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Abstract

ST Elevation Myocardial Infarction (STEMI) is the leading cause of
death in developed countries. The objective of our research is to design
and verify a predictive model of hospital mortality in STEMI based on
clinical data about patients that could serve as a benchmark for evaluation
of healthcare providers. In this paper we present results of an experimental
evaluation of different machine learning methods on a real data about 603
patients from University Hospital in Olomouc.

1 Introduction

In developed countries ST Elevation Myocardial Infarction (STEMI) is responsi-
ble for more than a half of deaths. Its treatment has a significant socio-economic

∗Our research was supported by the Czech Science Foundation through grant nr.
201/08/0539.
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impact. The main objective of our research is to design and verify a predictive
model of hospital mortality in STEMI based on clinical data about patients
available at the beginning of their hospitalization. This model can be used not
only as a decision support tool that supports medical decisions about patients’
treatments but also as a benchmark for evaluation of healthcare providers, which
is our main motivation for the research reported in this paper.

The motivation for this type of benchmarking is that mere mortality does
not reflect severity of the illness at the hospital admission. There are hospitals
that more often treat complicated cases and mere mortality would not be fair
to them. Therefore the mortality should be risk adjusted. For this purpose a
good model describing influence of risk factors on the mortality is needed.

In this paper we will present the results of our experimental evaluation of
different machine learning methods on a real data from University Hospital in
Olomouc.

2 Dataset of patients with STEMI

Our dataset contains data of 603 patients admitted to University Hospital in
Olomouc for STEMI. The average age was 65 years. There were 431 men (71%)
and 172 women (29%) in the dataset. Our goal is to classify patients into
two classes according to whether they survive 30 days or not. This criteria is
called 30-days mortality [8]. The value 0 will correspond to survival while the
value 1 to non-survival. Since the intended use of a constructed classifier is the
evaluation of healthcare quality we use only information about patients’ health
state at the time of their hospital admission. In data we have 23 attributes of
different types and value range. They were selected by cardiologists since they
may influence STEMI mortality. The attributes are listed in Table 1. In the
first group there are basic demographic characteristics and body measurements.
The attributes of the second group describe the location and the mortality risk
of STEMI. The third group consists of laboratory tests.

Some attribute values are missing for some patients. In total 3.2% of values
are missing. As it can be seen from Table 1 the attributes are of different
types by their nature. Some classification methods can handle certain types of
attributes only and thus require a transformation of attributes’ values.

2.1 Ordinal attributes

Ordinal attributes are attributes whose values have an ordering of values that
is natural for the quantification of their impact on the class. This is satisfied by
all attributes that can take only two values – even if they are nominal, e.g. by
Gender1. In our data it seems it can be assumed for most real-valued attributes,
but note that there might exist laboratory tests whose values deviating from a
normal range in both directions (i.e. both lower and higher values) may increase

1For this purpose we encode Gender using two numbers: 0 for male and 1 for female.
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Table 1: Attributes

Attribute Code type value range in data
Gender SEX nominal {male, female}
Age AGE real [23, 94]
Height HT real [145, 205]
Weight WT real [35, 150]
Body Mass Index BMI real [16.65, 48.98]
STEMI Location STEMI nominal {inferior, anterior,

lateral}
Killip classification at ad-
mission

KILLIP integer {1, 2, 3, 4}

Kalium K real [2.25, 7.07]
Urea UR real [1.6, 46.5]
Kreatinin KREA real [17, 525]
Uric acid KM real [109, 935]
Albumin ALB real [23, 53.5]
HDL Cholesterol HDLC real [0.38, 2.21]
Cholesterol CH real [1.8, 9.59]
Triacylglycerol TAG real [0.31, 8.13]
LDL Cholesterol LDLC real [0.63, 7.79]
Glucose GLU real [4.2, 25.7]
C-reactive protein CRP real [0.3, 359]
Cystatin C CYSC real [0.38, 5.22]
N-terminal prohormone of
brain natriuretic peptide

NTBNP real [22.2, 35000]

Troponin TRPT real [0, 25]
Glomerular filtration rate
(based on MDRD)

GFMD real [0.13, 7.31]

Glomerular filtration rate
(based on Cystatin C)

GFCD real [0.09, 7.17]

the probability of death2. However, there is no natural ordering of the values
of the nominal attribute STEMI since its values are locations. Fortunately, this
problem can be simply overcame by creating one binary attribute for each state
of STEMI indicating whether STEMI takes this state or not. We denote new
binary attributes as STEMI inferior, STEMI anterior, and STEMI lateral. We
will refer to data in this form as D.ORD.

2In order to allow modeling this type of influence we will transform such attributes into
two attributes. We will discuss this in the next subsection.
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2.2 Discrete attributes

Some classification methods require a finite number of values of each attribute
– i.e., discrete attributes. In order to get statistically reliable estimation the
number of values should be as low as possible (and sensible). The transfor-
mation of a real-valued attribute into an attribute with finitely many values is
called discretization. We performed discretization of all real-valued attributes.
We used different number of values depending on the nature of each attribute.
Generally, it is difficult to find the optimal number and the values of split points
in discretization. Fortunately, there exists the Czech National Code Book that
classifies numeric laboratory results, with respect to age and gender, into nine
groups 1, 2, . . . , 9. Group 5 corresponds to standard values in the standard pop-
ulation. The groups < 5 to decreased values and groups > 5 to increased values.
We discretized all laboratory tests X so that for each test we created two new
attributes:

• One attribute for a decreased value of the test – denoted X low – with
state 0 if the value is within the normal range. Values 1, 2, 3, 4 became
values of this attribute.

• Another attribute for the increased value of the test – denoted X high –
again with state 0 if the value is within the normal range. Values 6, 7, 8, 9
became values of this attribute.

The attributes Age, Height, and Weight were discretized into more than two
groups (10, 4, and 4, respectively). We will refer to data in this form as
D.DISCR.

2.3 Binary attributes

However, as we will see in Section 4 the performance of tested methods us-
ing discretization described in Section 2.2 was inferior to discretization to only
binary attributes, where all laboratory tests are encoded using two binary at-
tributes. The first attribute takes value 0 for the standard values of the test and
value 1 if the values are decreased. The second attribute takes value 0 for the
standard values of the test and value 1 if the values are increased. The attribute
Killip classification was transformed by replacing value 1 by 0 and by joining
the values 2, 3, 4 into one value 1. The attributes Age, Height, and Weight
were removed since they appeared not to be relevant for mortality. From the
demographic group of attributes only Gender and the Body Mass Index (BMI)
were kept with BMI being encoded using two binary attributes BMI high and
BMI low. We will refer to data in this form as D.BIN.

2.4 Attribute selection

When learning classifiers from datasets we used every dataset in two different
ways:
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• all attributes were included or

• only attributes selected by the attribute selection method CfsSubsetEval
from Weka [6] were included.

CfsSubsetsEval method [5] selects a subsets of attributes that are highly corre-
lated with the class while having low intercorrelation. We searched the space
of all subsets by a greedy best first search with backtracking. Data D after the
application of this attribute selection method will be suffixed as D.AS.

3 Tested classifiers

For tests we used a large subset of classifiers implemented in Weka [6]. Classifiers
that performed best in the preliminary tests qualified for the final tests. In the
final tests we compared following classifiers:

• Logistic regression (two versions):

LOG.REG – logistic regression model with a ridge estimator [10].

LOG.BOOST – LogitBoost with simple regression functions as base
learners used for fitting the logistic models [9].

• Decision tree C4.5 – pruned C4.5 decision tree [11].

• Naive Bayes classifier (two versions):

NB.SIMPL – Naive Bayes classifier which estimates Gaussian distri-
bution when learned from real-valued (numeric) attributes [3].

NB – Naive Bayes classifier which also uses estimator classes. Numeric
estimator precision values are chosen based on analysis of the training
data [7].

• NN – Artificial Neural Network Multilayer Perceptron. The nodes in this
network model sigmoid functions [2].

• Bayesian network classifier (two versions):

BN.K2 – Bayesian Network classifier learned by K2 algorithm [1]
(with unrestricted number of parents).

BN.TAN – Tree Augmented Naive Bayes classifier [4].

4 Results of experiments

We compared the classifiers using Weka [6]. We used the 10-fold cross-validation
methods. The results are summarized in Table 2 using the following two mea-
sures of prediction quality:
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• Accuracy (ACC), which is the number of true positive and true negative
classification divided by total number of classifications. It is reported
using percentage scale (i.e. multiplied by 100).

• Area under the ROC curve (AOC). The ROC curve depicts the dependence
of True Positive Rate (vertical axis) on False Positive Rate (horizontal
axis) both as functions of the threshold.

In Table 2 we can observe several interesting things:
First, if we compare results of a single classifier on different versions of data,

we can see that the best results are mostly achieved with D.BIN.AS, i.e. with
discretized data, where each attribute is binary. This observation confirms the
general recommendation that if the number of data records is not large then
the discretization should not be fine-grained. We were able to improve the
classifiers’ performance due to a good discretization of original ordinal data
based on expert knowledge of the domains of attributes.

Secondly, attribute selection methods also helped to improved performance.
Originally, we did’t have large number of attributes since we started with only
23 attributes. But the performance of most classifiers improved if only few
of the most relevant attributes were included. This also confirms the general
recommendation that in order to avoid overfitting of training data the models
should be as simple as possible.

Finally, when comparing different classifiers we can see that there is not big
difference between their accuracy. Actually, the high accuracy could be achieved
by a primitive classifier that would assign all instance to class 0, i.e. all patients
would survive 30 days. Its accuracy would be 94.03%, which is the relative
number of patients that survive STEMI in our data. However, its AUC would be
very low, only 0.465. Therefore we prefer classifiers that maximize both criteria
at the same time. From this point of view the classifiers C4.5 and NN seem
inferior to LOG, NB, and BN families. There are not huge differences between
later three families, but if we should choose two best performing classifiers it
would be LOG.BOOST and BN.TAN that have the best AUC and ACC from
all classifiers, respectively.

Next we will present our choice of the best performing classifiers in more
detail. In Figure 1 we compare LOG.BOOST for two versions of data – original
ordinal and binarized data. Both formulas are for logit of probability of Mortal-
ity=1. Although there are some similarities between these two classifiers they
are not exactly the same. Note that splitting laboratory tests ALB and CYSC
into two attributes ALB low, ALB high and CYSC low and CYSC high helps
to make explicit the impact of low values of ALB and high values of CYSC on
the mortality. Also note that while in the first formula KILLIP takes values
1, 2, 3, 4 in the second one it is only 0 (corresponding to the original 1) and 1
corresponding to the original 2, 3, 4. Albeit the second model is simpler it has
substantially higher value of AUC. Actually, according to AUC it is the best
performing classifier.

The AUC values of C4.5 classifiers were quite low. However, it is interesting
to see that the C4.5 for binarized data despite its extreme simplicity has quite
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0.87 + STEMI_lateral * -0.41 + ALB * -0.08

+ HDLC * 0.21 + CYSC * 0.24 + KILLIP * 0.31

-1.64 + ALB_low * 0.76 + CYSC_high * 0.62 + KILLIP * 0.68

Figure 1: LOG.BOOST for D.ORD.AS (up) and D.BIN.AS (down).

CYSC <= 1.64: 0 (553.0)

CYSC > 1.64

| HDLC <= 0.56: 1 (5.0)

| HDLC > 0.56

| | KILLIP <= 1

| | | ALB <= 25.2: 1 (2.21)

| | | ALB > 25.2: 0 (29.79)

| | KILLIP > 1

| | | UR <= 15.8: 1 (6.0)

| | | UR > 15.8: 0 (7.0)

CYSC_high = 0: 0 (526.0)

CYSC_high = 1

| ALB_low = 0: 0 (63.29)

| ALB_low = 1: 1 (13.71)

Figure 2: C4.5 for D.ORD.AS (up) and for D.BIN.AS (down).

good accuracy ACC and performs actually better than more complex C4.5 build
from ordinal data. See Figure 2. In each leaf the first number after colon is
the classification. The number in parenthesis is the total number of instances
reaching that leaf (since our data has missing attribute values we got decimal
numbers).

Finally, we add a comment on two Bayesian network classifiers. In Figure 3
we compare Tree Augmented Naive Naive Bayes classifier (up) and Bayesian
Network classifier learned by K2. Despite the BN learned by K2 was allowed
to have more parents of each attributes than TAN3 it finally contains less edges
(only four edges between attributes) and its performance is comparable with
BN.TAN.

5 Conclusions

In this paper we compare different machine learning methods using a real medi-
cal data from a hospital. The best performance was achieved on discretized data

3In TAN each but one attribute has exactly two parents, the class and one other attribute.



Machine Learning Methods for Mortality Prediction in Patients with STEMI 9

MORTALITY

LDLC_lowBMI_low

K_low KILLIP

CYSC_high

STEMI_lateral ALB_high

ALB_low

STEMI_lateral ALB_high

LDLC_lowALB_low

KILLIP

CYSC_highBMI_low

K_low

MORTALITY

Figure 3: Tree Augmented Naive Bayes classifier (up) and Bayesian Network
classifier learned by K2 (down). Both were learned from D.BIN.AS.

where the discretization was based on the expert knowledge about the attributes
(mostly on standard scale of results of laboratory tests) and the attributes had
only two values. The best performing classifiers were based on logistic regres-
sion and on simple Bayesian networks. In our future research we would like
to extend the set of attributes with other clinical data and get datasets with a
larger number of patients.
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