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Abstract. We present two recent applications of Bayesian networks:

adaptive testing and troubleshooting man-made devices. We review briefly
the underlying theory and provide a general framework for building

strategies using Bayesian network models. We discuss applications of the

framework to adaptive testing and troubleshooting. The paper is based

on our experience with two projects: a student semester project during

which an adaptive test of students’ knowledge of operations with frac-

tions was designed and the SACSO project - a joint project of Hewlett-

Packard and Aalborg University focused on development of methods for

troubleshooting complex electro-mechanical systems.

1 Introduction

In this section we introduce Bayesian networks and describe two basic tasks
common for both applications discussed in this paper: (1) building a Bayesian
network model and (2) using the model to find a solution strategy.

1.1 Bayesian networks

Bayesian networks are probabilistic graphical models that are capable of mod-
elling domains comprising uncertainty. They were introduced to the field of ex-
pert systems by Pearl [17] and Spiegelhalter & Knill-Jones [21]. The first applica-
tions were an expert system for electromyography Munin [2] and the Pathfinder
system [7]. Since then Bayesian networks were successfully applied in several
areas. Strength of graphical models is not only that they enable efficient uncer-
tainty reasoning with hundreds of variables (e.g. using the method of Lauritzen
& Spiegelhalter [13]), but also they help humans to understand better the mod-
elled domain. This is mainly due to their comprehensible representation by use
of directed acyclic graphs representing dependencies between domain variables.
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Bayesian network consists of an directed acyclic graph (DAG) G = (V, E),
to each node i € V corresponds one random variable X; with a finite set X;
of mutually exclusive states and a conditional probability table (CPT) P(X; |
(X;)jepati)), Where pa(i) denotes the set of parents of node i in graph G. See
Figure 1 for an example of Bayesian network.
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Fig. 1. An example of a Bayesian network

Bayesian network encodes qualitative and quantitative knowledge. Quantita-
tive knowledge is represented by CPTs, while qualitative is encoded by use of a
DAG. The DAG implies certain conditional independence relations between vari-
ables (X;);cv. A concept called d-separation, introduced by Pearl in [18], can be
used to read the conditional independence statements from a DAG. X;, X; are
conditionally independent given a set of variables Y if P(X; | V) = P(X; | V, X;).
Two variables X; and X; are d-separated by Y if, for all trails ® between nodes
¢ and j there is an intermediate node k such that either

(1) edges do not meet head-to-head in k and X, € Y, or
(2) edges meet head-to-head in k and neither X nor any of its descendants
belongs to ).

It is required that all variables X;, X; d-separated by a set ) are conditionally
independent given ) in a probability distribution P represented by the Bayesian
network model. It is not difficult to show that the distribution satisfying the
above property and having its CPTs equal to P(X; | (Xj)jepai)),? € V is
unique and equals to the product of the CPTs, i.e.

P((Xi)iev) = [[ P(Xi | (X))jepaci)) -
eV
For a detailed introduction to Bayesian networks we refer to [9].

3 A trail in G is a sequence of nodes that forms a path in the undirected version of G,
i.e. when the directions of arrows are ignored.



1.2 Building models
Three basic approaches can be used to construct a Bayesian network model:

— A model designer discuss domain experts who provide their expert knowledge
of the modelled domain. Their knowledge is used to build the structure of
the model and for specification of the values of CPTs.

— A database of records is collected. Then, a machine learning method is used
to construct the model structure and to estimate the CPTs.

— Third approach is a combination of the previous two. For example, the model
structure is designed consulting an expert, but the parameters of CPTs are
learned from the collected data.

Even a brief review of different techniques that can be used to build the
models is out of the scope of this paper. We refer an interested reader to [5]. In
Section 2 we describe how a Bayesian network model used in an adaptive test
can be constructed.

1.3 Building strategies using the models

A strategy describes steps that the user should perform in order to achieve a
required goal. For example, a step can be: the user performs an action, the user
makes an observation, or the user answers a question. Since outcomes of steps
are uncertain each strategy must specify the next step the user should do for
all possible combinations of outcomes of previous steps. Thus a strategy can be
represented by a directed tree. It is convenient to define two types of nodes in
the tree - chance nodes and terminal nodes. Each chance node corresponds to a
single step of a strategy. Terminal nodes are leaves of the tree where the strategy
terminates. One session corresponds to a path in the tree, i.e. to a sequence of
steps, starting at the root of the tree and ending at a terminal node. In Figure 2
we present an example of an adaptive test consisting of two questions. Ovals
denote chance nodes. Diamonds denote terminal nodes. Each chance node is
labelled by the corresponding step. Every edge coming out from a chance node
is labelled by an outcome of the step corresponding to that node. The strategy
represented by the tree is: If the answer to the first question Xo is correct then
the second question is X3 otherwise the second question is X;.

Let S denote the set of all strategies admissible for a given problem and £L(s)
denote the set of all terminal nodes of a strategy s € S. An evaluation function
f :UsesL(s) — R is defined. The goal is to minimise this function at the end of
a session. The outcomes of the steps proposed in a strategy s are unknown, only
the probabilities P(ey) of terminating in a node ¢ € £ can be computed from
the domain model represented by a Bayesian network. Thus, using the expected
value of the evaluation function defined for each strategy s € S as

E(s)= Y Pler) fler) (1)

LeL(s)



Fig. 2. Example of a strategy

we can formalise the task as a search for a strategy s* € S minimising the value
of E¢(s) from all s € S. Due to the combinatorial explosion it is often impossible
to find an optimal strategy. Instead different heuristic methods are used to find
a reasonably good suboptimal strategies.

In Section 2 we apply this framework to adaptive testing and in Section 3 to
troubleshooting. The two applications have different Bayesian network models,
different sets of admissible strategies and different evaluation functions f. We
will see that also the methods used to find suboptimal strategies are different.

2 Adaptive testing

Tests that are automatically tailored to the level of the individual examines are
called adaptive tests. After each response on a question the system selects next
question based on the answers of the previous questions. A simple example of
adaptive test was presented in Figure 2. Since this approach requires computers
for the test administration it is often referred to as computerised adaptive testing
(CAT). For more information on CAT see [24] and [14].

2.1 Bayesian network model for adaptive testing

Almond & Mislevy [1] proposed to use graphical models for CAT. Their model
consists of one student model and several evidence models, one for each task or
question. Typically, a test designer specifies the tested skills Y = {¥7,..., Y%}
and a bank of questions X = {X3,...,X,,}. The student model describes re-
lations between student’s skills, abilities, misconceptions. The knowledge about
a student is expressed by use of a joint probability distribution P(Y7y,...,Y%)
defined on the variables of the student model.

Next we will describe learning process of a Bayesian network model used for
testing basic operations with fractions introduced in [23].

First, a group of students from Aalborg University prepared paper tests that
were given to students of Brgnderslev High School. Four elementary skills (addi-
tion, subtraction, multiplication, and comparison), four operational skills (can-



celling, conversions between improper fractions and mixed numbers and vice-
versa, common denominator), and abilities to apply operational skills to com-
plex tasks were tested. The university students summarised the results as a list of
data records. Several misconceptions were discovered and included as variables
into the model.

Second, a model structure was learned using the PC-algorithm of Spirtes et
al. [22], implemented in Hugin [8]. It provided a first insight into the relations
between skills and misconceptions. Then a “domain expert” explained some
relations with the help of hidden variables and introduced certain constraints on
edges. Applying different constraints on the resulting model the final model was
learned, again using the PC-algorithm. The final model was calibrated using the
EM-algorithm [12].

In Figure 3 the final version of the student model is presented. Nodes in
the first level (from bottom) correspond to the observed misconceptions, grey
nodes in the second level to elementary skills, nodes with no fill in the second
level correspond to operational skills, and shaded nodes in the third level to
application skills. The top node corresponds to a hidden variable. See [23] where
a more detailed description can be found.

Fig. 3. Student model describing relations between skills and misconceptions.

For each question or task X; € X one evidence model is created by a domain
expert. It describes the dependence of X; on relevant skills from the student
model. For every question the expert specifies which skills are related to the
question. An example of a task is % - ﬁ = % — % = % = %. In order to
be able to solve the task the student should have skills SB (subtraction) C'L
(cancelling), ACL (application of cancelling), C'D (common denominator), AC D
(application of common denominator), and should not have M SB (a misconcep-
tion in subtraction). Thus, the relation between a variable T; and related skills
and misconceptions is described by a Boolean function. However, a student can
make a mistake even if she has all abilities necessary to solve a given task and a

correct answer does not necessarily mean that the student has all abilities. This



uncertainty was modelled by a conditional probability distributions P(X; | T})
estimated from the collected data.

2.2 Building adaptive tests

Typically an adaptive test terminates after a given number of questions is an-
swered or if sufficient information about the tested student is achieved. This
defines the set of all possible test strategies S.

Every examiner tends to maximise information about the student at the end
of a test. A way to formalise this preference is to aim at a probability distribution
P(Y3,...,Y:) minimising the Shannon entropy at the end of the test [3]. Entropy
H(P) of P(Y7,...,Y}) is defined as

HP)=- > PVi=y,....Yx =) logPYV1=y1,.... Y =) -

Yi,--Yk

In every terminal node ¢ of a test strategy s we will compute entropy of the
conditional probability distribution given the evidence collected as far, i.e.

H(e)) = H(P(Yi,...,Ys | &) .

Using substitution f(e;) = H(e,) formula 1 can be written as

Ep(s)= > Ples)- H(es) . (2)

LeL(s)

The goal is to find a test strategy s € S minimising the expected entropy Eg (s).

In practice greedy heuristics are used to construct a myopically optimal test.
A myopically optimal test is a test that consists of questions such that each
question minimises the expected value of entropy after the question is answered.

2.3 Results and comparisons with other approaches

Classical approach used in educational and psychological testing since 1960’s is
item response theory (IRT) [15,19]. Within this method the student is modelled
by a single variable @. These models are suitable when the task is to grade
students, but their application is problematic if more information about the
tested student is required. In multidimensional IRT several variables are used
to represent a student. The presented application of Bayesian network can be
regarded as a generalisation of the multidimensional IRT. It brings two basic
advantages:

— It can better reflect the student reasoning process and provides better insight
into the modelled problem.

— Since the student model encode dependence between skills the adaptive tests
are substantially shorter while the test precision is kept.



Results of experiments with adaptive test of basic operations with fractions
were presented in [23]. Bayesian network used in adaptive tests provided good
predictions of skills. In average more than 90% of skills were correctly predicted
after seven questions were answered. In paper and pencil tests twenty questions
were typically needed to get the same prediction quality.

See also [16] and [4] for results of experiments with Bayesian networks applied
to adaptive diagnosis and tutoring.

3 Troubleshooting

Troubleshooting a man-made device is often quite a complex task. Therefore a
system that uses evidence derived by performing repair actions or observations
can substantially shorten the troubleshooting process [6].

3.1 Bayesian network model for troubleshooting

Within the approach presented in [10] a troubleshooting problem is modelled
with a Bayesian network encoding relations among three types of variables: faults
of the device F' € F, actions A € A - troubleshooting steps that may fix the
problem, and questions Q € Q - troubleshooting steps that help to identify the
fault. Every action and question has a cost ¢ assigned. We will use the simplified
Light print example borrowed from [20] to illustrate the troubleshooting process.

Ezample 1 (Light print ezample). Suppose a printer prints a page that is too
light. There can be dozens of possible printer faults in the case of a light print
problem. Let us consider a simplified model with four possible faults: Fy Distri-
bution problem, Fy Defective toner, F3 Corrupted dataflow, and Fy Wrong driver
setting. Actions that may fix these faults can be A; Remove, shake and reseat
toner with cost ¢; =5, Ay Try another toner with co = 15, and Az Cycle power
with C3 = 1.

Generally, for each action an expert provides a table P(A4; = yes | F;). For
example, action Ay Try another toner fixes Distribution problem and Defective
toner with the probability 0.9, i.e. P(Ay = yes | F;) = 0.9,7 = 1,2, but it
does not fix Wrong driver setting at all, i.e. P(Ay = yes | Fy) = 0. During
the troubleshooting session it is often advisable to ask the user to answer some
questions. The answers may help fix the problem faster by identifying the device
fault. For instance if the answer to question @1 Is the configuration page printed
light? is negative then the faults: Distribution problem and Defective toner are
eliminated and the remaining faults are Corrupt data flow and Wrong driver
setting. Generally, we have a table P(Q; = yes | F}) for every question Q;.

For many man-made devices it is reasonable to assume that actions and questions
are conditionally independent given a fault. and that there is only one fault
causing a device malfunction at a time. The second assumption is often referred
to as the single fault assumption. The Bayesian network in Fig. 4 reflects both
assumptions.
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Fig. 4. Bayesian network model for the simplified light print example

3.2 Troubleshooting strategy

There are two ways for a troubleshooting strategy to terminate, either by fixing
the problem or by giving up. Thereupon two types of terminal nodes are defined:

(1) Success terminal nodes correspond to fixing the problem.
(2) Failure terminal nodes correspond to giving up the troubleshooting.

Figure 5 provides an example of a troubleshooting strategy. The success terminal
nodes are shaded while failure terminal nodes are not.

Fig. 5. Troubleshooting strategy

A function C'R(ey) that corresponds to the cost of repair of the device is
defined. It has two components. The first component t(e;) is the total cost of



actions and questions performed while getting to state e, corresponding to node
¢ in the tree of a strategy s. The second component is the penalty function c(ey)
that applies for every terminal node ¢. The penalty is defined to be zero if the
problem is fixed, i.e. for all success terminal nodes. In the failure terminal nodes
the penalty is a positive number that may be interpreted as a cost of calling
service. Thus CR(ey) = t(es) + c(eg). Substituting f(e;) = CR(ey) to formula 1
we get a criteria called expected cost of repair.

Ecr(s)= Y _ Ples)-(tler)+cler)) - (3)

LeL(s)

Troubleshooting task is to find a strategy s € S minimising Fcog(s).

A solution of the troubleshooting task can be easily found in the case of inde-
pendent actions, that is in the situations when (1) every action fixes just one fault
and (2) all actions are pairwise independent. In the case of independent actions
with single fault assumption it suffices to order actions decreasingly according
to the ratio P(A = yes)/ca, see [11]. In [20] it was shown that if some actions
fix more than one fault the troubleshooting task becomes N P-hard. Therefore
methods that provide reasonably good troubleshooting strategies in real-time
are necessary.

3.3 Results

The troubleshooter developed within the SACSO project exploits Bayesian net-
work models. Since the models have the structure of the Naive Bayes model,
many probability propagations can be performed whenever a new troubleshoot-
ing step has to be chosen. The approach exploits heuristics based on the P(A =
yes)/ca ratio and extends the myopic approach proposed in [6] for troubleshoot-
ing that includes observations. In [10] the strategies obtained using the SACSO
approach were compared with the optimal solutions. The FEggr values of the
strategies provided by the SACSO troubleshooter were very close to the optimal
values. The troubleshooter is available on the market under the name Dezision-
Works. It is sold by a Danish company Dezide, see http://www.dezide.com/.
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