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Moments and Moment Invariants

in Image Analysis

Non-ideal imaging conditions Æ
degradation of the image

g = D(f)

D - unknown degradation operator

Problem formulation



– Brute force 

– Normalized  position Æ inverse problem

– Description of the objects by invariants

Basic approaches

What are invariants?

Invariants are functionals defined on 
the image space such that

• I(f) = I(D(f)) for all admissible D

• I(f1), I(f2) “different enough“ for 
different  f1, f2



What are moments?

Moments are “projections” of the image 
function into a polynomial basis

Common types of moments

Geometric moments

Central moments



Common types of moments

Geometric moments



What are moment invariants?

Functions of moments, invariant to 
certain class of image degradations

• Rotation, translation, scaling

• Convolution/blurring

• Affine transform

• Combined invariants

Invariants to translation and scaling

Normalized central moments



Invariants to rotation
M.K. Hu, 1962 - 7 invariants of 3rd order



Hard to find, easy to prove:

Drawbacks of the Hu’s invariants

Dependence

Incompleteness

Insufficient number Æ low discriminability



Normalized position to rotation

Normalized position to rotation





Reference ellipse

An ellipse having the same 2nd order 
moments as the original object

a, b – major/minor semiaxis

General construction of rotation invariants

Complex moment in polar coordinates

Complex moment



Basic relations between moments 



Rotation property of complex moments

The magnitude is preserved, the phase is shifted by 
(p-q)α.

Invariants are constructed by phase cancellation

Rotation invariants from complex moments

Examples:

How to select a complete and independent 
subset (basis) of the rotation invariants?



Construction of the basis

This is the basis of invariants up to the order r

Inverse problem

Is it possible to resolve this system ?



Inverse problem - solution

The basis of the 3rd order 

This is basis B3 (contains six real elements)



Comparing B3 to the Hu’s set

Normalized position to rotation
by means of complex moments



Invariants to contrast changes

Invariants to contrast and scaling



Invariants to convolution

I(f) = I(f*h)  for any admissible h

g( x, y )  =  ( f * h )( x, y ) + n( x, y )

Two approaches

Traditional approach: Image restoration (blind 
deconvolution)

Proposed approach:  Invariants to convolution



f(x,y) … image function

h(x,y) … shift invariant PSF of a linear imaging system

g(x,y) … blurred image g(x,y) = (f h) (x,y)

The moments under convolution

*

Our assumption: PSF is centrosymmetric

Assumptions  on  the  PSF



Invariants to convolution

• PSF is centrosymmetric

where (p + q) is odd

The more we know about the PSF, the more 
invariants and the higher discriminability we get.

If PSF is circularly symmetric, then we have 
invariants of the form

where p > q.

Other assumptions  on  the  PSF



Discrimination power

• The null-space of the blur invariants

• Intuitive meaning of the invariants

• The number of the invariants

; 

Combined moment invariants

Invariants to convolution and rotation

I(f) = I(R(f*h)) for any admissible h and rotation R



Robustness of the invariants

Convolution invariants in FT domain



Convolution invariants in FT domain

Relationship  between FT and moment invariants



Moment-based focus measure

• Odd-order moments   Æ blur invariants

• Even-order moments Æ blur/focus measure

If M(g1) > M(g2)   Æ g2 is less blurred

(more focused)

Desirable properties of a focus measure

• Agreement with a visual assessment 

• Unimodality

• Robustness to noise

• Robustness to small image changes

• Robustness to restoration artefacts



Moments are generally worse than wavelets 
and other differential focus measures 
because they are too sensitive to local 
changes but they are very robust to noise.

Rotation invariants for recognition of 
symmetric objects



Difficulties with symmetric objects

Many moments and many invariants are zero

Difficulties with symmetric objects

The greater N, the less nontrivial invariants

Particularly



Difficulties with symmetric objects

It is very important to use only non-trivial 
invariants

The choice of appropriate invariants (basis of 
invariants) depends on N

The basis for N-fold symmetric objects

Generalization of the previous theorem



Recognition of symmetric objects – Experiment 1

5 objects with N = 3



Recognition of symmetric objects – Experiment 1

Bad choice: p0 = 2, q0 = 1
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Recognition of symmetric objects – Experiment 1

Optimal choice: p0 = 3, q0 = 0
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Recognition of symmetric objects – Experiment 2

2 objects with N = 1

2 objects with N = 2

2 objects with N = 3

1 object   with N = 4
2 objects with N = ∞
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Recognition of symmetric objects – Experiment 2

Bad choice: p0 = 2, q0 = 1



Recognition of symmetric objects – Experiment 2

Better choice: p0 = 4, q0 = 0
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Recognition of symmetric objects – Experiment 2

Theoretically optimal choice: p0 = 12, q0 = 0

Logarithmic scale
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Recognition of symmetric objects – Experiment 2

The best choice: mixed orders

Invariants to affine transform

What is affine transform?
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Why is affine transform important?

• Affine transform is a good approximation of projective 
transform

• Projective transform describes a perspective 
projection of 3-D objects onto 2-D plane by a central 
camera

Affine moment invariants

• Theory of algebraic invariants (Hilbert, Schur, 
Gurewich)

• Tensor algebra, Group theory (Lenz, Meer)

• Algebraic invariants revised (Reiss, Flusser & Suk, 
Mamistvalov)

• Image normalization (Rothe et al.)

• Graph theory (Flusser & Suk)

• Hybrid approaches

All methods lead to the same invariants

Many ways how to derive them



General construction of Affine Moment Invariants



General construction of Affine Moment Invariants

Affine Moment Invariants

Simple  examples of the AMI’s



Graph representation of the AMI’s

Graph representation of the AMI’s



Graph representation of the AMI’s

Graph representation of the AMI’s



Graph representation of the AMI’s

Affine invariants via normalization

Many possibilities how to define normalization 
constraints

Several possible decompositions of affine 
transform



Decomposition of the affine transform

• Horizontal and vertical 
translation

• Scaling

• First rotation

• Stretching

• Second rotation

• Mirror reflection

Normalization to partial transforms

• Horizontal and vertical translation    --
m01  = m10 = 0

• Scaling  -- c00 = 1

• First rotation  -- c20 real and positive

• Stretching  -- c20 =0   (μ20=μ02)

• Second rotation  -- c21 real and positive



Properties of the AMI’s

Application of the AMI’s

• Recognition of distorted shapes

• Image registration



Clusters in the space of the AMI’s

Aspect-ratio invariants



Projective moment invariants

Projective transform describes a perspective projection 
of 3-D objects onto 2-D plane by a central camera

Projective moment invariants

• Do not exist using any finite set of moments

• Do not exist using infinite set of (all) moments

• Exist formally as infinite series of moments of both 
positive and negative indexes



Combined blur-affine invariants

• Let I(μ00,…, μPQ) be an affine moment 
invariant. Then I(C(0,0),…,C(P,Q)),
where C(p,q) are blur invariants, is a 
combined blur-affine invariant.

Examples

14
00

2
23

2
3214

3
32

3
234114233241

05
2
3241

2
14

2
410523

2
4114

2
2350

2
1432500523325005144150

2
05

2
502

/)32484876

1291612

16410(

μμμ−μμ+μμ+μμμμ−

μμμ−μμ+μμμ+μμμ−

μμμ+μμμμ+μμμμ−μμ=I

0011210230201232

001130202141

00203050

/)63()2,3(

/)23(2)1,4(

/10)0,5(

μμμ+μμ+μμ−μ=
μμμ+μμ−μ=

μμμ−μ=

C

C

C

10
00

2
12

2
2103

3
21

3
123003122130

2
03

2
301 /)3446( μμμ−μμ+μμ+μμμμ−μμ=I

21

30

)1,2(

)0,3(

μ=
μ=

C

C



Orthogonal moments

• Legendre

• Zernike

• Fourier-Mellin

• Czebyshev

• Krawtchuk, Hahn

Two reasons for using OG moments

• Avoiding numerical problems with high 
values, recurrent calculations

• Image reconstruction



Image reconstruction from geometric moments

Standard powers 



OG Czebyshev polynomials

Legendre polynomials

Definition

Orthogonality



Legendre polynomials 

Legendre moments 



Legendre moments 

Zernike polynomials

Definition

Orthogonality



Zernike moments 

Zernike moments 



Rotation property of Zernike moments

The magnitude is preserved, the phase is shifted by 
qα.

Invariants are constructed by phase cancellation

Rotation invariants from Zernike moments



Moments in a discrete domain
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Fast moment calculation
for binary objects

• Decomposition methods

• Boundary-based methods



Decomposition methods

• Rows (Delta method)

• Row segments (Philips)

• Blocks of rows 

• Bin-tree, quad-tree

• Morphologic decomposition

Boundary-based methods

Green’s theorem



Calculation of the boundary integral

• Summation pixel-by-pixel

• Polygonal approximation

• Other approximations (splines, etc.)

Summary: Are moments good 
features for object recognition?

• YES, because of

- well-developed mathematics behind, invariance    
to many transformations

- complete and independent set

- good discrimination power

- robust to noise

• NO, because

- moments are global

- small local disturbance affects all moments

- careful object segmentation is required



More about this tutorial on

http://staff.utia.cas.cz/zitova/tutorial/



Abstract

This tutorial aims to present a survey of recent as well as traditional object recogni-

tion/classification methods based on image moments. We review various types of moments

(geometric moments, complex moments, Legendre moments, Zernike and Pseudo-Zernike

moments, and Fourier-Mellin moments) and moment-based invariants with respect to var-

ious image degradations and distortions (rotation, scaling, affine transform, image blur-

ring, etc.) which can be used as shape features for classification. We explain a general

theory how to construct these invariants and show also a few of them in explicit forms. We

review efficient numerical algorithms that can be used for moment computation. Finally,

we demonstrate practical examples of using moment invariants in real applications from

the area of vision, remote sensing, and medical imaging.

The target audience of the tutorial are

• researchers from all application areas who need to recognize 2-D objects extracted

from binary/graylevel/color images and who look for invariant and robust object

features,

• specialists in moment-based pattern recognition interested in new development on

this field.

Keywords: Object recognition, degraded images, moments, moment invariants, geomet-

ric invariants, invariants to convolution, moment computation.
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1 Introduction

Analysis and interpretation of an image which was acquired by a real (i.e. non-ideal)

imaging system is the key problem in many application areas such as remote sensing,

astronomy and medicine, among others. Since real imaging systems as well as imaging

conditions are usually imperfect, the observed image represents only a degraded version

of the original scene. Various kinds of degradations (geometric as well as radiometric)

are introduced into the image during the acquisition by such factors as imaging geometry,

lens aberration, wrong focus, motion of the scene, systematic and random sensor errors,

etc. (see Figs. 1, 2, and 3 for illustrative examples).

Figure 1: Image blurring caused by wrong focus of the camera.

Figure 2: Image blurring caused by random vibrations of the object.

In the general case, the relation between the ideal image f(x, y) and the observed

image g(x, y) is described as g = D(f), where D is a degradation operator. In the case of

a linear shift-invariant imaging system, D has a form of

g(τ(x, y)) = (f ∗ h)(x, y) + n(x, y), (1)

where h(x, y) is the point-spread function (PSF) of the system, n(x, y) is an additive

random noise, τ is a transform of spatial coordinates due to projective imaging geometry

2



Figure 3: Image distortion caused by a non-standard lens along with motion blur.

and ∗ denotes a 2-D convolution. Knowing the image g(x, y), our objective is to analyze

the unknown scene f(x, y).

By the term ”scene analysis” we usually understand a complex process consisting of

three basic stages. First, the image is segmented in order to extract objects of potential

interest. Secondly, the extracted objects are ”recognized”, which means they are classified

as elements of one class from the set of pre-defined object classes. Finally, spatial relations

among the objects can be analyzed. In this tutorial, we focus on object recognition.

Recognition of objects and patterns that are deformed in various ways has been a goal

of much recent research. There are basically three major approaches to this problem –

brute force, image normalization, or invariant features. In brute force approach we search

the space of all possible image degradations. That means the training set of each class

should consist not only all class representatives but also all their rotated, scaled, blurred,

and deformed versions. Clearly, this approach would lead to extreme time complexity

and is practically inapplicable. In normalization approach, the objects are transformed

into some standard position before they are classified. This could be very efficient in the

classification stage but the object normalization usually requires to solve complex inverse

problems which are often ill posed. The approach using invariant features appears to be

the most promising. Its basic idea is to describe the objects by a set of features which

are not sensitive to particular deformations and which provide enough discrimination

power to distinguish among objects from different classes. From mathematical point of

view, we have to find functional I defined on the space of all admissible image functions

(let’s imagine L1(R
2) space for instance) which are invariant with respect to degradation

operator D, i.e. which satisfies the condition I(f) = I(D(f)) for any image function f .

In this tutorial we present non-linear invariant functionals, which are composed of

various projections of f into the space of polynomials. Such projections are known as

image moments and the respective functionals are called moment invariants. We present

several groups of moment invariants with respect to the most common degradations –
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image rotation and scaling, image affine transform, and image blurring (convolution with

an unknown filter). We explain a general theory how to construct these functionals and

show also a few of them in explicit forms. Then we discuss numerical algorithms for

efficient moment calculation. In the last section, practical examples of using moment

invariants in real applications from the area of computer vision, remote sensing, and

medical imaging are demonstrated.

2 History

The history of moment invariants begun many years before the appearance of first com-

puters, in the 19th century under the framework of the theory of algebraic invariants.

The theory of algebraic invariants probably originate from famous German mathemati-

cian David Hilbert [1]1 and was thoroughly studied also in [2], [3].

Moment invariants were firstly introduced to the pattern recognition community in

1962 by Hu [4], who employed the results of the theory of algebraic invariants and derived

his seven famous invariants to rotation of 2-D objects. Since that time, numerous works

have been devoted to various improvements and generalizations of Hu’s invariants and

also to its use in many application areas.

Dudani [5] and Belkasim [6] described their application to aircraft silhouette recog-

nition, Wong and Hall [7], Goshtasby [8] and Flusser and Suk [9] employed moment

invariants in template matching and registration of satellite images, Mukundan [10], [11]

applied them to estimate the position and the attitude of the object in 3-D space, Sluzek

[12] proposed to use local moment invariants in industrial quality inspection and many

authors used moment invariants for character recognition [6], [13], [14], [15], [16]. Maitra

[17] and Hupkens [18] made them invariant also to contrast changes, Wang [19] pro-

posed illumination invariants particularly suitable for texture classification. Li [20] and

Wong [21] presented the systems of invariants up to the orders nine and five, respectively.

Unfortunately, no one of them paid attention to mutual dependence/independence of

the invariants. The invariant sets presented in their papers are algebraically dependent.

Most recently, Flusser [22], [23] has proposed a method how to derive independent sets of

invariants of any orders.

There is also a group of papers [15], [24] and [25] that use Zernike moments to con-

struct rotation invariants. Their motivation comes from the fact that Zernike polynomials

are orthogonal on a unit circle. Thus, Zernike moments do not contain any redundant

information and are more convenient for image reconstruction. However, Teague [24]

showed that Zernike invariants of 2nd and 3rd orders are equivalent to Hu’s ones when

expressing them in terms of geometric moments. He presented the invariants up to eight

order in explicit form but no general rule how to derive them is given. Wallin [25] de-

scribed an algorithm for a formation of moment invariants of any order. Since Teague

1This fundamental book contains original notes of the course held by Hilbert in 1897 in Gottingen

and was firstly published 50 years after Hilbert’s death.
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[24] as well as Wallin [25] were particularly interested in reconstruction abilities of the

invariants, they didn’t pay much attention to the question of independence.

Flusser and Suk [26] and Reiss [27] contributed significantly to the theory of moment

invariants by correcting the Fundamental Theorem and deriving invariants to general

affine transform.

Several papers studied recognitive and reconstruction aspects, noise tolerance and

other numerical properties of various kinds of moment invariants and compared their

performance experimentally [6], [28], [29], [30], [31], [32], [33]. Moment invariants were

shown to be also a useful tool for geometric normalization of an image [34], [35]. Large

amount of effort has been spent to find effective algorithms for moment calculation (see

[36] for a survey).

All the above mentioned invariants deal with geometric distortion of the objects. Much

less attention has been paid to invariants with respect to changes of the image intensity

function (we call them radiometric invariants) and to combined radiometric-geometric

invariants. In fact, just the invariants both to radiometric and geometric image degra-

dations are necessary to resolve practical object recognition tasks because usually both

types of degradations are present in input images.

Van Gool et al. introduced so-called affine-photometric invariants of graylevel [37] and

color [38] images. These features are invariant to the affine transform and to the change

of contrast and brightness of the image simultaneously. A pioneer work on this field was

done by Flusser and Suk [39] who derived invariants to convolution with an arbitrary

centrosymmetric PSF. From the geometric point of view, their descriptors were invariant

to translation only. Despite of this, the invariants have found successful applications in

face recognition on out-of-focused photographs [40], in normalizing blurred images into the

canonical forms [41], [42], in template-to-scene matching of satellite images [39], in blurred

digit and character recognition [43], [19], in registration of images obtained by digital

subtraction angiography [44] and in focus/defocus quantitative measurement [45]. Other

sets of blur invariants (but still only shift-invariant) were proposed for some particular

kinds of PSF -– axisymmetric blur invariants [46] and motion blur invariants [47], [48].

A significant improvement motivated by a problem of registration of blurred images was

made by Flusser et al. They introduced so-called combined blur-rotation invariants [49]

and combined blur-affine invariants [50] and reported their successful usage in satellite

image registration [51] and in camera motion estimation [52].

In comparison with a huge number of papers on 2-D moment invariants, only few

papers on 3-D and/or even N -D invariants have been published. The first attempt to

extend 2-D moment invariants to 3-D was done by Sadjadi and Hall [53]. Probably

the first systematic approach to derivation of 3-D moment invariants to rotation was

published by Lo and Don [54]. It was based on group representation theory. Their results

were later rediscovered (with some modifications) by Guo [55] and Galvez and Canton

[56]. The Guo’s paper derived only three invariants without any possibility of their further

extension. There have been several papers trying to generalize 3-D rotational moment
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invariants either in the sense of the transformation group and/or in the sense of dimension.

Reiss [57] used tensor algebra to derive 3-D moment invariants to affine transform. He

showed the invariants published in [53], [54] are just special cases of his descriptors.

Another approach to deriving 3-D affine invariants can be found in [58]. Markandey and

deFigueiredo [59] tried to extend moment invariants to dimensions greater than three.

They used the fundamental theorem from the classical paper [4]. As it was pointed out by

Mamistvalov [60] and later by Reiss [27], this theorem contained some errors. However,

these errors were incorporated also into [59]. Finally, Mamistvalov [61] published the

correct version of the fundamental theorem of moment invariants in arbitrary dimensions

and showed how to use it to derive N -D affine moment invariants (it should be pointed

out that a shorter version of this paper was published by the same author in a local

journal 24 years earlier [62]). Most recently, Flusser et al. proposed an extension of the

blur moment invariants [63] and the combined blur-rotation invariants into 3-D [64].

3 Basic Terms

First we define basic terms which will be then used in the construction of the invariants.

Definition 1: By image function (or image) we understand any real function f(x, y)

having a bounded support and a finite nonzero integral.

Definition 2: Geometric moment mpq of image f(x, y), where p, q are non-negative

integers and (p+ q) is called the order of the moment, is defined as

mpq =

∞
∫

−∞

∞
∫

−∞

xpyqf(x, y)dxdy. (2)

Corresponding central moment µpq and normalized moment νpq are defined as

µpq =

∞
∫

−∞

∞
∫

−∞

(x− xc)
p(y − yc)

qf(x, y)dxdy, (3)

νpq =
µpq
µω00

, (4)

respectively, where the coordinates (xc, yc) denote the centroid of f(x, y), and ω = (p +

q + 2)/2.

Definition 3: Complex moment cpq of image f(x, y) is defined as

cpq =
∫

∞

−∞

∫

∞

−∞

(x+ iy)p(x− iy)qf(x, y)dxdy (5)

where i denotes imaginary unit. Definitions of central and normalized complex moments

are analogous to (3) and (4).

Geometric moments and complex moments carry the same amount of information.

Each complex moment can be expressed in terms of geometric moments as

cpq =
p
∑

k=0

q
∑

j=0

(

p

k

)(

q

j

)

(−1)q−j · ip+q−k−j ·mk+j,p+q−k−j (6)
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and vice versa:

mpq =
1

2p+qiq

p
∑

k=0

q
∑

j=0

(

p

k

)(

q

j

)

(−1)q−j · ck+j,p+q−k−j . (7)

The reason for introducing complex moments is in their favorable behavior under image

rotation, as will be shown later.

4 Invariants to rotation, translation, and scaling

Invariants to similarity transformation group were the first invariants that appeared in

pattern recognition literature. It was caused partly because of their simplicity, partly

because of great demand for invariant features that could be used in position-independent

object classification. In this problem formulation, degradation operator D is supposed to

act solely in spatial domain and to have a form of similarity transform. Eq (1) then

reduces to

g(τ(x, y)) = f(x, y), (8)

where τ(x, y) denotes arbitrary rotation, translation, and scaling.

Invariants to translation and scaling are trivial – central and normalized moments

themselves can play this role. As early as in 1962, M.K. Hu [4] published seven rotation

invariants, consisting of second and third order moments:

φ1 = µ20 + µ02,

φ2 = (µ20 − µ02)
2 + 4µ2

11,

φ3 = (µ30 − 3µ12)
2 + (3µ21 − µ03)

2,

φ4 = (µ30 + µ12)
2 + (µ21 + µ03)

2, (9)

φ5 = (µ30 − 3µ12)(µ30 + µ12)((µ30 + µ12)
2 − 3(µ21 + µ03)

2) +

(3µ21 − µ03)(µ21 + µ03)(3(µ30 + µ12)
2 − (µ21 + µ03)

2),

φ6 = (µ20 − µ02)((µ30 + µ12)
2 − (µ21 + µ03)

2) + 4µ11(µ30 + µ12)(µ21 + µ03),

φ7 = (3µ21 − µ03)(µ30 + µ12)((µ30 + µ12)
2 − 3(µ21 + µ03)

2)−

(µ30 − 3µ12)(µ21 + µ03)(3(µ30 + µ12)
2 − (µ21 + µ03)

2).

The Hu’s invariants became classical and, despite of their drawbacks, they have found

numerous successful applications in various areas. Major weakness of the Hu’s theory

is that it does not provide for a possibility of any generalization. By means of it, we

could not derive invariants from higher-order moments and invariants to more general

transformations. These limitations were overcome thirty years later.

After Hu, there have been published various approaches to the theoretical derivation

of moment-based rotation invariants. Li [20] used Fourier-Mellin transform, Teague [24]

and Wallin [25] proposed to use Zernike moments and Wong [21] used complex monomi-

als which originate from the theory of algebraic invariants. Here, we present a scheme

introduced by Flusser [22], [23], which is based on the complex moments. The idea to
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use the complex moments for deriving invariants was firstly proposed by Mostafa and

Psaltis [30] but they focused on the evaluation of the invariants rather than on construct-

ing higher-order systems. In comparison with the previous approaches, our approach is

more transparent and allows to study mutual dependence/independence of the invariants

easily. It should be noted that all the above approaches differ from each other formally

by mathematical tools and notation used but the general idea behind them is common

and the results are similar or even equivalent.

In polar coordinates, (5) becomes the form

cpq =
∫

∞

0

∫ 2π

0
rp+q+1ei(p−q)θf(r, θ)drdθ. (10)

It follows from the definition that cpq = c∗qp (the asterisk denotes complex conjugate).

Furthermore, it follows immediately from (10) that the moment magnitude |cpq| is invari-

ant to rotation of the image while the phase is shifted by (p− q)α, where α is the angle

of rotation. More precisely, it holds for the moment of the rotated image

c′pq = e−i(p−q)α · cpq. (11)

Any approach to the construction of rotation invariants is based on a proper kind of

phase cancellation. The simplest method proposed by many authors is to use the moment

magnitudes themselves as the invariants. However, they do not generate a complete set

of invariants. In the following Theorem, phase cancellation is achieved by multiplication

of appropriate moment powers.

Theorem 1: Let n ≥ 1 and let ki, pi, and qi (i = 1, · · · , n) be non-negative integers such

that
n
∑

i=1

ki(pi − qi) = 0.

Then

I =
n
∏

i=1

cki
piqi

(12)

is invariant to rotation.

According to Theorem 1, some simple examples of rotation invariants are c11, c20c02, c20c
2
12,

etc. As a rule, most invariants (12) are complex. If we want to have real-valued features,

we only take real and imaginary parts of each of them. To achieve also translation invari-

ance, we use central coordinates in the definition of the complex moments (5).

Theorem 1 allows us to construct an infinite number of the invariants for any order of

moments, but only few of them are mutually independent. By the term basis we intuitively

understand the smallest set by means of which all other invariants can be expressed. The

knowledge of the basis is a crucial point in all pattern recognition problems because

dependent features do not contribute to the discrimination power of the system at all

and may even cause object misclassifications due to the ”curse of dimensionality”. For

instance, the set

{c20c02, c
2
21c02, c

2
12c20, c21c12, c

3
21c02c12}

8



is a dependent set whose basis is {c212c20, c21c12, }.

Fundamental theorem on how to construct an invariant basis for a given set of moments

was firstly formulated and proven in [22] and later in more general form (which is shown

below) in [23].

Theorem 2: Let us consider complex moments up to the order r ≥ 2. Let a set of

rotation invariants B be constructed as follows:

(∀p, q|p ≥ q ∧ p+ q ≤ r)(Φ(p, q) ≡ cpqc
p−q
q0p0

∈ B),

where p0 and q0 are arbitrary indices such that p0 + q0 ≤ r, p0 − q0 = 1 and cp0q0 6= 0 for

all images involved. Then B is a basis of a set of all rotation invariants created from the

moments up to the order r.

Theorem 2 is very strong because it claims B is a basis of all possible rotation invariants,

not only of those constructed according to (12). We can even show that, knowing the basis

B, it is possible to reconstruct the original object with theoretically unlimited accuracy.

Example: The basis of the invariants composed of the moments of 2nd and 3rd orders,

which was constructed according to Theorem 2 by choosing p0 = 2 and q0 = 1.

Φ(1, 1) = c11,

Φ(2, 1) = c21c12, (13)

Φ(2, 0) = c20c
2
12,

Φ(3, 0) = c30c
3
12.

Theorem 2 has a very surprising consequence. We can prove that, contrary to common

belief, the Hu’s system is dependent and incomplete, so in fact it does not form a good

feature set. The same is true for invariant sets proposed by Li [20] and Wong [21]. This

result firstly appeared in [22] and has a deep practical impact.

5 Invariants to affine transform

In practice we often face object deformations that are beyond the rotation-translation-

scaling model. An exact model of photographing a planar scene by a pin-hole camera

whose optical axis is not perpendicular to the scene is projective transform of spatial

coordinates. Since the projective transform is not linear, its Jacobian is a function of

spatial coordinates and projective moment invariants from a finite number of moments

cannot exist [66, 67].

For small objects and large camera-to-scene distance is the perspective effect negligible

and the projective transform can be well approximated by affine transform

x′ = a0 + a1x+ a2y,
y′ = b0 + b1x+ b2y.

(14)

9



Thus, having powerful affine moment invariants for object description and recognition is

in great demand.

A pioneer work on this field was done independently by Reiss [27] and Flusser and Suk

[26], [65], who introduced affine moment invariants (AMI’s) and proved their applicability

in simple recognition tasks. They derived only few invariants in explicit forms and they

did not study the problem of their mutual independence.

Here we present a new general method how to systematically derive arbitrary number

of the AMI’s of any weights and any orders, This method is based on representation of

the AMI’s by graphs.

Let us consider an image f and two arbitrary points (x1, y1), (x2, y2) from its support.

Let us denote the ”cross-product” of these points as T12:

T12 = x1y2 − x2y1.

After an affine transform it holds T ′

12 = J ·T12, where J is the Jacobian of the transform.

The basic idea of the AMI’s generating is the following. We consider various numbers

of points and we integrate their cross-products (or some powers of their cross-products)

on the support of f . These integrals can be expressed in terms of moments and, after

eliminating the Jacobian by proper normalization, they yield affine invariants.

More precisely, having N points (N ≥ 2) we define functional I depending on N and

on non-negative integers nkj as

I(f) =

∞
∫

−∞

N
∏

k,j=1

T
nkj

kj ·
N
∏

i=1

f(xi, yi)dxidyi. (15)

Note that it is meaningful to consider only j > k, because Tkj = −Tjk and Tkk = 0. After

an affine transform, I becomes

I ′ = Jw|J |N · I,

where w =
∑

k,j nkj is called the weight of the invariant and N is called the degree of the

invariant.

If I is normalized by µw+N
00 we get a desirable affine invariant

(
I

µw+N
00

)′ = (
I

µw+N
00

)

(if w is odd and J < 0 there is an additional factor −1).

We illustrate the general formula (15) on two simple invariants. First, let N = 2 and

n12 = 2. Then

I(f) =

∞
∫

−∞

(x1y2 − x2y1)
2f(x1, y1)f(x2, y2)dx1dy1dx2dy2 = 2(m20m02 −m2

11). (16)

Similarly, for N = 3 and n12 = 2, n13 = 2, n23 = 0 we get

10



I(f) =

∞
∫

−∞

(x1y2 − x2y1)
2(x1y3 − x3y1)

2f(x1, y1)f(x2, y2)f(x3, y3)dx1dy1dx2dy2dx3dy3

= m2
20m04 − 4m20m11m13 + 2m20m02m22 + 4m2

11m22

−4m11m02m31 +m2
02m40. (17)

The above idea has an analogy in graph theory. Each invariant generated by formula

(15) can be represented by a graph, where each point (xk, yk) corresponds to one node and

each cross-product Tkj corresponds to one edge of the graph. If nkj > 1, the respective

term T
nkj

kj corresponds to nkj edges connecting k-th and j-th nodes. Thus, the number of

nodes equals the degree of the invariant and the total number of the graph edges equals

the weight w of the invariant. From the graph one can also learn about the orders of

the moments the invariant is composed of and about its structure. The number of edges

originating from each node equals the order of the moments involved. Each invariant of

the form (15) is in fact a sum where each term is a product of certain number of moments.

This number is constant for all terms of one invariant and is equal to the total number of

the graph nodes. Particularly, for the invariants (16) and (17) the corresponding graphs

are shown in Fig. 4.

Figure 4: The graphs corresponding to the invariants (16) (left) and (17) (right)

Now one can see that the problem of derivation of the AMI’s up to the given weight

w is equivalent to generating all graphs with at least two nodes and at most w edges.

This is a combinatorial task with exponential complexity but formally easy to implement.

Unfortunately, most resulting graphs are useless because they generate invariants, which

are dependent. Identifying and discarding them is very important but very complicated

task.

There might be various kinds of dependencies in the set of all AMI’s (i.e. in the

set of all graphs). The invariant which equals to linear combinations of other invariants

or of products of other invariants is called reducible invariant. Other invariants than

reducible are called irreducible invariants. Unfortunately, ”irreducible” does not mean

”independent” – there may be higher-order polynomial dependencies among irreducible

invariants. Current methods [68] perfectly eliminate reducible invariants but identification

of dependencies among irreducible invariants has not been resolved yet.

For illustration, let us consider AMI’s up to the weight 10. Using the graph method we

got, after discarding isomorphic graphs, 1519 AMI’s in explicit forms. Then we applied

the algorithms eliminating reducible invariants, which led to 362 irreducible invariants.

11



6 Invariants to convolution

Two previous sections were devoted to the invariants with respect to transformation of

spatial coordinates only. Now let us consider an imaging system with ideal geometry, i.e.

τ(x, y) = (x, y), but suffering from non-ideal optical/radiometrical properties. Assuming

the system is shift invariant, degradation operator D has a form of

g(x, y) = (f ∗ h)(x, y), (18)

where h(x, y) is the point-spread function (PSF) of the system. This is a simple but

realistic model of degradations introduced by out-of-focused camera (h(x, y) has then a

cylindrical shape), by camera and/or scene motion (h(x, y) has a form of rectangular

pulse), and by photographing through turbulent medium (h(x, y) is then a Gaussian), to

name a few. However, in real applications the PSF has more complex form because it use

to be a composition of several degradation factors. Neither the shape nor the parameters

of the PSF use to be known. This high-level uncertainty prevents us from solving eq. (18)

as an inverse problem. Although such attempts were published (see [69] or [70] for a basic

survey), they did not yield satisfactory results.

In this section, we present functionals invariant to convolution with arbitrary cen-

trosymmetric PSF (in image analysis literature they are often called ”blur invariants”

because common PSF’s have a character of a low-pass filter). Blur invariants were firstly

introduced by Flusser and Suk [39]. They have found successful applications in face recog-

nition on out-of-focused photographs [40], in normalizing blurred images into the canonical

forms [41], [42], in template-to-scene matching of satellite images [39], in blurred digit and

character recognition [43], [19], in registration of images obtained by digital subtraction

angiography [44] and in focus/defocus quantitative measurement [45].

The assumption of centrosymmetry is not a significant limitation of practical utiliza-

tion of the method. Most real sensors and imaging systems, both optical and non-optical

ones, have the PSF with certain degree of symmetry. In many cases they have even higher

symmetry than the central one, such as axial or radial symmetry.

Principal theorem on convolution invariants is the following.

Theorem 3: Let functional C : L1(R
2)×N0 ×N0 → R be defined as follows:

If (p+ q) is even then

C(p, q)(f) = 0.

If (p+ q) is odd then

C(p, q)(f) = µ(f)
pq −

1

µ
(f)
00

p
∑

n=0

q
∑

m=0

0<n+m<p+q

(

p

n

)(

q

m

)

C(p− n, q −m)(f) · µ(f)
nm. (19)

Then

C(p, q)(f∗h) = C(p, q)(f)
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for any image function f , any non-negative integers p and q, and for any centrosymmetric

PSF h.

Theorem 3 tells that blur invariants are recursively defined functionals consisting

mainly from odd-order moments. Although they do not have straightforward ”physi-

cal” interpretation, let us make a few notes to provide a better insight into their meaning.

Any invariant (even different from those presented here) to convolution with a centrosym-

metric PSF must give a constant response on centrosymmetric images. This is because

any centrosymmetric image can be considered as a blurring PSF acting on delta-function.

It can be proven that if f is centrosymmetric then C(p, q)(f) = 0 for any p and q. The

opposite implication is valid as well. Thus, what image properties are reflected by the

C(p, q)’s? Let us consider a Fourier-based decomposition f = fc + fa where fc, fa are

centrosymmetric and antisymmetric components of f , respectively. Function fa can be

exactly recovered from odd-order moments of f (while even-order moments of fa equal

zero) and vice versa. A similar relation holds for the invariants C(p, q). Thus, all C(p, q)’s

reflect mainly properties of the antisymmetric component of the image, while all symmet-

ric images are in their null-space.

Blur invariants introduced in Theorem 3 have also a close relationship to the Fourier

transform of the image. Since h(x, y) is supposed to be centrosymmetric, the phases of

F (u, v) and G(u, v) can differ from one another only by 0 or π. Thus, tangent of the

phase is blur invariant. It can be shown that tangent of the Fourier transform phase can

be expanded into power series, whose coefficient at monomial upvq equals the functional

C(p, q) (for proofs and detailed discussion see [39]).

For illustration, below we show a set of invariants of the 3rd, 5th and 7th orders in

explicit forms.

• 3rd order:

C(3, 0) = µ30,

C(2, 1) = µ21,

C(1, 2) = µ12,

C(0, 3) = µ03.

• 5th order:

C(5, 0) = µ50 −
10µ30µ20

µ00

,

C(4, 1) = µ41 −
2

µ00

(3µ21µ20 + 2µ30µ11),

C(3, 2) = µ32 −
1

µ00

(3µ12µ20 + µ30µ02 + 6µ21µ11),

C(2, 3) = µ23 −
1

µ00

(3µ21µ02 + µ03µ20 + 6µ12µ11),

C(1, 4) = µ14 −
2

µ00

(3µ12µ02 + 2µ03µ11),
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C(0, 5) = µ05 −
10µ03µ02

µ00

.

• 7th order:

C(7, 0) = µ70 −
7

µ00

(3µ50µ20 + 5µ30µ40) +
210µ30µ

2
20

µ2
00

,

C(6, 1) = µ61 −
1

µ00

(6µ50µ11 + 15µ41µ20 + 15µ40µ21 + 20µ31µ30)+

+
30

µ2
00

(3µ21µ
2
20 + 4µ30µ20µ11),

C(5, 2) = µ52−
1

µ00

(µ50µ02 +10µ30µ22 +10µ32µ20 +20µ31µ21 +10µ41µ11 +5µ40µ12)+

+
10

µ2
00

(3µ12µ
2
20 + 2µ30µ20µ02 + 4µ30µ

2
11 + 12µ21µ20µ11),

C(4, 3) = µ43−
1

µ00

(µ40µ03+18µ21µ22+12µ31µ12+4µ30µ13+3µ41µ02+12µ32µ11+6µ23µ20)+

+
6

µ2
00

(µ03µ
2
20 + 4µ30µ11µ02 + 12µ21µ

2
11 + 12µ12µ20µ11 + 6µ21µ02µ20),

C(3, 4) = µ34−
1

µ00

(µ04µ30+18µ12µ22+12µ13µ21+4µ03µ31+3µ14µ20+12µ23µ11+6µ32µ02)+

+
6

µ2
00

(µ30µ
2
02 + 4µ03µ11µ20 + 12µ12µ

2
11 + 12µ21µ02µ11 + 6µ12µ20µ02),

C(2, 5) = µ25−
1

µ00

(µ05µ20 +10µ03µ22 +10µ23µ02 +20µ13µ12 +10µ14µ11 +5µ04µ21)+

+
10

µ2
00

(3µ21µ
2
02 + 2µ03µ02µ20 + 4µ03µ

2
11 + 12µ12µ02µ11),

C(1, 6) = µ16 −
1

µ00

(6µ05µ11 + 15µ14µ02 + 15µ04µ12 + 20µ13µ03)+

+
30

µ2
00

(3µ12µ
2
02 + 4µ03µ02µ11),

C(0, 7) = µ07 −
7

µ00

(3µ05µ02 + 5µ03µ04) +
210µ03µ

2
02

µ2
00

.

It should be noted that similar invariant functionals can be constructed when the PSF

is supposed to have some other type of symmetry, like axial symmetry, four-fold symmetry,

or circular symmetry [46], [47], [40]. Generally, the stronger the symmetry assumptions,

the more invariants exist and the less functions is contained in their null-space. On the

other hand, if the PSF has no symmetry, then there exists only one invariant µ00.
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7 Combined invariants

In this section, we describe so-called combined invariants that are invariant simultaneously

to convolution and transformation of spatial coordinates.

We assume the degradation model (1) where τ is restricted to group of linear trans-

formations and h is supposed to have certain degree of symmetry. Combined invariants

are very important for practical purposes because usually both types of degradations –

geometric as well as radiometric – are present in input images.

The history of combined invariants is very short. First, combined blur-rotation invari-

ants were introduced by Zitova and Flusser [49], who also reported their successful usage

in satellite image registration [51] and in camera motion estimation [52]. Later on, blur-

rotation invariants were extended into 3-D and their application to template matching in

magnetic resonance images (MRI) were described [64]. Most recently, Suk and Flusser

derived combined invariants to convolution and affine transform [50].

Roughly speaking, combined invariants are constructed by substitution of blur invari-

ants in place of moments when constructing geometric invariants, and vice versa. There

are several ways how to perform the substitution. The most general approach is expressed

in the following principal theorem (for its proof see [50]).

Theorem 4: Let I(µ00, · · · , µPQ) be an affine moment invariant. Then I(C(0, 0), · · · , C(P,Q)),

where functionals C(p, q) are defined in Theorem 3, is a combined blur-affine invariant.

8 Orthogonal moments

It is well known from linear algebra that an orthogonal basis of a vector space have many

favorable properties comparing to other bases. They are, of course, theoretically equiv-

alent, because each vector from one basis can be expressed as a linear combination of

vectors from other basis. From practical point of view, when reconstructing a vector from

only few basic projections, orthogonal basis provides us usually with much more accu-

rate reconstruction than other bases. Reconstruction problem was the main motivation

(although not the only one) of introducing orthogonal moments into pattern recognition

community [15], [24], [25], [71].

By orthogonal moment Mpq we understand projection of image function f onto a set

of orthogonal polynomials {Ppq(x, y)}, i.e.

Mpq =
∫ ∫

Ppq(x, y)f(x, y)dxdy.

In addition to its efficiency, image reconstruction from orthogonal moments is very

simple. While the reconstruction from geometric moments must be carried out in Fourier

domain using Taylor’s expansion of F

F (u, v) =
∑

p

∑

q

(−2πi)p+q

p!q!
mpqu

pvq,
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reconstruction from orthogonal moments is performed directly in the image domain

f(x, y) =
∑

p

∑

q

MpqPpq(x, y).

The most popular sets of orthogonal polynomials used for moment construction are

Legendre, Zernike, and Czebychev polynomials.

8.1 Legendre polynomials and moments

One-dimensional Legendre polynomial of order n is defined as

Pn(x) =
1

2nn!

∂n

∂xn
(x2 − 1)n,

where |x| ≤ 1.

Legendre polynomials form an orthogonal basis of the polynomial space, because

∫ 1

−1
Pn(x)Pm(x)dx =

2

2m+ 1
δmn.

First four Legendre polynomials in explicit forms are

P0(x) = 1,

P1(x) = x,

P2(x) =
3x2 − 1

2
,

P3(x) =
5x3 − 3x

2
.

Two-dimensional Legendre moments are then defined as

Lpq =
(2p+ 1)(2q + 1)

4

∫ 1

−1

∫ 1

−1
Pp(x)Pq(y)f(x, y)dxdy.

Image reconstruction from Legendre moments is given by

f(x, y) =
∑

p

∑

q

LpqPp(x)Pq(y).

Since Legendre polynomials are functions of basic monomials xp, Legendre moments

can be expressed in terms of geometric moments

Lpq =
(2p+ 1)(2q + 1)

4

p
∑

k=0

q
∑

j=0

apkaqjmkj,

where apk and aqj are the coefficients. Note that Legendre moment of order r depends

only on geometric moments of the same order and of lower orders. For Legendre moments

up to the second order we get

L00 = m00,

L10 =
3

4
m00,

L20 =
5

8
(3m20 −m00),

L11 =
9

4
m11.
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8.2 Zernike polynomials and moments

Two-dimensional Zernike polynomials are defined on a unit circle as

Vnm(r, θ) = Rnm(r)e
imθ,

where the radial part

Rnm(r) =
n
∑

k=m

bkr
k

and r ≤ 1.

Zernike polynomials fulfill the requirement of orthogonality

∫ 2π

0

∫ 1

0
V ∗

nj(r, θ)Vmk(r, θ)rdrdθ =
π

n+ 1
δmnδjk.

The radial polynomials themselves are also orthogonal:

∫ 1

0
Rnk(r)Rmk(r)rdr =

1

2(n+ 1)
δmn.

Zernike moments are projections of the image onto Zernike polynomials

Zpq =
p+ 1

π

∫ 2π

0

∫ 1

0
V ∗

pq(r, θ)f(r, θ)rdrdθ,

where p− |q| is even and non-negative.

Image reconstruction formula from Zernike moments is similar to that of Legendre

moments

f(r, θ) =
∑

p

∑

q

ZpqVpq(r, θ).

Zernike moments have close relationship to complex moments. Recalling the expres-

sion of complex moments in polar coordinates (10), it is easy to show that

Zpq =
p+ 1

π

∫ 2π

0

∫ 1

0
Rpq(r)e

−iqθf(r, θ)rdrdθ

=
p+ 1

π

p
∑

k=q

bk

∫ 2π

0

∫ 1

0
rke−iqθf(r, θ)rdrdθ

=
p+ 1

π

p
∑

k=q

bkc(k−q)/2,(k+q)/2.

In particular, we get for low-order Zernike moments

Z00 =
1

π
m00,

Z11 =
2

π
(m10 − im01),

Z20 =
6

π
(m20 +m02)−

3

π
m00.

In the literature, complex moments c(k−q)/2,(k+q)/2 are often called Fourier-Mellin mo-

ments and denoted as Fkq.
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Zernike moments have the same rotation property as complex moments and can be

used to derive invariants to rotation. Again, the basic idea is to cancel the phase shift by

multiplying appropriate powers of Zernike moments

I =
n
∏

j=1

Zkj
pjqj

n
∑

j=1

kjqj = 0.

Obviously, rotation invariants generated by Zernike moments are in fact equivalent to

those constructed in Section 4 from complex moments.

9 Algorithms for moment computation

Since computing complexity of all moment invariants depends almost solely on the com-

puting complexity of geometric moments themselves, we review efficient algorithms for

moment calculation in a discrete space. Most of the methods are focused on binary images

but there are also a few methods for graylevel images. Basically, moment computation

algorithms can be categorized into two groups: decomposition methods and boundary-

based methods. The former methods decompose the object into simple areas (squares,

rectangles, rows, etc.) whose moments can be calculated easily in O(1) time. The object

moment is then given as a sum of moments of all regions. The latter methods calculate

object moments just from the boundary, employing Green’s theorem or similar technique.

In the discrete case, the integral in the moment definition must be replaced by a

summation. The most common way how to do that is to employ the rectangular (i.e.

zero-order) method of numeric integration. Then (2) turns to the well-known form

mpq =
N
∑

x=1

N
∑

y=1

xpyqfij, (20)

where N is the size of the image and fij are the grey levels of individual pixels.

Since direct calculation of discrete moments from eq. (20) is time-consuming (it re-

quires O(pqN 2) operations), a large amount of effort has been spent to develop more

efficient algorithms.

The first representative of decomposition methods came from Zakaria [72]. The basic

idea of his ”Delta” method is to decompose the object to the individual rows of pixels.

The object moment is then given as a sum of all row moments, which can be easily

calculated just from the coordinates of the first and last pixels. Zakaria’s method worked

for convex shapes only and dealt with moment approximation (20). Dai [73] further

extended Zakaria’s method and Li [74] generalized it for non-convex shapes. Recently,

Spiliotis and Mertzios [75] and Flusser [76] have published advanced modifications of Delta

method. Their algorithm employs block-wise object representation instead of the row-wise

one. Thanks to this, it works faster than the original version. Sossa et al. [77] proposed

morphological decomposition of an image into square blocks. Similarly to Delta method,

the moment of the object is then calculated as a sum of moments of all squares. Wu et

al. [78] published another decomposition scheme which also leads to square partitions.
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They employed a quad-tree decomposition of the image, where the resulting squares are

represented by quad-tree leafs.

Boundary-based methods originate either from Green’s theorem, which evaluates the

double integral over the object by means of single integration along the object boundary,

or from polygonal approximation of the object boundary. Li and Shen [79] proposed a

method based on Green’s theorem in continuous domain. However, their results depend

on the choice of the discrete approximation of the boundary and differ from the theoretical

values. Jiang and Bunke [80] approximated the object by a polygon first and then they

applied the Green’s theorem. Thanks to this, they calculated only single integrals along

line segments. Unfortunately, due to two-stage approximation, their method produce

inaccurate results. Philips [81] proposed to use discrete Green’s theorem instead of the

continuous one. For convex shapes, his approach leads to the same formulae as the Delta

method and it was shown to yield exact moment values. Recently, Yang and Albregtsen

[36] have slightly improved the speed of the Philips’ method. The methods based on

polygonal approximation of the object boundary calculate the moments from the corner

points [82], [83]. These methods are efficient only for simple shapes with few corners.

Another approach published in [84] and [85] shows that moment computation can

be effectively implemented in parallel processors. Chen [84] proposed a recursive algo-

rithm for a SIMD processor array, Chung [85] presented a constant-time algorithm on

reconfigurable meshes.

As it was recently pointed out by Lin [86] and Flusser [76], zero-order approximation

used in (20) can be replaced by exact integration of the monomials xpyq

mpq =
N
∑

i=1

N
∑

j=1

fij

∫ ∫

Aij

xpyqdxdy =

=
1

(p+ 1)(q + 1)

N
∑

i=1

N
∑

j=1

fij((i+
1

2
)p+1 − (i−

1

2
)p+1)((j +

1

2
)q+1 − (j −

1

2
)q+1),

where Aij denotes the area of the pixel (i, j). This new formula can be incorporated into

almost all methods cited above and leads to more accurate results.

10 Applications

In this section, we demonstrate several successful applications of the above described

invariant functionals, both on synthetic as well as real data.

10.1 Digit recognition

Automatic recognition of printed digits is nowadays considered trivial and many successful

intuitive methods have been described. However, classification of digits which are blurred

and/or geometrically deformed requires more sophisticated mathematical tools and usu-

ally cannot be resolved by standard techniques. Here, we demonstrate digit classification

in the space of invariant functionals.
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Binary pictures of the size 48×32 of ten digits 1, 2, · · · , 9, 0 were generated (see Fig. 5a).

Each of them was deformed by ten affine transforms and every instance was blurred by ten

different masks. The parameters of the affine transforms and the convolution masks were

generated randomly. This process was repeated four times (which corresponds to four

rows of Fig. 5) with different ”dispersion” of the parameters and different noise levels. All

deformed digits were classified independently by two minimum-distance classifiers – the

first one operated in the space of nine affine moment invariants while the second classifier

operated in the space of nine corresponding combined invariants.

Figure 5: a) Original digits, b)– e) Examples of the deformed digits used in the experiment.

Summarizing the classification results, two important facts are clearly visible. First,

the combined invariants yielded an excellent success rate approaching 100%. Second,
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Figure 6: The digits 1, 2, 4, and 5 in the feature space of two combined invariants. Good
separability of the classes.

Figure 7: The digits 1, 2, 4, and 5 in the feature space of two affine moment invariants.
The classes are not separable because improper invariants were used.
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the affine moment invariants perform significantly worse because they cannot handle the

blurring properly. A part of the results is graphically visualized in Figs. 6 and 7, where

one can see the distribution of digits 1, 2, 4, and 5 in the space of two combined invariants

(Fig. 6) and in the space of two corresponding affine moment invariants (Fig. 7). In the

space of the combined invariants all digits form compact clusters, well separated from each

other. On the contrary, in the space of affine moment invariants all patterns form one

bigger cluster and few outliers. The same situation occurs in case of the other digits and

can be observed also other feature subspaces. This illustrates that the combined invariants

are an actual step toward more robust object recognition and that they significantly

improve the recognition rate in case of blurred images.

10.2 Camera motion estimation

The problem to be solved is to estimate the motion parameters and the current position

of the camera in the real indoor scene. The camera, which takes one frame every second,

moves parallel to the wall and rotates. The system monitors the scene and looks for alien

objets which may appear in the view of the camera. When such an object appears in

front of the camera, the camera is automatically focused on it. Thus, the rest of the scene

becomes out-of-focused (see Fig. 8). Position estimation can be resolved via registration

of the initial (reference) frame and the image acquired at the moment when the object

has appeared. The registration parameters (mutual rotation and shift of the reference

and current frames) then unambiguously determine the actual camera position.

Figure 8: Images of an indoor scene. Camera at the initial position (left); camera at an
unknown position, the scene is out-of-focused due to the inserted object (right). 30 CPC’s
are marked by crosses, those which form the corresponding CP pairs are numbered.

The motion estimation proceeds as follows. First, control point candidates (CPC’s)

are detected both in the initial and the current frames. Significant corners and other

corner-like dominant points are considered as the candidates. To detect them, a method

developed particularly for blurred images [90] was employed. In this experiment we de-
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tected 30 CPC’s in each frame.

Secondly, the correspondence between the CPC’s sets must be established and the

candidates having no counterparts should be rejected. To do that, a vector of invariants

is computed for each CPC over its circular neighborhood (here, three third-order invariants

and two fifth-order ones were employed) and then the CPC’s are matched in the space

of the invariants by minimum-distance rule or by any more sophisticated technique (in

this experiment we applied robust matching by means of so-called likelihood coefficients

[91]). Once the control point (CP) correspondence is established, their positions can be

refined by local search in their neighborhoods. For every pixel from the neighborhood its

invariant vector is calculated. The point having the minimum distance to the invariant

vector of the CP counterpart is set as the refined position of the CP. If the subpixel

accuracy is required, it can be achieved by an appropriate interpolation in the distance

matrix.

Finally, as soon as the control point correspondence is established and their coordinates

refined, we can find an ”optimal” rotational-translational mapping whose parameters are

calculated via least-square fit. Knowing these parameters and the initial camera position,

the current position can be easily estimated.

We repeated this experiment six times changing the camera rotation and the distance

of the inserted object (i.e. the amount of blurring of the background). The results were

evaluated by the comparison with ground truth. In all cases the estimates correspond

well to the reference values. The errors are mostly below the discretization error. For

illustration, in the situation depicted in Fig. 8 the ground-truth registration parameters

were rotation 10.92o, vertical translation 37.7 pixels, and horizontal translation 41.2 pixels,

while the computed parameters were 11.00o, 37.7 pixels, and 41.0 pixels, respectively.

Summarizing the results of all six experiments, the mean error and standard deviation

of the estimation of rotation angle were 0.06o and 0.05o, the same for vertical translation

were 0.1 and 0.4 pixel, and for horizontal translation 0.3 and 0.5 pixel.

In a comparative experiment, we used exactly the same algorithm but functionals

invariant only to rotation were used instead of the combined invariants. None of the six

studied cases was correctly resolved. In all cases, many CP pairs were matched incorrectly.

For instance, in the experiment in Fig. 8, CP No. 7 was mismatched to the unlabelled

CPC to the left from No. 8. This illustrates the actual need of blur invariants when

attempting to register blurred images.

10.3 Satellite image matching and registration

Motivation of this experiment comes from the area of remote sensing. The template

matching problem is usually formulated as follows: having the templates and a digital

image of a large scene, one has to find locations of the given templates in the scene. By

template we understand a small digital picture usually containing some significant object

which was extracted previously from another image of the scene and now is being stored

in a database.
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There have been proposed numerous image matching techniques in the literature (see

the survey paper [92] for instance). A common weakness of all those methods is the as-

sumption that the templates as well as the scene image have been already preprocessed

and the degradations like blur, additive noise, etc. have been removed. Those assump-

tions are not always realistic in practice. For instance, satellite images obtained from

Advanced Very High Resolution Radiometer (AVHRR) suffer by blur due to a multipara-

metric composite PSF of the device [93]. Even if one would know all the parameters (but

one usually does not) the restoration would be hard and time-consuming task with an

unreliable result. By means of the blur invariants, we can perform the matching without

any previous de-blurring.

The experiment was carried out on a simulated AVHRR image. As an input for a

simulation, the 512 × 512 SPOT HRV image covering the north-western part of Prague

was used (see Fig. 9). To simulate AVHRR acquisition, the image was blurred by a 9×13

mask representing a composite PSF of the AVHRR sensor and corrupted by Gaussian

additive noise with standard deviation STD = 10, which yields SNR = 14 in this case

(see Fig. 10). The templates were extracted from SPOT image of the same scene and

represent significant objects in Prague: the island in Vltava river, the cross of the roads

and the soccer stadium (see Fig. 11). The true locations of the templates in the original

image are shown in Fig. 9. The task was to localize these templates in the AVHRR image.

Matching of the templates and the AVHRR image was performed by minimum dis-

tance in the space of blur invariants and, for a comparison, by the Sequential Similarity

Detection Algorithm (SSDA) which is probably the most popular representative of the

correlation-like matching methods [94]. By means of blur invariants, all templates were

placed correctly or almost correctly with a reasonable error 1 pixel. On the other hand,

SSDA did not yield satisfactory results. Only the ”Island” template was correctly local-

ized because of its distinct structure, while the other templates were misplaced.

We have performed a lot of experiments like this one with various templates, template

sizes, blurring masks and noise variance. In a majority of tests, blur invariants gave

significantly better results than the SSDA.

Another very frequent task to be solved in remote sensing is image registration. Image

registration in general is the process of overlaying two or more images of the same scene

acquired from different viewpoints, by different sensors and/or at different times so that

the pixels of the same coordinates in the images correspond to the same part of the

scene. Image registration is required as a pre-processing stage in analysis of remotely

sensed data, medical image analysis, image fusion, in automatic change detection and

scene monitoring, among others.

Regardless of the image data involved and of the particular application, image regis-

tration usually consists of the four major steps.

First, control points (CPs) are detected both in the reference and sensed images.

Edge intersections, objects centroids or significant contour points can be considered for

this purpose. The correspondence between the CP sets in the reference and sensed images
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Figure 9: Original 512× 512 SPOT scene (band 3) of the north-western part of Prague,
Czech Republic, used for simulation. True locations of the templates are marked.

Figure 10: Simulated AVHRR image (9× 13 blurring mask + additive noise with STD =
10).
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Figure 11: The templates: ”Island” (left), ”Cross” (middle) and ”Stadium” (right).

is then established. Matching methods are based on the image content (cross-correlation,

mutual information) or on symbolic description of the CP sets (parameter clustering,

graph matching, relaxation). Matching is usually the most difficult part of the registration.

After the CP sets have been matched, the type and parameters of spatial transform

between the reference and sensed images are estimated. The mapping function can be

global or local, depending on the type of the image distortions. Finally, the sensed image

is resampled, transformed and overlayed over the reference one.

The invariant functionals can be used in the second step, CP matching. They are

calculated over a circular neighborhood of each CP candidate detected earlier. After

that, the correspondence is established by minimum distance rule with thresholding in

the space of the invariants. Herein described application uses the blur-rotation invariants

for registration of satellite images, that are rotated and shifted one another and differently

blurred.

Figure 12: Reference image – SPOT subscene of the size 400 × 400 pixels – with the
detected control point candidates. Numbered CPCs have their counterparts in the sensed
image.
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Figure 13: Sensed image – different SPOT subscene of the size 325 × 325 pixels, taken
during the same flight and covering approximately the same ground – with the control
point candidates. The image was rotated by 15 degrees, the nonideal acquisition was
simulated by blurring with the 7 × 7 uniform square mask. Numbered CPCs have their
counterparts in the reference image.

The experiment was performed on real satellite data with simulated blurring. Blurred

image simulates a sensor with low spatial resolution. The reference image of the size

400 × 400 pixels was extracted from the SPOT subscene, band 2, Czech Republic (see

Fig. 12). The sensed image of the size 325 × 325 pixels was extracted from the different

SPOT subscene, band 2, from the same flight covering approximately the same ground.

It was then rotated by 15 degrees and the nonideal acquisition was simulated by blurring

with the 7 × 7 averaging mask (see Fig. 13). Control point detection and matching was

done by similar algorithm to that used in ”motion estimation” experiment in the previous

section. The sensed image was then transformed using linear mapping function whose

coefficients were calculated via least-square method by means of the matched CPs. Inter-

pixel gray values were estimated via bilinear interpolation. The co-registered images are

shown in Fig. 14. After the registration, any multiframe image processing methods like

fusion, multichannel restoration, change detection, and/or multichannel compression can

be applied in the overlapped area.
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Figure 14: Registered images.

10.4 3-D template matching in MRI

Magnetic resonance images are often subject to blurring, namely because limited spatial

resolution. In this experiment we show that invariant functionals can be used in template

matching.

As a test data, we used a 3-D magnetic resonance image of a human head whose size

was 256× 256× 256 voxels. Two perpendicular slices are depicted in Fig. 15.

We chose randomly a spherical part of the original MRI image and used it used as a

template. The original image was rotated by 30 degrees in all angles, blurred by Gaussian

masks of various sizes and corrupted by additive noise of various SNR. The template was

shifted across the image and in each its position the invariants of the corresponding part

of the image were calculated and compared with the invariants of the template. Thanks
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to the rotation invariance of the features, template rotation need not be performed. The

”matching position” was localized as that with minimum distance in the space of invari-

ants.

The matching accuracy depends on the SNR (which is obvious) and on the size of the

blurring mask. This is because the voxels near the template boundary are affected by

the voxels from the outside. This boundary effect of course increases when the blurring

becomes larger. One may observe that if the size of the blurring mask is not too large

with respect to the size of the template, the results are very good, even if noise is present.

We conducted similar experiment in which we studied the influence of rotation angle

and the shape of the blurring masks on the localization error. The MRI image was rotated

in all directions by the angle α (where α = 0, 5, 10, 15, · · · , 90, respectively) and blurred

by various anisotropic masks. It can be seen from Fig. 16 that even if the rotation is big

and the major blurring direction changes, the localization error is still kept reasonably

low.

Finally, we extended the matching experiment to more templates. Eight spherical tem-

plates of 15-pixel radius were manually extracted from the original MRI data. The original

image was then rotated around all three axes by 30 degrees and blurred by anisotropic

Gaussian mask with standard deviations [0.5 0.5 0.2]. We looked for the matching po-

sition of each template by an exhaustive search within the whole image – no estimation

of approximate matching position was used. The results were really encouraging: the

positions of five templates were found accurately, in the three other cases the error was

one pixel.

Figure 15: Original MRI data of a human head: 157th axial slice (left) and 130th sagittal
slice (right)

The experiments described in this section proved that the proposed invariants can be

used successfully in 3-D template matching regardless of rotation and/or blurring of the
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Figure 16: Template matching with anisotropic blurring: de – localization error (Euclidean
distance from the correct position), α – rotation angle, © – no blurring, × – blurring by
1×1×3 mask after rotation, + – blurring by 1×1×3 mask before rotation, – blurring
by 3× 3× 5 mask after rotation, 5 – blurring by 3× 3× 5 mask before rotation.

images involved. There are, however, some limitations posed mainly by boundary effect

and, of course, by noise if it is heavy. In all these experiments we were using six invariants

only. The results can be further improved by employing more invariants but the higher

the order the less robustness of the respective moments.

30



11 Conclusion

This tutorial presented a review of moment-based invariant functionals, their history,

basic principles, and methods how to construct them. We demonstrated that invariant

functionals can be used in image analysis as features for description and recognition of

objects in degraded images.

Invariant-based approach is a significant step towards robust and reliable object recog-

nition methods. It has a deep practical impact because many pattern recognition problems

would not be solvable otherwise. In practice, image acquisition is always degraded by un-

recoverable errors and the knowledge of invariants with respect to these errors is a crucial

point. This observation should influence future research directions and should be also

incorporated in the education.

In the future research, a very promising topic are pseudo invariants. It has not been

done much work on pseudo invariants but common belief is that they perform a way how

to break the limitations of invariants. While the invariants must be by their definition

constant within a class, pseudo invariants are allowed to change ”slightly”. This gives

a chance to increase discrimination power because invariants which are invariant with

respect to many factors usually suffer by lack of discriminability.
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[77] H. Sossa, C. Yañez and J. L. Díaz, “Computing geometric moments using morpho-
logical erosions,” Pattern Recognition, vol. 34, pp. 271-276, 2001.

35



[78] “A new computation of shape moments via quadtree decomposition,” Pattern Recog-
nition, vol. 34, pp. 1319–1330, 2001.

[79] B. C. Li and J. Shen, “Fast computation of moment invariants,” Pattern Recognition,
vol. 24, pp. 807–813, 1991.

[80] X. Y. Jiang and H. Bunke, “Simple and fast computation of moments,” Pattern
Recognition, vol. 24, pp. 801–806, 1991.

[81] W. Philips, “A new fast algorithm for moment computation,” Pattern Recognition,
vol. 26, pp. 1619–1621, 1993.

[82] J. G. Leu, “Computing a shape’s moments from its boundary,” Pattern Recognition,
vol. 24, pp. 949–957, 1991.

[83] M. H. Singer, “A general approach to moment calculation for polygons and line
segments,” Pattern Recognition, vol. 26, pp. 1019–1028, 1993.

[84] K. Chen, “Efficient parallel algorithms for the computation of two-dimensional image
moments,” Pattern Recognition, vol. 23, pp. 109–119, 1990.

[85] K. L. Chung, “Computing horizontal/vertical convex shape’s moments on reconfig-
urable meshes,” Pattern Recognition, vol. 29, pp. 1713–1717, 1996.

[86] W. G. Lin and S. Wang, “A note on the calculation of moments,” Pattern Recognition
Letters, vol. 15, pp. 1065–1070, 1994.

[87] B. C. Li, “The moment calculation of polyhedra,” Pattern Recognition, vol. 26,
pp. 1229–1233, 1993.

[88] B. C. Li and S. D. Ma, “Efficient computation of 3D moments,” Proc. 12th Int. Conf.
Pattern Recognition, vol. I, pp. 22–26, Jerusalem, 1994.

[89] L. Yang, F. Albregtsen, and T. Taxt, “Fast computation of 3-D geometric moments
using a discrete divergence theorem and a generalization to higher dimensions,”
Graphical Models and Image Processing, vol. 59, pp. 97–108, 1997.
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