Graph flip processes related to dynamical systems

Matas Šileikis (Institute of Computer Science AV CR)

Abstract We define a discrete-time "graph flip process" starting with an arbitrary *n*-vertex graph G_0 . At each step, G_i is obtained from G_{i-1} by modifying a subgraph induced by a uniformly chosen set of k vertices (with k fixed) according to a predefined rule that depends only on the structure of the induced subgraph. For example, the rule might be "if the subgraph is a clique, remove its edges" or "replace the subgraph with a random graph regardless of its structure".

Fixing a constant T > 0, we analyze the concentration of trajectories (G_0, \ldots, G_{Tn^2}) as $n \to \infty$ using the theory of dense graph limits. We show that the mean trajectory can be interpreted as a solution to a dynamical system on the space of graphons, which are functions in $L^{\infty}([0, 1]^2)$.

We also describe properties of several specific processes, including the Erdős–Rényi process and the triangle removal process, and pose a couple of open questions related to these processes.

Joint with P. Araújo (CSI CAS), F. Garbe (MU Brno), J. Hladký (CSI CAS), E.K. Hng (CSI CAS), F. Skerman (Uppsala U).

References

- Garbe, F., Hladký, J., Sileikis, M., Skerman, F. From flip processes to dynamical systems on graphons, arXiv:2201.12272.
- [2] Araújo, P., Hladký, J., Hng, E.K., Šileikis, M., Prominent examples of flip processes, arXiv:2206.03884.