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ABSTRACT

The AutoRegressive (AR) model is extended to cope with
a wide class of possible transformations and degradations.
The Variational Bayes (VB) procedure is used to restore
conjugacy. The resulting Bayesian recursive identification
procedure has many of the desirable computational proper-
ties of the classical RLS procedure. During each time-step,
an iterative Variational EM (VEM) procedure is required
to obtain the necessary moments. The procedure is used
to reconstruct an outlier-corrupted AR process and a noisy
speech segment. The VB scheme appears to offer improved
performance over the related Quasi-Bayes (QB) scheme in
the case of time-variant component weights.

1. INTRODUCTION

The AutoRegressive (AR) model has been important in many
contexts in DSP, notably all-pole modelling for speech [1].
Its attraction is the existence of fast recursive algorithms
which allow on-line estimation and prediction. Bayesian
on-line identification is preserved for the Extended AR (EAR)
model [2], while, recently, the Quasi-Bayes (QB) approxi-
mation was used for on-line identification of much richer
class, namely the Mixture-based Extension of the AR model
(MEAR) [3].

Recently, the on-line Variational Bayes (VB) method
was proposed as a general estimation paradigm [4], and ap-
plied to non-regressive mixture models. In this paper, VB
leads to a closed-form posterior for the MEAR model, and
an associated on-line Variational EM (VEM) identification
scheme. A wide application context is suggested.

2. EXTENDING THE AUTOREGRESSIVE (AR)
MODEL

Consider anr-dimensional observation process,dt ∈ <r×1,
t = 1, 2, . . . ,. The data history will be denotedDt =
[d1,d2, . . . ,dt]. The Extended AR (i.e. EAR) model [2, 3]
regresses aknown transformation,gy, of the current ob-
servation,dt, onto a set,gx, of knowntransformations of

past observations. Specifically, we define internal variables,
xt ∈ <p×1 andyt ∈ <r×1:

xt = gx (Dt−1,Wt) , (1)

yt = gy (Dt,Wt) , (2)

whereWt represents a possible known external (i.e. ex-
ogenous) variable, andgy is required to be an invertible,
r-to-r mapping fromdt to yt with non-zero Jacobian,Jt =
Jt (dt). Then, the EAR model declares that

yt = −Axt + et, (3)

f (et|Ω) = N
(
0r,Ω−1

)
, (4)

whereA ∈ <r×p is a matrix of unknown linear coefficients,
andet ∈ <r×1 is a zero-mean Gaussian white noise process
(innovations) with unknown precision matrix,Ω ∈ <r×r. In
the sequel, we denotezt = [y′t,x

′
t]
′ andg =

[
g′y, g

′
x

]′
, and

suppress the possibleWt-dependence (2) in the notation.
A mixture-based extension of the EAR model (i.e. the

MEAR model) has been proposed [3] in order to allow un-
certainty in respect ofg, via a finite set,G = [g1, . . . , gc],
of possible cases:

f (dt|A,Ω,α, Dt−1, G) =
c∑

i=1

αif (dt|A,Ω,xi,t) , (5)

where

f (dt|A,Ω,xi,t) = |Jt (dt)| N
(
−Axi,t,Ω−1

)
(6)

is the observation model for theith EAR component, de-
rived using (3,4,2).α = {αi, i = 1, . . . , c} are the (for
now) stationary component weights andxi,t denotes the re-
gression vector (2) for theith candidate filtergi,x. (5) may
be viewed as the marginal of the following switching model
which has been augmented by a hidden, uncorrelated label
process,lt, indicating the active component at each time,t:

f (dt, lt|A,Ω,α, Dt−1) =
c∏

j=1

[f (dt|A,Ω,xi,t) f (lt|α)]lj,t .

(7)



Here,lt = [l1,t, . . . , lc,t]
′, being one of thec-dimensional

elementary vectors,δc (i), i = 1, . . . , c. The distribution is
assumedmultinomial[2]: f (lt|α) = Mu (α) =

∏c
j=1 α

lj,t

j .

3. BAYESIAN RECURSIVE INFERENCE

The EAR model (3,4) is the broadest class for which may
RLS-style [5] on-line estimation is feasible. The equivalent
Bayesian perspective is to evaluate the posterior inference,
f(A,Ω|Dt), ∀t, exploiting the key fact that theNormal-
Wishart (NW) distribution [2]) is conjugateto the EAR
model (3) It is updated as follows:

NW (A,Ω|Vt, νt) ∝
∝ f (dt|A,Ω, Dt−1)NW (A,Ω|Vt−1, νt−1) , (8)

with the first term on the right-hand side being given by
(3,4). In (8),Vt andνt are thesufficient statistics, with up-
dates as follows,t > q:

Vt = Vt−1 + ztz
′
t, νt = νt−1 + 1. (9)

The first posterior moments (means) of (8),E (A,Ω|Dt),
correspond to the classical solution of the normal equations
via the covariance method [1] (here,Vdd is ther× r upper-
left sub-block of matrixVt):

Ât = V ′ad,tV
−1
aa,t, Ω̂t =

1
νt − p+ r + 1

Λ−1
t , (10)

where

Vt =
[
Vdd,t V ′ad,t

Vad,t Vaa,t

]
, Λt = Vdd,t − V ′ad,tV

−1
aa,tVad,t.

(11)
Bayesian conjugacy is lost in the MEAR observation

model (5). The BayesianNW data-update (8) in terms of
the MEAR observation model (7) is:

f (A,Ω,α, lt|Dt) ∝
∝ f (dt, lt|A,Ω,α, Dt−1) f (A,Ω,α|Dt−1) . (12)

The auxiliary random variable,lt is generated during the
data-updating (12) violating the invariance property that dis-
tinguishes conjugacy.

4. VB-CONJUGACY FOR THE MEAR MODEL

Consider the approximate factorization of (12) into a prod-
uct of independent terms:

f (A,Ω,α, lt|Dt) ≈ f̃ (A,Ω,α|Dt) f̃ (lt|Dt) . (13)

This forces a marginal to be available for the next update
(12), without the need to marginalize overlt. We employ

the Variational Bayes (VB)procedure to identify the opti-
mal such approximation, being the one which minimizes
the Kullback-Leibler Divergence (KLD) [4] of (24) to the
true posterior (12). These VB marginals are found to be:

f̃ (A,Ω|Dt) = NW (Vt, νt) , (14)

f̃ (α|Dt) = Di (βt) , (15)

f̃ (lt|Dt) = Mu (wt) , (16)

with parameters

Vt = Vt−1 +
c∑

j=1

wj,tzj,tz
′
j,t, (17)

νt = νt−1 + 1, (18)

βt = βt−1 + wt, (19)

wj,t ∝ |Jj,t| exp
[
−1

2
z′j,t

[
−Ip, Ât

]′
Ω̂t

[
−Ip, Ât

]
zj,t

−1
2
p z′j,tV

−1
aa,tzj,t + l̂nαjt

]
, (20)

using (10), and̂lnαj = ψ (βi)−ψ
(∑c

j=1 βj

)
, whereψ(·)

denotes di-gamma function. The mean value of (16) isl̂t =
[w1,t, . . . , wc,t].

Crucially, then, the VB-marginal has conflated the ex-
act marginal into a singleNW component (14), restoring
the necessary functional invariance for the MEAR param-
eter distribution at each time-step. This will be known as
VB-conjugacy.

The VB scheme (17)–(20) involves cross-coupling be-
tween the VB-moments, i.e.̂A, Ω̂, thel̂nαj andwt. Hence,
the scheme must be iterated to convergence foreachtime-
step. ThisVariational EM (VEM)algorithm [4] yields VB-
posteriors, (14)–(16), as opposed to a point estimate (ML)
under the classical EM scheme. Hence, uncertainties asso-
ciated with posterior moments are readily available.

The VEM scheme may not be implementable on-line
in certain data contexts, since the number of iterations per
time-step required for convergence is not knowna priori.
The MEAR model may be inferred without VEM cycles, if
optimization is confined only to the parameter distribution,
f̃ (A,Ω,α|Dt), in (24), fixing the remaining term at an ap-
propriate choice. Two choices are now considered.

4.1. Quasi-Bayes (QB) Identification

The closed-form exact marginal of (12) is used [3]:

f̃ (lt|Dt,G) = f (lt|Dt,G) ∝ IDi (βt−1 + δc (i))×
INW

(
Vn−1 + zi,tz

′
i,t, νn−1 + 1

)
, (21)

whereINW andIDi are the closed-form normalizing con-
stants of theNW andDi distributions [2]) respectively.



Table 1. Computational complexity for MEAR Identifica-
tion (m: number of VEM iterations, for VB scheme).

algorithm complexity of one data-update

VB m (2c + 1)×O
`
(r + p)2

´
QB 2c×O

`
(r + p)2

´
+ c×O (r + p)

VL (c + 1)×O
`
(r + p)2

´
+ c×O (r + p)

4.2. Viterbi-Like (VL) Identification

In each time-step of VB identification,c dyads,zj,tz
′
j,t,

j = 1, . . . , c, are used to update the statistics (17). This is
unwarranted in cases where one of the dyadic weights,wj,t

(20), is dominant, when the following certainty equivalence
assignment may be successful:

f̃ (lt|Dt,G) = δ
(
lt − lMAP

t

)
, (22)

lMAP
t = arg max

lt

f (lt|Dt,G) , (23)

using (21). Only the dyad corresponding to the inferred ac-
tive filter (component),lMAP

t , need be used in update (17)
at each time step. The computational complexities of the
MEAR identification variants are compared in Table 1.

4.3. Time-Variant Component Weights

The assumption of i.i.d. MEAR component weights,f (lt|α)
may be relaxed, to yield a more realistic varying-weight
model reflecting changing observational regimes. In par-
ticular, the hidden label field may be modelled as a first-
order homogeneous Markov chain, complementing (12) by
f(lt|lt−1, Q) =

∏c
i,j=1 q

li,t,lj,t−1
i,j . Using VB-conjugacy

(24) once again:

f (A,Ω, Q, lt, lt−1|Dt) ≈
≈ f̃ (A,Ω, Q|Dt) f̃ (lt|Dt) f̃ (lt−1|Dt) . (24)

The VB principle requires KLD minimization using all three
terms as functional variables. The implied VEM scheme in-
volves the same summed-dyad update (17 ) as for the i.i.d.
label case, but the dyadic weights,wj,t (20), are changed,
with the last term in the expression being replaced by∑c

j=1 wj,t−1 l̂n qi,j . The QB and VL procedures (Sections 4.1
and 4.2 respectively) now require the fixing, as before, of
two functional variants, being the latter two terms in (24).

5. ESTIMATION OF AN AR MODEL ROBUST TO
OUTLIERS

A scalar (r = 1) AR process of orderp is considered.
The presence of isolated outliers is not modelled by the AR
model because the outlier-affected observed value does not
take part in the future regression. Instead the process is
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Fig. 1. Reconstruction of an outlier-corrupted AR(2) pro-
cess.

autoregressive inunobservedvariableyt (3), which is ob-
served via

dt = yt + htω
− 1

2 et. (25)

It proves convenient to model the outlier as a multiple of the
AR innovationet (3), i.e. ht = h > 0 if an outlier occurs,
andht = 0 otherwise. The outlier degrades estimation iff it
enters the extended regressorzt. Sincezt is of finite length,
and since the outliers are isolated, it is easy to define a finite
number of mutually exclusive scenarios [3]. For example,
an outlier-corrupted AR(2) process can be approximated by
a MEAR model with the following transformations:

G1 : z1;t = [dt, dt−1, dt−2] ordinary AR model,
G2 : z2;t = 1

h
[dt, dt−1, dt−2] AR model with higher noise

variance,h2ω−1,
G3 : z3;t = [dt, ŷt−1, dt−2] replacing 1-step-delayed out-

put by expected value,
G4 : z4;t = [dt, dt−1, ŷt−2] replacing 2-step-delayed out-

put by expected value,

whereŷt−k is an appropriatek-step delayed expectation [3]
of the uncorrupted AR process.

Simulation Study A second-order stable AR model with
parametersA = [1.85,−0.95]′, ω = 10, was simulated with
a random outlier on every 30th sample, andht = h =
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Fig. 2. MEAR-based Speech Reconstruction.

10 (25), knowna priori. In Figure 1, the degraded pro-
cess is shown as the dotted line, along with the reconstruc-
tion (solid line). When an outlier occurs, all candidate fil-
ters should—by design—be sequentially used to remove the
outlier from the estimation formulae (17)-(19). This is achieved
almost exactly by the VB algorithm, Figure 1 (top right col-
umn). The QB and VL algorithms estimate the weights
less accurately, as displayed in Figure 1 (right column). A
Markov-dependent component sequence is assumed in the
MEAR identification procedure (Section 4.3).

6. RECONSTRUCTION OF SPEECH CORRUPTED
BY BURST NOISE

A section of thebbcnews.wav speech file, sampled at
11kHz, was corrupted by additive burst noise (Fig. 2). As
we do no know the variance of innovationsen, ht (25), is
assumed to beunknownthis time. Therefore, the MEAR
filter-bank was formed by one “direct” filter (modelling un-
corrupted process), and three Kalman Filters forh = 3,
h = 6 , andh = 10, respectively. The speech was modelled
as non-stationary AR withp = 8 (3). A forgetting technique
[2] (with forgetting factorφ = 0.95) was used to cope with

non-stationarity of the process. Markov filter dependence
(Section 4.3) is assumed once again.

Reconstructed values, using the VB, QB and VL meth-
ods respectively, are displayed in Figure 2. All three meth-
ods successfully suppressed the burst with Mean Squared-
Error (MSE) of reconstruction as follows:MSEVB = 20×
10−4, MSEQB = 30× 10−4, andMSEVL = 29× 10−4.

Note that around sample 1450, there is a transition to un-
voiced speech, capable of misclassification as burst noise.
The VB reconstruction avoided this, but the QB and VL
methods tended to suppress the unvoiced speech (Figure
2). The MSE of reconstruction between samples1450-1500
was: MSEVB = 9 × 10−6, MSEQB = 10 × 10−4, and
MSEVL = 8× 10−4.

7. CONCLUSIONS

The Variational Bayes (VB) procedure presented in this pa-
per enables on-line identification of the MEAR model. The
latter significantly extends the modelling potential of the
classical AR model. Three variants were presented: (i) the
full VB procedure, which requires Variational EM (VEM)
iterations at each time-step; (ii) the Quasi-Bayes (QB) pro-
cedure, which avoids VEM, and (iii) a Viterbi-Like (VL)
simplification which further reduces the computational com-
plexity per data-update. The VB procedure is optimal in the
KLD-minimization sense, and may have greater flexibility
in further model extensions to cope with Markov component
weights. It offered subtle performance improvements in the
examples presented, while all three variants succeeded in
cases where traditional AR modelling cannot cope.
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