is NP: if we guess a good sequence we calculate ECR and compare whether $ECR \leq K$. It takes polynomial time to calculate ECR of a sequence.
- The problem is NP-hard: We reduce the Exact cover by 3-sets to troubleshooting.

Definition (Exact cover by 3-sets)

We are given a family $F = \{S_1, ..., S_n\}$ of subsets of a set U, such that |U| = 3m for some integer m, and $|S_i| = 3$ for all i. We are asked if there are m sets in F that are disjoint and have U as their union.

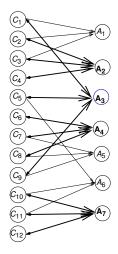
Definition (Exact cover by 3-sets)

We are given a family $F = \{S_1, ..., S_n\}$ of subsets of a set U, such that |U| = 3m for some integer m, and $|S_i| = 3$ for all i. We are asked if there are m sets in F that are disjoint and have U as their union.

The proof of NP-completeness is for example in: Christos H. Papadimitriou. *Computational complexity*. Addison-Wesley Publishing Company, 1994.

COVER BY 3-SETS *≤* Troubleshooting

 $p(C_i) ext{ uniform } \ p(A_j | C_i) \in \{0, 1\} \ c_A = 1 \ c(\mathbf{e}_\ell) = 2 \cdot (m+1)^2$



$= \{1, 2, 3 \cdots, 12\}$
$S_1 = \{1, 2, 3\}$
$\bm{S_2} = \{\bm{2}, \bm{3}, \bm{4}\}$
$\bm{S_3} = \{\bm{1}, \bm{5}, \bm{9}\}$
$\bm{S_4} = \{\bm{6}, \bm{7}, \bm{8}\}$
$S_5 = \{7, 8, 9\}$
$\textit{S}_{6} = \{5, 10, 11\}$
$\bm{S_7} = \{\bm{10}, \bm{11}, \bm{12}\}$

イロト イ団ト イヨト イヨト

U

3

DQC

COVER BY 3-SETS *≤* Troubleshooting

$$\begin{array}{c} (C_{i}) \text{ uniform} \\ (C_{i}) \text{ uniform} \\ (C_{i}) (C_{i}) \in \{0, 1\} \\ (C_{i}) = 1 \\ (C_{i}) = 2 \cdot (m+1)^{2} \end{array}$$

$$\begin{array}{c} (C_{i}) (C_{i}) (C_{i}) = \{1, 2, 3\} \\ (C_{i}) (C_{i}) = \{1, 2, 3\} \\ (C_{i}) (C_{i}) (C_{i}) = \{1, 2, 3\} \\ (C_{i}) (C_{i}) (C_{i}) (C_{i}) (C_{i}) (C_{i}) \\ (C_{i}) (C_{i}) (C_{i}) (C_{i}) (C_{i}) (C_{i}) (C_{i}) \\ (C_{i}) (C_{i}) (C_{i}) (C_{i}) (C_{i}) (C_{i}) (C_{i}) (C_{i}) \\ (C_{i}) (C_{i}) (C_{i}) (C_{i}) (C_{i}) (C_{i}) (C_{i}) (C_{i}) \\ (C_{i}) (C_$$

The exact cover by 3-sets exists iff $ECR \leq \frac{m+1}{2}$ for some sequence.

If we have exact 3-sets cover $V = \{S_{j_1}, \dots, S_{j_l}\}$ then the ECR of corresponding action sequence A_{j_1}, \dots, A_{j_l} (in any order) has the $ECR = \frac{m+1}{2}$.

э

If we have exact 3-sets cover $V = \{S_{j_1}, \dots, S_{j_l}\}$ then the ECR of corresponding action sequence A_{j_1}, \dots, A_{j_l} (in any order) has the $ECR = \frac{m+1}{2}$.

Proof:

• $c(\mathbf{e}_{\ell}) > 0$ is never applied, otherwise $ECR \ge p(C) \cdot c(\mathbf{e}_{\ell}) > \frac{1}{3m} \cdot 2 \cdot (m+1)^2 > \frac{m+1}{2}.$

If we have exact 3-sets cover $V = \{S_{j_1}, \dots, S_{j_l}\}$ then the ECR of corresponding action sequence A_{j_1}, \dots, A_{j_l} (in any order) has the $ECR = \frac{m+1}{2}$.

Proof:

- $c(\mathbf{e}_{\ell}) > 0$ is never applied, otherwise $ECR \ge p(C) \cdot c(\mathbf{e}_{\ell}) > \frac{1}{3m} \cdot 2 \cdot (m+1)^2 > \frac{m+1}{2}.$
- In any step *i* we address three causes, therefore the value added in the terminal node *i* is $p(\mathbf{a}_i) = [2, p(C)] \quad i = 2$

$$p(\mathbf{e}_i) \cdot t(\mathbf{e}_i) = [3 \cdot p(C)] \cdot i = 3 \cdot \frac{1}{3m} \cdot i = \frac{1}{m}.$$

If we have exact 3-sets cover $V = \{S_{j_1}, \dots, S_{j_l}\}$ then the ECR of corresponding action sequence A_{j_1}, \dots, A_{j_l} (in any order) has the $ECR = \frac{m+1}{2}$.

Proof:

- $c(\mathbf{e}_{\ell}) > 0$ is never applied, otherwise $ECR \ge p(C) \cdot c(\mathbf{e}_{\ell}) > \frac{1}{3m} \cdot 2 \cdot (m+1)^2 > \frac{m+1}{2}.$
- In any step *i* we address three causes, therefore the value added in the terminal node *i* is

$$p(\mathbf{e}_{i}) \cdot t(\mathbf{e}_{i}) = [3 \cdot p(C)] \cdot i = 3 \cdot \frac{1}{3m} \cdot i = \frac{i}{m}.$$

Therefore: $ECR(A_{j_{1}}, \dots, A_{j_{i}}) = \sum_{i=1}^{m} \frac{i}{m} = \frac{(m+1) \cdot m}{2 \cdot m} = \frac{m+1}{2}$

Lemma (2)

 $ECR(\mathbf{s}) \ge \frac{m+1}{2}$ for any sequence \mathbf{s} . If two actions in the sequence address the same cause then $ECR(\mathbf{s}) > \frac{m+1}{2}$.

イロト 不得 トイヨト イヨト 二日

Other troubleshooting models

$$T\left(\begin{array}{c}p(A|C)\in\{0,1\},\,p(C)=\frac{1}{|C|}\\ dependent\ actions\\ ECR< K\end{array}\right)\ is\ NP-complete.$$

2

DQC

$$T\left(\begin{array}{c}p(A|C) \in \{0,1\}, p(C) = \frac{1}{|C|}\\ dependent \ actions\\ ECR < K\end{array}\right) \ is \ NP-complete.$$

Consequence: Any extension of this troubleshooting is NP-hard, e.g.

• finding a sequence with minimal ECR is NP-hard

$$T\left(\begin{array}{c}p(A|C) \in \{0,1\}, p(C) = \frac{1}{|C|}\\ dependent \ actions\\ ECR < K\end{array}\right) \ is \ NP-complete.$$

Consequence: Any extension of this troubleshooting is NP-hard, e.g.

- finding a sequence with minimal ECR is NP-hard
- troubleshooting with dependent actions and questions is NP-hard

Complexity of troubleshooting

Polynomial problems - reducible to MAXIMAL MATCHING:

•
$$T\left(\begin{array}{c} \text{indep.} \\ \text{actions} \end{array}\right)$$

3

Polynomial problems - reducible to MAXIMAL MATCHING:

•
$$T\left(\begin{array}{c} \text{indep.} \\ \text{actions} \end{array}\right)$$
 • $T\left(\begin{array}{c} \text{one or two causes per action} \\ p(A|C) \in \{0,1\} \\ p(C) = \frac{1}{|C|}, \text{ Cost} = 1 \end{array}\right)$

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

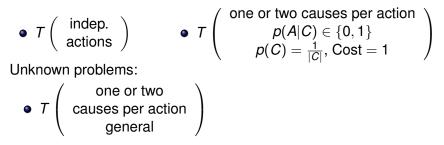
Complexity of troubleshooting

Polynomial problems - reducible to MAXIMAL MATCHING:

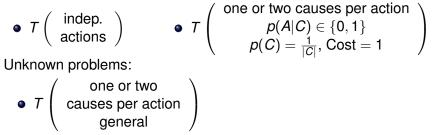
•
$$T\left(\begin{array}{c} \text{indep.} \\ \text{actions} \end{array}\right)$$
 • $T\left(\begin{array}{c} \text{one or two causes per action} \\ p(A|C) \in \{0,1\} \\ p(C) = \frac{1}{|C|}, \text{ Cost} = 1 \end{array}\right)$

Unknown problems:

3



くぼう くほう くほう しほ



NP-complete problem - EXACT COVER BY 3-SETS is reducible to it:

• $T\left(\begin{array}{c} \text{indep.} \\ \text{actions} \end{array}\right)$ • $T\left(\begin{array}{c} \text{one or two causes per action} \\ p(A|C) \in \{0,1\} \\ p(C) = \frac{1}{|C|}, \text{ Cost} = 1 \end{array}\right)$ Unknown problems: • $T\left(\begin{array}{c} \text{one or two} \\ \text{causes per action} \\ \text{general} \end{array}\right)$

NP-complete problem - EXACT COVER BY 3-SETS is reducible to it:

•
$$T(ECR \le K)$$

•
$$T\left(\begin{array}{c} \text{indep.} \\ \text{actions} \end{array}\right)$$
 • $T\left(\begin{array}{c} \text{one or two causes per action} \\ p(A|C) \in \{0,1\} \\ p(C) = \frac{1}{|C|}, \text{ Cost} = 1 \end{array}\right)$
Jnknown problems:

• / (causes per action general) NP-complete problem - EXACT COVER BY 3-SETS is reducible to it:

•
$$T(ECR \le K)$$

NPO-complete problem - reducible to TRAVELING SALESMAN PROBLEM:

. .

•
$$T\left(\begin{array}{c} \text{indep.} \\ \text{actions} \end{array}\right)$$
 • $T\left(\begin{array}{c} \text{one or two caus} \\ p(A|C) \in \\ p(C) = \frac{1}{|C|}, \end{array}\right)$

 $\left(egin{array}{c} ext{one or two causes per action} \ p(A|C) \in \{0,1\} \ p(C) = rac{1}{|C|}, ext{ Cost} = 1 \end{array}
ight)$

Unknown problems:

• $T\left(\begin{array}{c} \text{one or two} \\ \text{causes per action} \\ \text{general} \end{array}\right)$

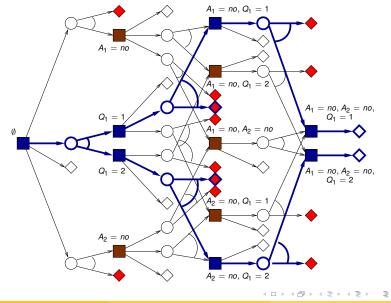
NP-complete problem - EXACT COVER BY 3-SETS is reducible to it:

•
$$T(\text{ ECR} \leq K)$$

NPO-complete problem - reducible to TRAVELING SALESMAN PROBLEM:

• T(min ECR)

Search for an optimal strategy - 1



J. Vomlel (ÚTIA AV ČR)

Troubleshooting

11th July, 2007 18 / 26

DQC

• $\mathbf{s}^*(\mathbf{e}_n)$... the subtree of optimal strategy \mathbf{s}^* rooted at node n

3

s^{*}(e_n) ... the subtree of optimal strategy s^{*} rooted at node n
Observe

$$\mathbf{s}^*(A_1 = no, A_2 = no, Q_1 = yes) \equiv \mathbf{s}^*(A_2 = no, Q_1 = yes, A_1 = no) \equiv \dots$$
 any permutation of \mathbf{e}_n

s^{*}(e_n) ... the subtree of optimal strategy s^{*} rooted at node n
Observe

$$\mathbf{s}^*(A_1 = no, A_2 = no, Q_1 = yes) \equiv$$

 $\mathbf{s}^*(A_2 = no, Q_1 = yes, A_1 = no) \equiv$
... any permutation of \mathbf{e}_n

 If we store s^{*}(e_n) for explored subtrees the we get a reduction in search complexity:

$$\mathcal{O}((n+m)!) \longrightarrow \mathcal{O}(2^{n+m})$$

The goal:

 $\widehat{ECR}(\mathbf{e}_n)$... an estimate of Expected Cost of Repair of strategy $\mathbf{s}^*(\mathbf{e}_n)$ such that

$$\widehat{ECR}(\mathbf{e}_n) \leq ECR(\mathbf{e}_n),$$

so that it is an **optimistic** heuristic.

• For every
$$C_i \in C$$
:
 $\mathbf{s}_{\mathbf{e}_n}^{C_i}$ denotes optimal strategy for given $\mathbf{e}_n \cup C_i = yes$.

The goal:

 $\widehat{ECR}(\mathbf{e}_n)$... an estimate of Expected Cost of Repair of strategy $\mathbf{s}^*(\mathbf{e}_n)$ such that

$$\widehat{ECR}(\mathbf{e}_n) \leq ECR(\mathbf{e}_n),$$

so that it is an **optimistic** heuristic.

• For every
$$C_i \in C$$
:
 $\mathbf{s}_{\mathbf{e}_n}^{C_i}$ denotes optimal strategy for given $\mathbf{e}_n \cup C_i = yes$.

Define

$$\widehat{ECR}(\mathbf{e}_n) = \sum_{C_i \in \mathcal{C}} p(C_i = yes \mid \mathbf{e}_n) \cdot ECR(\mathbf{s}_{\mathbf{e}_n}^{C_i} \mid \mathbf{e}_n \cup C_i = yes)$$

J. Vomlel (ÚTIA AV ČR)

$$\frac{p(A = yes \mid C_i = yes)}{c_A}$$

(There are usually only few such actions for every cause).

4 D b 4 🗐 b 4

$$\frac{p(A = yes \mid C_i = yes)}{c_A}$$

(There are usually only few such actions for every cause).

The cause is known therefore ∀A_j, A_k ∈ A : A_j ⊥⊥ A_k | C_i = yes and the sequence of actions ordered according to p/c ratio is optimal strategy s^{C_i}_{e_n} (S. Srinivas, 1995).

$$\frac{p(A = yes \mid C_i = yes)}{c_A}$$

(There are usually only few such actions for every cause).

- The cause is known therefore ∀A_j, A_k ∈ A : A_j ⊥⊥ A_k | C_i = yes and the sequence of actions ordered according to p/c ratio is optimal strategy s^{C_i}_{e_n} (S. Srinivas, 1995).
- $p(A = yes | C_i = yes)$ can be read from the original model.

$$\frac{p(A = yes \mid C_i = yes)}{c_A}$$

(There are usually only few such actions for every cause).

- The cause is known therefore ∀A_j, A_k ∈ A : A_j ⊥⊥ A_k | C_i = yes and the sequence of actions ordered according to p/c ratio is optimal strategy s^{C_i}_{e_n} (S. Srinivas, 1995).
- $p(A = yes | C_i = yes)$ can be read from the original model.

Observe: an update of the model is necessary only for $p(C_i | \mathbf{e}_n)$. No other expensive computations are required!

イロト 不得 トイヨト イヨト 二日

The algorithm performs a depth first search with pruning:

• Store the temporary best *ECR*′(**e**_n)

3

< ロト < 同ト < ヨト < ヨト

The algorithm performs a depth first search with pruning:

• Store the temporary best *ECR*′(**e**_n)

If

$$C_{S} + \sum_{outcomes} P(S = outcome|e) \cdot \widehat{ECR}(e \cup S = outcome) \ge ECR'(e_n)$$

then prune the branch starting with step S.

э

< ロト < 同ト < ヨト < ヨト

The algorithm performs a depth first search with pruning:

• Store the temporary best *ECR*′(**e**_n)

If

$$C_{S} + \sum_{outcomes} P(S = outcome|e) \cdot \widehat{ECR}(e \cup S = outcome) \ge ECR'(e_{n})$$

then prune the branch starting with step S.

Since the applied estimate \widehat{ECR} is optimistic the optimum is guaranteed.

(J. Pearl, Heuristics: intelligent search strategies for computer problem solving, 1984.)

• All not expanded neighbors of frontier nodes are evaluated using the heuristic function \widehat{ECR} .

(J. Pearl, Heuristics: intelligent search strategies for computer problem solving, 1984.)

- All not expanded neighbors of frontier nodes are evaluated using the heuristic function \widehat{ECR} .
- All partial strategies are evaluated by ECR while for the not expanded neighbors of frontier nodes the \widehat{ECR} value is used

∃ ► < ∃ ►</p>

4 D b 4 B b 4

(J. Pearl, Heuristics: intelligent search strategies for computer problem solving, 1984.)

- All not expanded neighbors of frontier nodes are evaluated using the heuristic function \widehat{ECR} .
- All partial strategies are evaluated by ECR while for the not expanded neighbors of frontier nodes the \widehat{ECR} value is used
- From all partial strategies the cheapest one is chosen.

∃ ► < ∃ ►</p>

(J. Pearl, Heuristics: intelligent search strategies for computer problem solving, 1984.)

- All not expanded neighbors of frontier nodes are evaluated using the heuristic function \widehat{ECR} .
- All partial strategies are evaluated by ECR while for the not expanded neighbors of frontier nodes the \widehat{ECR} value is used
- From all partial strategies the cheapest one is chosen.
- A frontier node of the cheapest strategy is expanded (different approaches).

(J. Pearl, Heuristics: intelligent search strategies for computer problem solving, 1984.)

- All not expanded neighbors of frontier nodes are evaluated using the heuristic function \widehat{ECR} .
- All partial strategies are evaluated by ECR while for the not expanded neighbors of frontier nodes the \widehat{ECR} value is used
- From all partial strategies the cheapest one is chosen.
- A frontier node of the cheapest strategy is expanded (different approaches).
- The first fully expanded strategy is optimum.

Dezide troubleshooter:

• Developed in the Laboratory for Normative Systems, within a joint project of Hewlett-Packard and Aalborg University.

∃ ► < ∃ ►</p>

4 D b 4 B b 4

Dezide troubleshooter:

- Developed in the Laboratory for Normative Systems, within a joint project of Hewlett-Packard and Aalborg University.
- Exploits several heuristics based on the p/c ratio.

Problem	$\mid \mathcal{A} \mid$	$ \mathcal{Q} $	OPTIM	Dezide	LBE	P/C
53	6	2	433.238	443.305	501.625	444.544
Tray	9	3	129.214	129.214	131.585	155.096
Overrun	11	3	106.204	112.456	117.377	116.801
Load	12	3	38.3777	38.4229	42.6062	43.0535
Pjam	13	4	124.323	124.365	299.415	300.855
Scatter	14	4	115.410	115.862	324.38	236.578
NotDupl	9	9	70.6740	73.5984	77.3768	121.098
Spots	16	5	161.385	162.246	863.362	286.749
MIO1	10	10	250.452	253.310	355.943	479.956

э

References:

 D. Heckerman, J. S. Breese, and K. Rommelse: Decision-theoretic troubleshooting. Communications of the ACM, Vol. 38(3), pp. 49—57, 1995.

3

References:

- D. Heckerman, J. S. Breese, and K. Rommelse: Decision-theoretic troubleshooting. Communications of the ACM, Vol. 38(3), pp. 49—57, 1995.
- F. V. Jensen, U. Kjaerulff, B. Kristiansen, H. Langseth, C. Skaanning, J. Vomlel, and M. Vomlelová: The SACSO methodology for troubleshooting complex systems. Special Issue on AI in Equipment Service, Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM), Vol. 15, pp. 321—333, 2001.

References:

- D. Heckerman, J. S. Breese, and K. Rommelse: Decision-theoretic troubleshooting. Communications of the ACM, Vol. 38(3), pp. 49—57, 1995.
- F. V. Jensen, U. Kjaerulff, B. Kristiansen, H. Langseth, C. Skaanning, J. Vomlel, and M. Vomlelová: The SACSO methodology for troubleshooting complex systems. Special Issue on AI in Equipment Service, Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM), Vol. 15, pp. 321–333, 2001.
- M. Vomlelová and J. Vomlel: Troubleshooting: NP-hardness and solution methods. Soft Computing Journal, Volume 7, Number 5, April 2003, pp. 357—368.

References:

- D. Heckerman, J. S. Breese, and K. Rommelse: Decision-theoretic troubleshooting. Communications of the ACM, Vol. 38(3), pp. 49—57, 1995.
- F. V. Jensen, U. Kjaerulff, B. Kristiansen, H. Langseth, C. Skaanning, J. Vomlel, and M. Vomlelová: The SACSO methodology for troubleshooting complex systems. Special Issue on AI in Equipment Service, Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM), Vol. 15, pp. 321—333, 2001.
- M. Vomlelová and J. Vomlel: Troubleshooting: NP-hardness and solution methods. Soft Computing Journal, Volume 7, Number 5, April 2003, pp. 357—368.

Software:

References:

- D. Heckerman, J. S. Breese, and K. Rommelse: Decision-theoretic troubleshooting. Communications of the ACM, Vol. 38(3), pp. 49—57, 1995.
- F. V. Jensen, U. Kjaerulff, B. Kristiansen, H. Langseth, C. Skaanning, J. Vomlel, and M. Vomlelová: The SACSO methodology for troubleshooting complex systems. Special Issue on AI in Equipment Service, Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM), Vol. 15, pp. 321—333, 2001.
- M. Vomlelová and J. Vomlel: Troubleshooting: NP-hardness and solution methods. Soft Computing Journal, Volume 7, Number 5, April 2003, pp. 357—368.

Software:

 Dezide - Bayesian automated diagnostics, http://www.dezide.com

J. Vomlel (ÚTIA AV ČR)