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Abstract

In this paper we propose a generalization of the noisy-or model to
multivalued parent variables. Albeit the proposed generalization is more
restrictive than previous proposals, it has several nice properties. In this
paper we suggest a method for learning this model and report results of
experiments on the Reuters text classification data.

1 Introduction

The conditional probability tables (CPTs) that are the basic building blocks of
Bayesian networks [9, 6] have, generally, an exponential size with respect to the
number of variables of the CPT. This has two unpleasant consequences. First,
during the elicitation of model parameters one needs to estimate an exponential
number of parameters. Second, in case of a high number of parent variables the
exact probabilistic inference may become intractable.

On the other hand real implementations of Bayesian networks (see e.g. [8])
often have a simple local structure of the CPTs. The noisy-or model [9] is
a popular model for describing relations between variables in one CPT of a
Bayesian network. Noisy-or is member of a family of models called models of
independence of causal influence [4] or canonical models [2]. The advantage of
these models is that the number of parameters required for their specification
is linear with respect to the number of variables in CPTs and that they allow
applications of efficient inference methods, see for example [3, 11].

In this paper we propose a generalization of the noisy-or model to multival-
ued parent variables. Our proposal differs from the noisy-max model [5] since
we keep the child variable binary no matter what the number of states of the
parent variables are. Also we have only one parameter for each parent no matter
the number of states of the parent variables. Our generalization is also different
than the generalization of the noisy-or model proposed by Srinivas [12] since in
his model the inhibitor probabilities cannot depend on the state of the parent
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variables if the state differs from the state of the child. We find this to be a
quite restrictive requirement for some applications.

We will show that our proposal is closely connected with the Poisson Re-
gression of Generalized Linear Models [7]. Due to this connection we can use
methods from Poisson Regression for learning parameters of the generalized
noisy-or model from data. In the paper we present results of numerical exper-
iments on the well-known Reuters text classification data. We use this dataset
to compare the performance of our multinomial generalization of noisy-or with
the standard noisy-or.

2 Multinomial noisy-or

In this section we propose a generalization of noisy-or for multivalued parent
variables. Let Y be a binary variable taking states y ∈ {0, 1} and Xi, i = 1, . . . , n
be multivalued discrete variables taking states xi ∈ {0, 1, . . . ,mi}, mi ∈ N+.
The local structure of both the standard (see, e.g., [2]) and the multinomial
generalization of the noisy-or can be made explicit as it is shown in Figure 1.

X ′
n. . .X ′

2X ′
1

Y

X1 X2 . . . Xn

Figure 1: Noisy-or model with the explicit deterministic (OR) part.

The conditional probability table P (Y |X1, . . . , Xn) is defined using CPTs
P (X ′

i|Xi) as

P (X ′
i = 0|Xi = xi) = (pi)

xi (1)

P (X ′
i = 1|Xi = xi) = 1− (pi)

xi , (2)

where pi ∈ [0, 1] is the parameter that defines the probability that the positive
value xi of variable Xi is inhibited. In the formula, we use parenthesis to empha-
size that xi is an exponent, not an upper index of pi. The CPT P (Y |X ′

1, . . . , X
′
n)

is deterministic and represents the logical OR function.

Remark. Note that the higher is the value xi of Xi the lower the probability of
X ′

i = 0, which is a desirable property in many applications.
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Figure 2: The dependence of P (X ′ = 0|X = x) on p and x.

The conditional probability table P (Y |X1, . . . , Xn) is then defined as

P (Y = 0|X1 = x1, . . . , Xn = xn) =

n∏
i=1

P (X ′
i = 0|Xi = xi)

=

n∏
i=1

(pi)
xi (3)

P (Y = 1|X1 = x1, . . . , Xn = xn) = 1−
n∏

i=1

(pi)
xi . (4)

Remark. Note that if mi = 1, i.e. the values xi of Xi are either 0 or 1, then we
get the classical noisy-or model.

In Figure 2 dependence of the inhibitory probability P (X ′ = 0|X = x) on
the value x of a variable X is depicted for different values of the parameter p.

It is important to note that contrary to the definition of causal noisy-max [2,
Section 4.1.6] we have only one parameter pi for each parent Xi of Y no mat-
ter what is the number of states of Xi. This implies that our model is more
restricted. But, on the other hand, the suggested simple parametrization guar-
antees ordinality, which is in many application a desirable property (as it is also
discussed in [2]). Also, since we estimate or elicite (from domain experts) fewer
parameters, the estimates are more reliable.

3 Correspondence to Poisson Regression

Next we will show the correspondence of the multionomial noisy-or to the Pois-
son Regression of Generalized Linear Models [7].
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By taking the logarithm of both sides of equation (3) we get

logP (Y = 0|X1 = x1, . . . , Xn = xn) =

n∑
i=1

xi · log pi .

Define a new parameter ri = log pi. Note that ri ∈ (−∞, 0]. Then we get

logP (Y = 0|X1 = x1, . . . , Xn = xn) =

n∑
i=1

xi · ri .

which is the formula of the Poisson regression of the binary variable 1 − Y .
Please, note that the expected value E(1 − Y |x1, . . . , xn) = P (Y = 0|X1 =
x1, . . . , Xn = xn). Therefore

logE((1− Y )|x1, . . . , xn) =

n∑
i=1

xi · ri .

This correspondence allows us to apply standard maximum likelihood esti-
mation methods for Poisson regression models to learning multinomial noisy-or.
A method typically used to learn the generalized linear models is the iteratively
reweighted least squares method [7].

When using a real data that might be modified by a noise or might be gen-
erated from a different model it can happen that for some of the ri, i = 1, . . . , n
parameters we learn positive values. This has a quite natural interpretation in
the multinomial noisy-or model. It means that higher values of Xi imply higher
inhibitory probability. Therefore we decided to treat positive values of ri pa-
rameters by relabeling the values of Xi from xi = 0, 1, . . . ,mi to mi − xi in the
multinomial noisy-or model. In this way the generalized noisy-or is now capable
to treat not only positive (presence of Xi increases probability of Y = 1) but
also negative influences (presence of Xi decreases probability of Y = 1).

4 Experiments

In this section we describe experiments we performed with the well known
Reuters-21578 collection (Distribution 1.0) of text documents. The text docu-
ments from this dataset appeared on the Reuters newswire in 1987 and were
manually classified by personnel from Reuters Ltd. and Carnegie Group, Inc.
to several classes according to their topic. In the test we used the split of doc-
uments to training and testing sets according to Apté et al. [1]. We performed
experiments with preprocessed data for eight largest classes1.

In the experiments we compare the standard noisy-or classifier [13] and our
generalized multinomial noisy-or. Both models were learned using the itera-
tively reweighted least squares method [7] implemented in R – a language and
environment for statistical computing [10]. We performed experiments with two
versions of both classifiers:

(a) features Xi with both a positive (+) or a negative influence (-) on prob-
ability of Y = 1 were allowed and treated as it was described in previous
section,

1The preprocessed dataset is available at http://web.ist.utl.pt/acardoso/datasets/.
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(b) features Xi with a negative influence (-) on probability of Y = 1 were
omitted.

Table 1: Comparisons of the accuracy of the noisy-or and its multinomial gen-
eralization. The best achieved accuracy is printed boldface and framed.

# test binomial binomial multinomial multinomial
Class documents (+ and -) (only +) (+ and -) (only +)

earn 1083 95.61 95.02 94.29 94.66

acq 696 94.20 91.78 92.01 91.87

crude 121 97.58 97.58 96.12 96.12

money-fx 87 96.67 96.67 96.30 96.44

interest 81 96.67 96.67 97.03 97.03

trade 75 97.44 97.44 98.13 98.13

ship 36 98.77 98.77 99.13 99.13

grain 10 99.91 99.91 99.86 99.86
total 2189

The results of experiments are summarized in Table 1. The accuracy is
reported using the percentage scale, it is the relative proportion of correctly
classified documents either as belonging to the given class or not. From Ta-
ble 1 we can see that standard noisy-or performs better for larger models, while
multinomial noisy-or is better at smaller models. The model for the class grain
is very small, it has one feature only and also the difference between the models’
accuracy is very small – it is 0.046, which corresponds to one test case only. In
Table 2 we provide the number of selected features for models from Table 1.

We decided to include into the models all features that were not rejected
as irrelevant at the significance level 0.1. In the experiments, we observed that
the classification accuracy could be slightly improved if the significance was
increased to 0.3, this would also slightly improve the AIC criteria2 However,
since the gain was not large we decide to prefer simpler models. Also, it has
a very limited influence on the two tested models’ preference, which is of our
major interest in this paper. However, it might be topic for a future research to
apply exhaustive feature selection methods that would find optimal models for
the families of our interest.

5 An example

In this section we use the class ship to illustrate the benefits of treating the
features as multinomial. In the first example we present the standard noisy-or
model and in the second the multinomial noisy-or model. Both models were
learned by the iteratively reweighted least squares method [7] and contain only
significant features for the significance level 0.1. The accuracy of the noisy-
or model was 98.77%, while the multinomial noisy-or model achieved accuracy

2The AIC criteria takes into account both the log-likelihood and the number of parameters
of the learned model. The lower the AIC the better the model.
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Table 2: Comparisons of the number of selected features for the noisy-or and
its multinomial generalization.

# test binomial binomial multinomial multinomial
Class documents (+ and -) (only +) (+ and -) (only +)
earn 1083 17 14 13 12
acq 696 28 20 23 20
crude 121 4 4 3 3
money-fx 87 4 4 4 3
interest 81 3 3 2 2
trade 75 5 6 4 4
ship 36 2 2 3 3
grain 10 1 1 1 1
total 2189

99.13%. Even if more features are included in the standard noisy-or model the
accuracy remains lower than the accuracy of the multinomial noisy-or model.

Example 1 (The noisy-or model for the ship class). In Figure 3 the structure
of the noisy-or model for the ship class is presented (in the examples we do
not make the deterministic part explicit). The variables are all binary, taking

leaky causeship vessel

class.ship

Figure 3: Noisy-or model for the ship class.

values 0 or 1. The leaky cause has a fixed value 1. The conditional probability
P (class.ship = 0|chip = s, vessel = v) is defined as

P (class.ship = 0|ship = s, vessel = v) = (p1)s · (p2)v · p0 ,

where s ∈ {0, 1} is the state of feature ship and v ∈ {0, 1} is the state of feature
vessel. The values of parameters p1, p2 were estimated to be

p1 = exp(r1) = exp(−0.773407)
.
= 0.461438

p2 = exp(r2) = exp(−1.980023)
.
= 0.138066

and the leaky parameter p0 = exp(r0) was estimated to be

p0 = exp(r0) = exp(−0.005252)
.
= 0.994762 .

This model has accuracy 98.77%.
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ship vessel

class.ship

port leaky cause

Figure 4: Noisy-or model for the ship class.

Example 2 (The multinomial noisy-or model for the ship class). In Figure 4
the structure of the multinomial noisy-or model for the ship class is presented.
The variable ship takes values from the set {0, 1, . . . , 9}, variables vessel and
port take values from the set {0, 1, . . . , 5}. The leaky cause has fixed state 1.
The conditional probability P (Class.ship = 0|Ship = s, V essel = v, Port) is
defined as

P (Class.ship = 0|Ship = s, V essel = v) = (p1)s · (p2)v · (p3)p · p0 ,

where s ∈ {0, 1, . . . , 9} is the state of feature ship, v ∈ {0, 1, . . . , 5} is the state
of feature vessel, and p ∈ {0, 1, . . . , 5} is the state of feature port. The values
of parameters p1, p2, p3 were estimated to be

p1 = exp(r1) = exp(−0.467276)
.
= 0.626707

p2 = exp(r2) = exp(−1.361929)
.
= 0.256166

p3 = exp(r3) = exp(−0.500009)
.
= 0.606525

and the leaky parameter p0 = exp(r0) was estimated to be

p0 = exp(r0) = exp(−0.001273)
.
= 0.998728 .

This model has accuracy 99.13%, which is higher than the accuracy of noisy-or
from Example 1.

6 Conclusions

In this paper we proposed a generalization of the popular noisy-or model to mul-
tivalued explanatory variables. We showed the correspondence of this model to
the Poisson family of generalized linear models and applied iteratively reweighted
least squares method to learning of these models. In the experiments with the
Reuters text collection the standard noisy-or performed better for larger models,
while the multinomial noisy-or was better for smaller models.
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[1] Ch. Apté, F. Damerau, and S. M. Weiss. Automated learning of decision
rules for text categorization. ACM Transactions on Information Systems,
12(3):233–251, 1994.

[2] F. J. Dı́ez and M. J. Druzdzel. Canonical probabilistic models for knowledge
engineering. Technical Report CISIAD-06-01, UNED, Madrid, Spain, 2006.

[3] F. J. Dı́ez and S. F. Galán. An efficient factorization for the noisy MAX.
International Journal of Intelligent Systems, 18:165–177, 2003.

[4] D. Heckerman and J. Breese. A new look at causal independence. In
Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence,
Seattle, WA, pages 286–292. Morgan Kaufmann, 1994.

[5] Max Henrion. Practical issues in constructing a Bayes’ Belief Network. In
Proceedings of the Third Conference Annual Conference on Uncertainty in
Artificial Intelligence, pages 132–139. AUAI Press, 1987.

[6] F. V. Jensen and T. D. Nielsen. Bayesian Networks and Decision Graphs,
2nd ed. Springer, 2007.

[7] P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman and
Hall, London, 1989.

[8] R. A. Miller, F. E. Fasarie, and J. D. Myers. Quick medical reference
(QMR) for diagnostic assistance. Medical Computing, 3:34–48, 1986.

[9] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufman, San Mateo, CA, 1988.

[10] R Development Core Team. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, Austria,
2008. ISBN 3-900051-07-0.

[11] P. Savicky and J. Vomlel. Exploiting tensor rank-one decomposition in
probabilistic inference. Kybernetika, 43(5):747–764, 2007.

[12] Sampath Srinivas. A generalization of the noisy-or model. In Proceedings
of the Ninth Conference on Uncertainty in Artificial Intelligence, pages
208–215. Morgan Kaufmann, 1993.

[13] J. Vomlel. Noisy-or classifier. International Journal of Intelligent Systems,
21:381–398, 2006.


