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ABSTRACT past observations. Specifically, we define internal variables,

The AutoRegressive (AR) model is extended to cope with @ € R andy, € R

a wide class of possible transformations and degradations. x = go(Di—1,Wt), 1)
The Variational Bayes (VB) procedure is used to restore _

conjugacy. The resulting Bayesian recursive identification ve = 94D W), @
procedure has many of the desirable computational properwhere W, represents a possible known external (i.e. ex-
ties of the classical RLS procedure. During each time-step,ogenous) variable, ang, is required to be an invertible,
an iterative Variational EM (VEM) procedure is required r-to-r mapping fromd; to y; with non-zero Jacobian);, =

to obtain the necessary moments. The procedure is used, (d,). Then, the EAR model declares that

to reconstruct an outlier-corrupted AR process and a noisy

speech segment. The VB scheme appears to offer improved Yy = —Azite, @)
performance over the related Quasi-Bayes (QB) scheme in fle) = N(0,,Q71), (4)

the case of time-variant component weights. _ ) _ .
whereA € R"*P is a matrix of unknown linear coefficients,

ande; € R"*! is a zero-mean Gaussian white noise process
1. INTRODUCTION (innovations) with unknown precision matri?, € ®"*". In
. . , the sequel, we denots = [y, =]’ andg = [g,,g.]’, and
The AutoRegressive (AR) model has been importantin manysuppress the possiblé,-dependencé]2) in tﬁe notation.
contexts in DSP, notably all-pole modelling for spe€ch [1]. A mixture-based extension of the EAR model (i.e. the

Itsh_a'gra::lnon 'S It_he eX|t§tent(_: e of f‘;‘st re(;:_u:_swe aégorlthms MEAR model) has been proposed [3] in order to allow un-
which allow on-line estimation and prediction. Bayesian ;o 5y in respect of, via a finite set@@ = [gi, ..., g.,

on-line ifjentifipation is preserved for_the Extended AR (EA.R)of possible cases:

model [2], while, recently, the Quasi-Bayes (QB) approxi-

mation was used for on-line identification of much richer ¢

class, namely the Mixture-based Extension of the AR model f(di]A, Q@ Dy, G) = Z aif (di]A, Q@i ), (5)

(MEAR) [3]. =1

Recently, the on-line Variational Bayes (VB) method where

was proposed as a general estimation paradigm [4], and ap- o

plied to non-regressive mixture models. In this paper, VB Fdi| A, Q, @i0) = o (do)| N (—Aziy, Q71)  (6)

leads to a closed-form posterior for the MEAR model, and 5 4,0 observation model for thith EAR component, de-

an associateql on-Iine_ Va_riational EM (VEM) identification rived using [BAR). = {ai,i = 1,...,c} are the (for

scheme. A wide application context is suggested. now) stationary component weights ang, denotes the re-
gression vectof (2) for théth candidate filteg; ... (5) may

2. EXTENDING THE AUTOREGRESSIVE (AR) be viewed as the marginal of the following switching model
MODEL which has been augmented by a hidden, uncorrelated label

processl;, indicating the active component at each time,

Consider am-dimensional observation proceds,c R"™*!,

t = 1,2,...,. The data history will be denotefd); = c
[d1,dy,...,d;]. The Extended AR (i.e. EAR) modeéll[2, 3]  f(d,,1,|A,Q, &, D;_1) = H [f (delA, Q0 2i0) f (L))
regresses &nown transformation,g,, of the current ob- =1

servation,d;, onto a setg,., of knowntransformations of (7



Here,l;, = [ll,t,...,lc’t]’, being one of the-dimensional

elementary vectors,. (i), ¢ = 1,...,c. The distribution is
assumednultinomiall2]: f (Ii|ex) = Mu (er) = []_, o}

3. BAYESIAN RECURSIVE INFERENCE

The EAR model[(BJ4) is the broadest class for which may
RLS-style [5] on-line estimation is feasible. The equivalent

the Variational Bayes (VBprocedure to identify the opti-
mal such approximation, being the one which minimizes
the Kullback-Leibler Divergence (KLD) [4] of (24) to the
true posterior[(7]2). These VB marginals are found to be:

Bayesian perspective is to evaluate the posterior inference,

f(A,Q|Dy), Vi, exploiting the key fact that th&lormal-
Wishart (VW) distribution [2]) is conjugateto the EAR
model [3) It is updated as follows:

NW (A, QV, 1) o

O(f(dt|A7Qathl)NW(A7QH/;§71th71)7 (8)

with the first term on the right-hand side being given by
F4). In [8),V: andv, are thesufficient statisticswith up-
dates as follows, > ¢:

Vi=Vici+zizg, vi=v1+ 1 9)

The first posterior moments (means) pf (8)(A, Q|D,),

correspond to the classical solution of the normal equations

via the covariance method|[1] (hefé;  is ther x r upper-
left sub-block of matrix/;):

1

A = VI Vvl O =——— A7' (10
t ad,taa,t> t ve—p+r+1 t 7( )
where
|7 V! _
V= { Vdd,t Vad,t } A= Vaar — VigVaaVads-
ad,t aa,t
(11)

Bayesian conjugacy is lost in the MEAR observation
model [$). The BayesialV' )V data-updatd {8) in terms of
the MEAR observation moddT|(7) is:

f (Avﬂaaalt|Dt) X

X f(dtalt|A7Qva7Dt—1) f(Avﬂaa|Dt—1) . (12)

The auxiliary random variabld, is generated during the
data-updatingd (J2) violating the invariance property that dis-
tinguishes conjugacy.

4. VB-CONJUGACY FOR THE MEAR MODEL

Consider the approximate factorization [of|(12) into a prod-
uct of independent terms:

F(AQ a LDy ~ f (A Q a|Dy) f(L|Dy). (13)

F(A,QD) = NW Vi), (14)
{(Q‘Dt) = Di(B)., (15)
fU|Dy) = Mu(w), (16)
with parameters
Vi = Viei+ > wjiziaz), 17)
j=1
Vi = V41 -+ ]., (18)
Bt = Pi-1+tw, (19)
1, 1A ~
Wi X \J»7t|exp[—§zj,t [—Ip,At] oF [—Ip,At} Zjt

(20)

1 1 —
_ip z;,tvaa,tzjat +1In ajt] ’

using (1), andira; = (3) v (X5_, 8; ) wherey (.
denotes di-gamma function. The mean vaIu (1@ is
[’U}l,t, ey wc,t]-

Crucially, then, the VB-marginal has conflated the ex-
act marginal into a singl&/»V component[(14), restoring
the necessary functional invariance for the MEAR param-
eter distribution at each time-step. This will be known as
VB-conjugacy

The VB scheme[(17)E(20) involves cross-coupling be-
tween the VB-moments, i.e@, ﬁ, thelfa\j andw;. Hence,
the scheme must be iterated to convergencefmhtime-
step. ThisVariational EM (VEM)algorithm [4] yields VB-
posteriors,[(14)£(16), as opposed to a point estimate (ML)
under the classical EM scheme. Hence, uncertainties asso-
ciated with posterior moments are readily available.

The VEM scheme may not be implementable on-line
in certain data contexts, since the number of iterations per
time-step required for convergence is not knosvpriori.

The MEAR model may be inferred without VEM cycles, if
optimization is confined only to the parameter distribution,
(A Q a|D,),in ), fixing the remaining term at an ap-
propriate choice. Two choices are now considered.

4.1. Quasi-Bayes (QB) Identification

The closed-form exact marginal ¢f (12) is used [3]:

[ (U|De, G) = f (14| Dy, G) o Ip; (Be—1 + 8. (4)) X
Inw (Vn—l + zi,tzL“ Vp—1+ ]-) 5 (21)

This forces a marginal to be available for the next update whereZ, andZp; are the closed-form normalizing con-

(12), without the need to marginalize ouMgr We employ

stants of theV)V andD; distributions[2]) respectively.



] ) -~ VB result
Table 1. Computational complexity for MEAR ldentifica-

tion (m: number of VEM iterations, for VB scheme). , Stenatsand reconstructions component weights (first outlicr)

[ algorithm [ complexity of one data-update | so T, oTTTTTT
VB m(2¢+1) x O((r+p)2) 0
QB 2c x O ((r+p)°) +cx O(r+p) .
VL (c+1)xO((r+p)?) +cxO(r+p)
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4.2. Viterbi-Like (VL) Identification QB result

In each time-step of VB identification; dyads, z; 2’ ,,
j =1,...,¢, are used to update the statistics|(17). Thisis o
unwarranted in cases where one of the dyadic weighs,

(20), is dominant, when the following certainty equivalence

assignment may be successful: _2
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fU|Dy,G) = §(1, —1™AF), (22) VL result
WA = argmax f (|D:, G),  (23) 1

[
<
=
S

1
i
using [21). Only the dyad corresponding to the inferred ac- 4 : 4
tive filter (component)/}AF, need be used in updafe [17) -1 £
at each time step. The computational complexities of the ’ 3
MEAR identification variants are compared in Tebje 1.
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4.3. Time-Variant Component Weights Fig. 1. Reconstruction of an outlier-corrupted AR(2) pro-
cess.
The assumption of i.i.d. MEAR component weightg/:|c)

may be relaxed, to yield a more realistic varying-weight o _ o
model reflecting changing observational regimes. In par- autoregressive imnobservedariabley; (3), which is ob-
ticular, the hidden label field may be modelled as a first- served via

order homogeneous Markov chain, complemenfing (12) by di =yt + htw‘%et. (25)
fll-1,Q) = TI7 ;1 qﬁff’l“‘l. Using VB-conjugacy

It proves convenient to model the outlier as a multiple of the
AR innovatione; (3), i.e. hy = h > 0 if an outlier occurs,
andh, = 0 otherwise. The outlier degrades estimation iff it
f(4,9,0, lf’ b—1|Dy) = } 3 enters the extended regresspr Sincez; is of finite length,

~ [ (A Q,Q|Dy) f (Li|Dy) f (Li—1|Dy) . (24) and since the outliers are isolated, it is easy to define a finite
number of mutually exclusive scenarigs [3]. For example,

The VB principle requires KLD minimization using all three  gp outlier-corrupted AR(2) process can be approximated by
terms as funCtional Variables. The Implled VEM SCheme in- a MEAR model with the fo”owing transformations:

volves the same summed-dyad updpté (17 ) as for the i.i.d. _
label case, but the dyadic weights; ; 20), are changed, ~ G1:21x = [di,di-1,di2] — ordinary AR model, _
with the last term in the expression being replaced by G222zt =y [di,di—1,di—2] AR model with higher noise

gy ; 2 -1
25:1 w;j—1lng; ;. The QB and VL procedures (Secti4.1 variancef w” -,

(24) once again:

’ . . Gs:z3.¢ = [dt, §r—1,dt— replacing 1-step-delayed out-
and[4.2 respectively) now require the fixing, as before, of ~~ " [des Grr, dis] qut) by egpectegvaluey
twofunctional variants, being the latter two terms[in|(24). &, . 2, = [d;, de—1, G_2)] replacing 2-step-delayed out-

put by expected value,

5. ESTIMATION OF AN AR MODEL ROBUST TO

hereg;_;, is an appropriaté-step delayed expectatian [3
OUTLIERS whereg,_, is an appropriaté-step delayed expectatidn [3]

of the uncorrupted AR process.

A scalar ¢ = 1) AR process of ordep is considered.

The presence of isolated outliers is not modelled by the AR Simulation Study A second-order stable AR model with
model because the outlier-affected observed value does noparameterst = [1.85, —0.95]’, w = 10, was simulated with
take part in the future regression. Instead the process isa random outlier on every 30th sample, alnd = h =
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Fig. 2. MEAR-based Speech Reconstruction.

10 (25), knowna priori. In Figure[], the degraded pro-

non-stationarity of the process. Markov filter dependence
(Sectior] 4.B) is assumed once again.

Reconstructed values, using the VB, QB and VL meth-
ods respectively, are displayed in Figlife 2. All three meth-
ods successfully suppressed the burst with Mean Squared-
Error (MSE) of reconstruction as follow34SEyg = 20 x
107%, MSEqg = 30 x 1074, andMSEyy, = 29 x 10~*.

Note that around sample 1450, there is a transition to un-
voiced speech, capable of misclassification as burst noise.
The VB reconstruction avoided this, but the QB and VL
methods tended to suppress the unvoiced speech (Figure
[2). The MSE of reconstruction between sam30-1500
was: MSEyg = 9 x 107%, MSEqg = 10 x 1074, and
MSEvy, = 8 X 1074,

7. CONCLUSIONS

The Variational Bayes (VB) procedure presented in this pa-
per enables on-line identification of the MEAR model. The
latter significantly extends the modelling potential of the
classical AR model. Three variants were presented: (i) the
full VB procedure, which requires Variational EM (VEM)
iterations at each time-step; (ii) the Quasi-Bayes (QB) pro-
cedure, which avoids VEM, and (iii) a Viterbi-Like (VL)
simplification which further reduces the computational com-
plexity per data-update. The VB procedure is optimal in the
KLD-minimization sense, and may have greater flexibility
in further model extensions to cope with Markov component
weights. It offered subtle performance improvements in the
examples presented, while all three variants succeeded in
cases where traditional AR modelling cannot cope.

cess is shown as the dotted line, along with the reconstruc-

tion (solid line). When an outlier occurs, all candidate fil-
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