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Abstract

Recent advances in computer hardware and virtual mod-
elling allow to respect view and illumination dependencies
of natural surface materials. The corresponding texture
representation in the form of Bidirectional Texture Func-
tion (BTF) enables significant improvements of virtual mod-
els realism at the expense of immense increase of material
sample data space. Thus introduction of some fast com-
pression, modelling and rendering method for BTF data is
inevitable. In this paper we introduce a generalisation of
our polynomial extension of the Lafortune model computed
for every original BTF measurement pixel allowing seam-
less BTF texture enlargement. This nonlinear reflectance
model is further extended using parameters clustering tech-
nique to achieve higher compression ratio. The presented
method offers BTF modelling in excellent visual quality as
was tested on variety of BTF measurements. The method
gives BTF compression ratio∼1:200 as well as fast graph-
ics hardware implementation.

1 Introduction

Realistic models of virtual reality require, among others,
naturally looking textures covering virtual objects of a ren-
dered scene. Applications of these advanced texture models
allow photorealistic material appearance approximation for
such complex tasks as visual safety simulations or interior
design in automotive / airspace industry or architecture.

One of the early attempts to capture real material ap-
pearance was done recently by Dana et al. [2] in the form
of Bidirectional Texture Function(BTF). BTF is a seven-
dimensional function which accounts also for viewing and
illumination measurement dependency on planar material
position.

BTF (r1, r2, r3, θi, φi, θv, φv) (1)

whereθ, φ are elevation and azimuthal angles of illumina-
tion and view direction vector (see Fig. 2),r1, r2 specify

planar horizontal and vertical position in material sample
image andr3 is the spectral index .

Figure 1. Two examples of car interior modelling. Images illus-
trate seven different materials approximated by means of proposed
reflectance BTF model (PLM-C). Mercedes-Class C 3D model
courtesy of DaimlerChrysler.

Figure 2. Relationship be-
tween illumination and view-
ing angles within texture co-
ordinate system.
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Figure 3. Light vector trajec-
tory above the sample. The light
starts at the top.

BTF measurement is very time consuming and such sys-
tems require high precision measuring setup hence only few
such systems exist up to now [2, 8, 18]. BTF appropriately
measured from real material samples offers enough infor-
mation about material properties, e.g., anisotropy, masking
or self-shadowing. In contrast to a regular 2D texture or
even to BRDF, BTF is high-dimensional and involves large
amounts of data. To render BTF on graphics hardware, its
compact representation is needed. Thus BTF database even
for simple VR scenes require enormous data space (TB).
Some compression and modelling method of these huge
datasets is inevitable. Such a method should provide com-
pact parametric representation and preserve main visual fea-
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tures of the original BTF, while enabling its fast rendering
taking advantage of the contemporary graphics hardware.

The first group of BTF modelling methods represents
BTF by means of pixel-wise analytical BRDF models.
McAllister et al. [14] represented BRDF of each pixel in
BTF using the Lafortune reflectance model (LM) [10]. An
extension of this approach was published by Daubert et
al. [3]. Spatial inconsistency of individual pixels in BTF
for different view directions led into separate modelling of
individual view positions. Malzbender et al. [13] repre-
sented each pixel in BTF by means of per-pixel polynomi-
als. Meseth et al. [15] exploited pixel-wise LM computed
for each view separately.

The second type of BTF compression methods is based
on standard PCA statistical approach. Koudelka et al. [8]
ordered individual BTF sub-images into vectors of ma-
trix. The corresponding symmetric matrix was created and
subsequently decomposed using SVD. Authors preserved
150 main eigen-images for satisfactory BTF reconstruction.
Vasilescu et al. [20] decomposed BTF space, ordered into
tensor, by means of multi-modal SVD. This method en-
ables controllable BTF compression separately in viewing
and illumination axes and demonstrates better performance
with the same number of components as the previous ap-
proach. Even though, both methods enable realistic BTF
rendering, they are not suitable for fast rendering applica-
tion since they require to compute the linear combinations
of high number of eigen-components. A much faster ap-
proach was presented by Sattler et al. [18]. Authors com-
puted PCA for individual reflectance fieldsRv instead of
the whole BTF dataspace. This approach resulted in 16
eigen-images per one view position, which can be easily
interpolated by means of graphics hardware. Müller et al.
[16] exploited a vector quantisation of BTF data-space and
each resulted cluster was represented by a local PCA model.
The method combining sparse set of BTF measurements ac-
cording to enlarged material range-map was developed by
Liu et al.[11]. The same author presented later in [12] an-
other model similar to [16]. This method exploits technique
of 3D textons, i.e., the smallest repeatable texture elements .
Only these textons are then approximated using local PCA
and finally used for a surface modelling. The main draw-
back of the above mentioned methods is that they do not
allow BTF synthesis of arbitrary size, i.e. the texture en-
largement. Finally a group of probabilistic BTF models
was recently proposed [6], [7]. These methods allow un-
limited texture enlargement, BTF texture restoration, huge
BTF space compression and even modelling of unseen BTF
data. However, such models are non trivial and they suffer
with several unsolved mathematical problems .

In this paper we present a generalisation of our re-
flectance model [5] enabling BTF enlargement and signifi-
cant improvement of BTF compression ratio.

This paper is organised as follows. The proposed BTF
model is described in Section 2, the parameter space en-
largement is described in Section 3 and the parametric space
compression using the K-means clustering is subject of Sec-
tion 4. Following sections shows results of the proposed
model, discuses its properties and concludes the paper.

2 Reflectance BTF Model

The BTF measurements comprehend the whole hemi-
sphere of light and camera positions in the observed ma-
terial sample coordinates according to selected quantisation
steps. We used the Bonn University BTF dataset [18]. Fig.3
illustrates directional illumination source course above the
sample for fixed view position. This BTF dataset contains
6561 images per texture sample (81 view and 81 illumina-
tion positions). All images are rectified to head-on view
position (θv = 0o, φv = 0o) and resampled to obtain norm-
textures of size800 × 800 pixels. Different view measure-
ments suffer with registration errors even after the rectifi-
cation process due to self-occlusion. Therefor the correct
way how to model such a real measurements is to model
each BTF subset comprehending all images obtained for a
fixed view position. Such a BTF subspace for a view di-
rectionωv is a 5D function calledSurface Reflectance Field
Rv(r1, r2, r3, θi, φi) which describes the radiance of the
surface pointr = (r1, r2, r3) wherer1, r2 are planar coor-
dinates on a sample andr3 is the actual spectral band.

Single surface reflectance fields (R) (i.e., 81 images -ni)
for an actual view positionv can be per-pixel modelled us-
ing nl-lobe Lafortune model [10] described in the formula

Yv(r, i) =
nl∑

k=1

ρk,v,r(ωT
i Dk,v,r)nk,v,r (2)

whereωi(θi, φi) = [ux, uy, uz]T is a unit vector pointing
to light and parametrised by the illumination elevation and
azimuthal angles[θi, φi] respectively (see Fig. 2). As a re-
flectance data the set of pixelsRv(r1, r2, r3, ωi) is consid-
ered, wherei = 1, ..., ni is the illumination position index
andv is the actual view position index ranging from 1 tonv.

The representation using this model (2) is compact and
memory efficient as each reflectance lobe is determined by
means of only five parametersρ,Dx, Dy, Dz, n. Pixel-wise
one-lobe LM simplifies to

Yi,v(r) = ρv(r)[Dv,x(r)ux+Dv,y(r)uy+Dv,z(r)uz]n(r) .
(3)

For every planar position and spectral channel in BTF all
the model parameters are estimated using the Levenberg-
Marquardt non-linear optimisation algorithm [17].

Although the original Lafortune model requires to store
only five parametric planes for each spectral channel per
lobe, its reflectance accuracy is erroneous for some com-
binations of illumination and viewing angles. Even using



more than one lobe, which is very time consuming process,
does not solve this problem. For this reason we generalised
this model with additional fitting scheme based on his-
togram matching technique adopted and extended for BTF
data and polynomial fitting as illustrated on the scheme in
Fig. 4. At the beginning the image cumulative histograms

Figure 4. Procedure of polynomial coefficients computation.

in all spectral channels are computed for both original BTF
image and its one-lobe LM estimation. These two cumula-
tive histograms are inputs to the histogram matching algo-
rithm giving mapping function from estimated image using
one-lobe LM to the original BTF image. The resulted map-
ping function between both cumulative histograms is ap-
proximated by means of polynomial using a least squares
fitting scheme to obtain polynomial coefficientsar3,v,i,j .
These coefficients are computed and stored for individual
colour channels of every BTF image.

The proposed polynomial extension of one-lobe LM
(PLM) (3) using coefficientsar3,v,i,j results in a novel
model expressed by the following formula

Ỹi,v(r) =
np∑

j=0

ar3,v,i,jYi,v(r)j , (4)

wherear3,v,i,j are polynomial parameters specifying map-
ping function between histogram values of imageYi,v(r)
synthesised from one-lobe LM’s parameters and original
BTF image and(np − 1) is a rank of this polynomial. Sat-
isfactory results were obtained already withnp = 5. Thus
additional fifteen float numbers have to be stored with each
BTF image which are negligible to the size of LM paramet-
ric planes.

Besides, individual mapping functions can be efficiently
interpolated with respect to illumination direction so during
final rendering the BTF synthesis is obtained by means of
barycentric interpolation of PLM results for three closest
measured view directionsv only.

3 Parametric Planes Enlargement

Reflectance models can only model previously measured
BTF pixels. Thus some form of the model parameter planes

enlargement is inevitable when an object has to be cov-
ered by BTF. A simple seamless one parametric tile repe-
tition can provide satisfactory solution for regular types of
textures. Non-regular textures, such as skin or wood, re-
quire more elaborated enlargement approach such as ran-
dom field based synthesis methods [7] or advanced sam-
pling methods. There is a variety of image-based texture
sampling methods published recently [4, 1]. In this paper
we use the image tiling method based on the image stitch-
ing introduced in [19]. The idea of stitching is based on the
minimum error boundary cut. The principle of the stitch-
ing procedure is demonstrated in Fig. 5. The minimum

Figure 5. Image stitching. The source image is cropped from
the right along the minimum error path and placed over the target
background image.

sub-optimal [19] error path is constructed to lead through
the error map which represents the visual difference be-
tween source and target for each pixel of the overlapping
region. This algorithm is used as a fast alternative to the
slow optimal path search procedures (e.g., using the the
dynamical programming). The algorithm has linear com-
plexity O(kn) with n depicting the number of pixels andk
the number of user-specified algorithm iterations. In con-
trary, the most effective optimal algorithm implementations
achieveO(n log n). This method is a step-wise procedure
that sequentially improves some actual solution and thus it
can be stopped at any moment to yield a usable result. If
the algorithm is unable to find a good path through the error
map, resulting visible artifacts are diminished by the adap-
tive boundary blending of individual paths. The idea is to
interpolate between the overlapped source region to the tar-
get with a locally adjusted intensity while utilising the min-
imum error path. Additional tiles can be created by mak-
ing a copy of the template tile and subsequently covering
its inner area by patches taken from different positions in
the source texture image. BTF tiling is complex task as the
stitch should appear consistent in all BTF planes. To de-
crease the computational complexity of such an extensive
data processing we adopted a two-stage process. In the first
stage we only determine the stitching and other parameters
to be used later for actual tile creation. For this purpose only
a few sample parametric images are taken (prepared in full
size, i.e.,800× 800 pixels) to represent different azimuthal
and elevation view positions. The optimal stitching paths
are found in this subset of parametric images. In the sec-
ond stage the complete parametric BTF data are processed
using the pre-computed stitching parameters. Once all tiles



become available, the final parameters of the proposed LM
are computed based on the parametric tiles. This procedure
saves considerable computational demands of Lafortune pa-
rameters estimation algorithm.

4 Compression of Parametric Planes

Using the BTF tiling approach of PLM parametric planes
described above we were able to achieve the maximal com-
pression ratio of a real BTF data about1

20 depending on
the resolution of parametric tiles. This compression is in-
sufficient because it still requires to store several hundreds
megabytes of data per material. To reduce the storage space
while maintaining the computational cost and keeping vi-
sual quality almost the same, the parameter clustering was
incorporated into the model. The individual PLM paramet-
ric planes for each reflectance field are segmented and only
cluster indices and model parameters corresponding to the
individual clusters are saved for each RGB spectrum. The
number of clusters for each spectrum is set to 256 to enable
reproduction of 256 different grayscale levels. Thus the the-
oretical number of colour hues within this setup is2563.

The whole PLM parameter segmentation procedure is
performed for each reflectance fieldRv separately and it
works as follows. At the beginning the K-means segmen-
tation algorithm is employed using original pixels from all
81 images corresponding to actualRv as data features. The
segmentation cannot be performed directly on model pa-
rameters as these individual parameters have strong non-
linear impact on the restored pixel value and any general
weights cannot be attached to them.

The K-means segmentation process is computationally
very demanding and the segmentation of 10 parametric tiles
of resolution64× 64 for all 81 reflectance fields takes sev-
eral hours. To reduce the computational time we have de-
creased the size of feature vectors from 81 to approximately
20. To choose an appropriate subset of images bearing the
most different information from the already selected im-
ages we used an algorithm based on the Kullback-Leiber
distance [9] between histograms of individual 81 BTF im-
ages.

When the segmentation is finished we obtain cluster in-
dicesIv(r1, r2, r3) for the individual colour spectrar3 of
each reflectance fieldRv. Cluster indices are stored in form
of colour images of original parameter images resolution,
i.e., in each colour channel we store the corresponding clus-
ter index. An important product of segmentation is the ta-
ble containing individual cluster centersKv(c) wherec is
the cluster index. For each cluster five PLM parameters are
stored for individual colour channels.

The final synthesis is straightforward. The parameters
ρ,DX , DY , DY andn of the original model (3) are com-
puted as

Figure 6. The mean average error (MAE) of clustered one-lobe
lafortune model (LM-C – blue line) and its clustered polynomial
extension (PLM-C – red line) compared with non-clustered vari-
ants LM and PLM (dash-dot lines) for all 81 reflectance fields of
two BTFs:wool andwood01.

D(r)v,X = Kv,2(Iv(r))
ρ(r)v = Kv,1(Iv(r)) D(r)v,Y = Kv,3(Iv(r))
n(r)v = Kv,5(Iv(r)) D(r)v,Z = Kv,4(Iv(r))

.

We refer to this clustered polynomial extension of the
reflectance model as PLM-C in the following text. The syn-
thesis based on the described approach is quite fast, requir-
ing the look-up index tables only which can be implemented
using standard OpenGL features.

Using this approach the storage size of model parame-
ters reduces considerably since only one colour paramet-
ric look-up image and several cluster parameters have to be
stored (check the columns 4,5 Tab. 2). The rendering speed
for PLM-C is higher than for PLM since only 256 clusters
(pixels) have to be computed for each spectral channel in-
stead of five parametric planes.

Table 1. The MAE of the synthesised BTFs for one-lobe Lafor-
tune model (LM), its polynomial extension (PLM) and clustered
polynomial extension (PLM-C).

MeanAverageError
material LM PLM PLM-C

wool 0.058 0.037 0.038
proposte 0.054 0.052 -
fabric01 0.058 0.036 0.038
fabric02 0.053 0.032 0.033
foil01 0.067 0.021 0.023
foil02 0.048 0.020 0.023
leather02 0.032 0.018 0.021
wood01 0.047 0.030 0.031
wood02 0.058 0.035 0.038

5 Results

For the sake of the BTF results comparison the standard
mean average pixel-wise error (MAE) between original data
(Y ) and estimated data (Ŷ ) was used. Fig. 6 shows the er-
ror curves (MAE) for individual test materials. For each
material the MAE is computed for all 81 view positionsRv

(depicted onx axis) of clustered one-lobe Lafortune model
(LM-C, blue solid line) and its clustered polynomial exten-
sion (PLM-C, red solid line) are compared with the corre-



Figure 7. A part of a car armrest covered with BTFs. Tiled original BTF data (first row), results of one-lobe LM (second row), proposed
one-lobe PLM (third row) and proposed one-lobe PLM-C (fourth row) for seven different materials:fabric01, fabric02, foil01, foil02,
knitted wool, wood01, wood02.

Figure 8. A part of car gearbox covered using four BTFs:foil01, wood01andfoil02, wood02. The first column illustrates original tiled
BTF data, the second column depicts approximation using one-lobe LM, the third column is result of proposed one-lobe PLM model, the
fourth column shows result of proposed clustered PLM-C model.

Table 2. The storage size of the proposed PLM and PLM-C in
comparison with size of the raw BTF data and their tiled represen-
tation.

storage size in MegaBytes
material raw 10 BTF PLM PLM-C tile size

BTF tiles [pixels]
wool 733.3 103.4 33.5 4.3 25×25
fabric01 6766 87.1 24.9 2.9 21×23
fabric02 5863 77.5 24.1 4.0 19×23
foil01 5190 728.1 406.8 19.2 86×96
foil02 5065 527.5 296.7 13.8 74×79
leather02 5074 659.7 381.0 18.6 86×87
wood01 5330 1333.2 771.8 31.8 122×125
wood02 5083 2405.0 973.4 29.1 137×142

sponding non-clustered variants of LM and PLM (both de-
picted as dash-dot line). Individual reflectance fields are or-
dered according to camera position circular movement from

top to bottom of a hemisphere above the observed mate-
rial as illustrated in Fig. 3. The overall MAE values of all
tested materials were computed as averaged MAE of all re-
flectance fields and are are shown in Tab. 1 in contrast to
the corresponding values of non-clustered PLM. The MAE
for PLM-C is slightly higher in comparison with PLM but
this higher error is well counterbalanced by the model size.
The number of parameters to be stored have been reduced
using the proposed parameter clustering at least ten times
in contrast to the non-clustered PLM as it is evident from
the fifth column of Tab. 2. The storage size of one-lobe
LM is almost the same as PLM one. The tile resolutions
for individual materials are listed in this table as well. A
part of a car armrest in the Fig. 7 is covered by seven
tested BTFs approximated by means of the proposed mod-
els. The first row represents armrest covered by the original
tiled BTF measurements, while the second row represents
BTF data approximated using the one-lobe LM, the third



row shows results of the proposed one-lobe PLM and fi-
nally the fourth row shows result of the proposed clustered
one-lobe PLM-C. According to graphs in Fig. 6 the images
in the second row are dim and less contrast (materialsfab-
ric02, foil02) loosing information in dark parts as it is appar-
ent, e.g., forfoil01 material in comparison with the original
BTF data in the first row. Similarly a part of car gearbox
is covered by several distinct BTFs in Fig.8. One can ob-
serve obviously better preservation of visual quality while
the memory and time requirements of proposed method are
comparable to simple pixel-wise one-lobe Lafortune model.
Fig. 1 depicts two distinct examples of car interior covered
by seven different BTFs.

6 Conclusions

The proposed BTF modelling approach is based on the
polynomial extension and the texture enlargement general-
isation of the pixel-wise Lafortune reflectance model com-
puted for individual spectral channel for every pixel. This
model uses only one reflectance lobe while the remaining
fitting is done by means of the polynomial extension of
one-lobe Lafortune model. Using of one-lobe model con-
siderably reduces the number of model parameters which
have to be stored. Moreover, the memory requirements of
introduced polynomial coefficients are negligible in com-
parison to Lafortune parameters. The proposed reflectance
model has similar computational requirements as the pixel-
wise one-lobe Lafortune model while using only few addi-
tional linear operations so it can be easily implemented in
current advanced graphics hardware. To enlarge BTF tex-
tures to arbitrary size we apply our sampling based method
to model parametric planes. The model’s BTF compres-
sion ratio even more increased using parametric clustering
which enables ratios∼ 1

2·102 whereas the computational re-
quirements remain similar. The results of this model show
its excellent visual performance for all tested BTFs even for
materials with complicated underlying structure .
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