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Chapter 1

One-dimensional voter models

1.1 The voter model

Let Λ be a countable set and let {0, 1}Λ be the space of all configurations
x = (x(i))i∈Z of zeros and ones on Λ. We will be interested in continuous-
time Markov processes (Xt)t≥0 with state space {0, 1}Λ. We call Xt(i) the
type of the site i ∈ Λ at time t ≥ 0. Let (Πi)i∈Λ an i.i.d. collection of rate one
Poisson subsets of R and let p be a probability kernel on Λ. The voter model
on Λ with kernel p is the continuous-time Markov process (Xt)t≥0 taking
values in {0, 1}Λ with the following informal description:

Each site i adapts at each time t ∈ Πi the type of a random
neighbour, chosen according to the probability law p(i, · ).

More formally, such a process can be constructed as follows. For each i, j ∈ Λ,
we define a voter model map votji : {0, 1}Λ → {0, 1}Λ by the formula:

votji(x)(k) :=

{
x(j) if k = i,

x(k) otherwise.
(1.1)

The effect of this map is that the site i adapts the type of the site j. We set
G :=

{
votji : i, j ∈ Λ} and define a measure ρ on G × R by

ρ
(
{votji} × [s, t]

)
:= p(i, j)(t− s) (i, j ∈ Λ, s, t ∈ R, s ≤ t). (1.2)

We let ω be a Poisson point set of G × R with intensity measure ρ, i.e., ω
is a random subset of G × R such that the number of elements of ω ∩ A is
Poisson distributed with mean ρ(A) for each measurable A ⊂ G × R such
that ρ(A) < ∞, and if A1, . . . , An are disjoint, then the random variables
ω ∩A1, . . . , ω ∩An are independent. Note that elements of ω are of the form
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6 CHAPTER 1. ONE-DIMENSIONAL VOTER MODELS

(m, t) with m ∈ G and t ∈ R. We can now apply [Swa22, Thm 4.19] to
conclude that almost surely, for each x ∈ {0, 1}Λ and s ∈ R, there exists a
unique function [s,∞) ∋ t 7→ Xt ∈ {0, 1}Λ such that t 7→ Xt(i) is piecewise
constant and right continuous for each i ∈ Λ, and

Xs = x and Xt =

{
m(Xt−) if (m, t) ∈ ω for some m ∈ G,
Xt− otherwise,

(1.3)

where Xt−(i) := limr↑tXr(i) (i ∈ Λ) denotes the state at the site i just before
time t, and Xt− = (Xt−(i))i∈Λ. Since the Lebesgue measure on R is atomless,
it almost surely never happens that two elements of ω have the same time
coordinate, so this equation is well-defined. By [Swa22, Thm 4.19] it almost
surely has a unique solution for each x ∈ {0, 1}Λ and s ∈ R simultaneously,
so we can define random maps (Xs,t)s≤t from {0, 1}Λ into itself by

Xs,t(x) := Xt where (Xt)t≥s solves (1.3). (1.4)

These random maps form a stochastic flow, which means that

Xs,s = 1 and Xt,u ◦Xs,t = Xs,u (s ≤ t ≤ u),

where 1 denotes the identity map. If X0 is a random variable with values in
{0, 1}Λ, independent of ω, then by [Swa22, Thm 4.19], setting

Xt := X0,t(X0) (t ≥ 0) (1.5)

defines a Markov process (Xt)t≥0 with values in {0, 1}Λ. We will call this the
voter model with kernel p. Let

Pt(x, · ) := P
[
X0,t(x) ∈ ·

] (
x ∈ {0, 1}Λ, t ≥ 0) (1.6)

denote its transition kernels. We equip {0, 1}Λ with the product topology
and we equip the space M1({0, 1}Λ) of probability measures on {0, 1}Λ with
the topology of weak convergence. Then {0, 1}Λ is compact by Tychonov’s
theorem and consequently M1({0, 1}Λ) is compact by Prohorov’s theorem.
We let C({0, 1}Λ) denote the space of all continuous functions f : {0, 1}Λ →
R, equipped with the supremumnorm. We associate a probability kernel K
on {0, 1}Λ with the linear operator K : C({0, 1}Λ) → C({0, 1}Λ) defined by

Kf(x) :=

∫
K(x, dx)f(y).

Now [Swa22, Thm 4.19] tells us that



1.2. ONE-DIMENSIONAL VOTER MODELS 7

(i) the map (x, t) 7→ Pt(x, · ) from {0, 1}Λ × [0,∞) to M1({0, 1}Λ) is con-
tinous,

(ii) P0 = 1 and PsPt = Ps+t (s, t ≥ 0),

where 1 denotes the identity map from C({0, 1}Λ) into itself and PsPt denotes
the composition of Ps and Pt, viewed as linear operators. The conditions
(i) and (ii) say that the transition kernels (Pt)t≥0 form a Feller semigroup.
General theory tells us that each Feller semigroup is uniquely characterised
by its generator, which is the linear operator G : D(G) → C({0, 1}Λ) defined
by

Gf(x) := lim
t→0

t−1
(
Ptf − f

)
, (1.7)

where by definition, the domain D(G) of G is the set of all functions f ∈
C({0, 1}Λ) for which the limit in (1.7) exists with respect to the supremum-
norm. By [Swa22, Thm 4.30], the generator of the voter model is given
by

Gf(x) =
∑
i,j∈Λ

p(i, j)
{
f
(
votji(x)

)
− f

(
x
)} (

x ∈ {0, 1}Λ
)
, (1.8)

which is defined first for functions f that depend on finitely many coordinates,
and then for more general functions by taking the closure of the operator
whose domain are the functions depending on finitely many coordinates. We
refer to [Swa22, Section 4.4] for details.

What is important for us is that the evolution equation (1.3) makes our
informal description of the voter model at the beginning of this section rig-
orous. More precisely, let (Πi)i∈Λ as before be an i.i.d. collection of rate one
Poisson subsets of R. Conditional on (Πi)i∈Λ, independently for each (i, t)
with t ∈ Πi, we can choose a random j ∈ Λ according to the probability
law p(i, · ). Then one can check that the collection of all pairs (votji, t) with
t ∈ Πi and j random as just described, forms a Poisson point process on
G×R with intensity ρ as in (1.2). Thus, our formal construction of the voter
model coincides completely with the informal description given before.

1.2 One-dimensional voter models

We will exclusively be interested in the case that Λ = Z, the one-dimensional
integer lattice. In pictures, we draw space Z horizontally, we draw time R
vertically, and for each element (votji, t) of the Poisson set ω we draw an
arrow from the space-time point (j, t) to the space-time point (i, t). We will
later need to distinguish several types of arrows that represent different sort
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of maps. For reasons that will become more clear later, we will represent the
voter map by an arrow with a black rectangle at its tip:

With this convention, a piece of the Poisson set ω could look like this:

time

space

In this example, the kernel p is the nearest-neighbour kernel

p(i, j) :=

{
1
2

if |i− j| = 1,

0 otherwise,
(1.9)

which has the effect that arrows only join sites at distance one from each
other. Starting from an initial state X0 ∈ {0, 1}Z, we can find the solution
(Xt)t≥0 of the evolution equation (1.3) by applying the right maps at the
right times:

h

time Xt

X0

0 1 1 1 1 1 0 0 0 1

0 1 1 0 0 0 0 0 0 1
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This construction is called the graphical representation of the voter model.
More abstractly, we also refer to the Poisson set ω as the graphical repre-
sentation of the voter model. It is quite easy to simulate a voter model on a
computer. In the following picture, a space-time point (i, t) is white or black
depending on whether Xt(i) = 0 or = 1. The initial state X0 is chosen such
that X0(i) = 1 for all i ≤ 0 and X0(i) = 0 for i > 0.

It is easy to see that the boundary between the ones and zeros evolves
like a continuous-time random walk that jumps with Poisson rate 1

2
one step

to the left and with Poisson rate 1
2
one step to the right. Therefore, by

Donsker’s invariance principle, if we rescale space by a factor ε, time by a
factor ε2, and send ε → 0, then the boundary between the ones and zeros
should converge to a standard Brownian motion, as can already be seen a bit
from the following larger picture.
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Things get a bit more complicated when we allow for more general initial
states. In the following picture, the random variables (X0(i))i∈Z are i.i.d. and
uniformly distributed on {0, 1}. We have used periodic boundary conditions,
i.e., we have replaced Z by Z/N for some large value of N (in this picture,
N = 300).

In this picture, the boundaries between zeros and ones evolve like anni-
hilating random walks, which in the limit should converge to annihilating
Brownian motions. A slight complication is that in the limit, these annihi-
lating Brownian motions start from every point in space, which raises the
question whether the process is well-defined. The simulations suggest this is
the case, and the process “comes down from infinity”, in the sense that at
each positive time, the density of boundaries is already finite. We can also
define voter models with more than two types. In the following picture, each
site in the lattice originally has a different colour. The boundaries between
these colours now evolve like coalescing random walks, or in the limit, as
coalescing Brownian motions.
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In all these simulations, we used the nearest-neighbour kernel. If instead
we use the range two kernel

p(i, j) :=

{
1
4

if 1 ≤ |i− j| ≤ 2,

0 otherwise,

then the picture gets more messy:

Nevertheless, the simulations suggest that on a sufficiently large scale, the
limit should be the same as before, namely annihilating Brownian motions
starting from each point in space. We will see that this is indeed true. In
fact, it has been proved that the limit is universal, as long as the kernel p
has mean zero and a finite (3 + ε)-th moment.

1.3 Dual coalescing random walks

We have already seen that there is a close relation between one-dimensional
voter models and systems of annihilating or coalescing random walks, because
the latter describe the boundaries between intervals in which all sites have
the same type. In the present section, we will see that voter models are
related to coalescing random walks in yet another way, that is not restricted
to one dimension. If we want to know the state of a site i at a time t, then
the obvious thing to do is to look back in the graphical representation how
this site got its type:
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?
time

space

This means that starting from the space-time point (i, t), we walk till
the last time when the tip of an arrow indicates that the site i copied the
type of another site j. From that time on, we follow the site j back in time
till the last time it changed its type and so on. Paths started from different
space-time points coalesce as soon as they meet:

? ?
time

space

In this way, the graphical representation of the voter model can be used
to construct a system of coalescing random walks, where each individual path
is a continuous-time random walk that jumps with Poisson rate p(i, j) from
a site i to another site j.

It will be useful to view this system of coalescing random walkers as an
interacting particle system in its own right. To this aim, we turn the graphical
representation of the voter model upside down and reverse the direction of
all arrows. We interpret an arrow from (i, t) to (j, t) of the form as
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saying that at this time, the coalescing random walk map should be applied,
which is defined as

rwij(y)(k) :=


0 if k = i

y(i) ∨ y(j) if k = j

y(k) otherwise.

(1.10)

Here, we interpret sites of type 1 as occupied and sites of type 0 as empty.
Then the map rwij has the effect that if there is a particle at i, then this
particle moves to j, coalescing with any particle that may already be present
on that site. We obtain a graphical representation ω̂ for a Markov process
(Yt)t≥0 with values in {0, 1}Z by setting

ω̂ :=
{(

rwij, t
)
:
(
votji,−t

)
∈ ω

}
, (1.11)

which corresponds to reversing time and replacing voter model maps by co-
alescing random walk maps. In a picture, the construction looks like this:

h

time

Y0

Yt

0 1 1 1 1 1 1 1 0 0

0 0 1 0 0 0 1 0 0 0

This construction is well-defined by exactly the same theorems that we
cited in case of the voter model. One can check that ω̂ is a Poisson set and
that the generator H of the Markov process (Yt)t≥0 is given by

Hf(y) :=
∑
i,j∈Λ

p(i, j)
{
f
(
rwij(y)

)
− f

(
y
)} (

y ∈ {0, 1}Λ
)
.

Here is a simulation of the process started form the fully occupied initial
state:



14 CHAPTER 1. ONE-DIMENSIONAL VOTER MODELS

1.4 Adding branching and deaths

We can make our processes more interesting, but also more complicated, by
adding two additional maps. We define a branching map braij and death
map dthi by

braij(x)(k) :=

{
x(i) ∨ x(j) if k = j,

x(k) otherwise,
(1.12)

and

dthi(x)(k) :=

{
0 if k = i,

x(k) otherwise,
(1.13)

with i, j ∈ Z. In graphical representations, we represent the application of

the branching map braij at a time t by a normal arrow H from (i, t) to
(j, t), and we represent the application of the death map dthi at some time t

by a “blocking symbol” H . A graphical representation that contains voter
model maps, branching maps, ad death maps then could look like this:
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h

time

X0

Xt

0 0 0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 0 0 0

This is a good point to explain the reason why we have depicted voter
model maps, coalescing random walk maps, branching maps, and death maps
as we did. By definition, an open path in a graphical representation is a
piecewise constant, right-continuous function γ : [s, u] → Z such that:

(i) If γ(t) ̸= γ(t−), then there is an arrow from (γ(t−), t) to (γ(t), t).

(ii) If γ(t) = γ(t−), then there is no blocking symbol at (γ(t), t).

We call (γ(s), s) the starting point of the path γ and (γ(t), t) its endpoint.
We also say that γ is an open path from (γ(s), s) to (γ(t), t). With these
conventions, one can check that for a voter model (Xt)t≥0 with additional
branching and deaths

Xt(j) = 1 ⇔ there is an open path from a point

(i, 0) with X0(i) = 1 to (j, t),
(1.14)

and a similar statement holds for systems of coalescing random walks (Yt)t≥0

with additional branching and deaths. Given a graphical representation ω
for a voter model with additional branching and deaths, we can construct
a graphical representation ω̂ for a system of coalescing random walks with
additional branching and deaths according to the recipe:

(i) If ω contains an arrow from (i, t) to (j, t), then ω̂ contains an arrow
from (j,−t) to (i,−t).

(ii) If ω contains a blocking symbol at (i, t), then ω̂ contains a blocking
symbol at (i,−t).
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Even more briefly, this can be described as: reverse time, reverse the direc-
tion of all arrows, and keep the blocking symbols. This generalises out earlier
definition in (1.11). We can use the graphical representation ω to construct
a stochastic flow (Xs,u)s≤u that describes how the Markov process X evolves
between two given times, and similarly we can use the graphical representa-
tion ω̂ to construct a stochastic flow (Ys,u)s≤u that can be used to construct
the Markov process Y . We claim that these two stochastic flows are dual in
the sense that

Xs,u(x) ∧ y ̸= 0 ⇔ x ∧Y−u,−s(y) ̸= 0, (1.15)

where 0 ∈ {0, 1}Z denotes the configuration that is constantly zero, and x∧y
denotes the pointwise minimum of two configurations x and y. Indeed,

Xs,u(x) ∧ y ̸= 0 ⇔
∃i, j ∈ Z s.t. x(i) = 1, y(j) = 1, and there
exists an open path in ω from (i, s) to (j, u)

⇔
∃i, j ∈ Z s.t. x(i) = 1, y(j) = 1, and there
exists an open path in ω̂ from (j,−u) to (i,−s)

⇔ x ∧Y−u,−s(y) ̸= 0.

There is a slight complication: formula (1.15) holds almost surely for given
(deterministic) times s ≤ u, but it does not hold almost surely for all s ≤ u
simultaneously, due to our convention that Markov processes and our open
paths are right-continuous. If we want (1.15) to hold for all s ≤ u simulta-
neously, then we have to modify our definitions of Xs,u and Ys,u so that one
is right-continuous and the other is left-continuous.

Let us first look at the case that there are no deaths. We will be interested
in the interacting particle system with generator

Gf(x)= (1− ε)
∑
i,j∈Λ

p(i, j)
{
f
(
votji(x)

)
− f

(
x
)}

+ε
∑
i,j∈Λ

p(i, j)
{
f
(
braji(x)

)
− f

(
x
)} (

x ∈ {0, 1}Λ
)
,

(1.16)

where p is the nearest-neighbour kernel defined in (1.9). In other words, this
is the interacting particle system where voter model maps votji occur with
Poisson rate (1− ε)p(i, j) and branching maps braji occur with Poisson rate
εp(i, j). If we start in an initial state such that all sites i ≤ 0 have type 1
and all sites i > 0 have type zero, then it is easy to see that the boundary
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between the ones and zeros evolves like a continuous-time random walk that
jumps with Poisson rate (1− ε)1

2
one step to the left and with Poisson rate

1
2
one step to the right. If we rescale all spatial distances by ε and time by

ε2, then such a random walk converges to a Brownian motion with drift +1.
Similarly, if initially sites left of the origin have type 0 and right of the origin
type 1, then the limiting Brownian motion has drift −1. The inclusion of
even a little bit of branching gives the ones an advantage, so that starting
with a finite interval of ones, there is a positive probability that the ones
eventually take over the whole lattice:

The dual process, in the sense of (1.15), is the process (Yt)t≥0 with gen-
erator

Gf(y)= (1− ε)
∑
i,j∈Λ

p(i, j)
{
f
(
rwij(y)

)
− f

(
y
)}

+ε
∑
i,j∈Λ

p(i, j)
{
f
(
braij(y)

)
− f

(
y
)} (

y ∈ {0, 1}Λ
)
.

(1.17)

In other words, this is the interacting particle system where coalescing ran-
dom walk maps rwij occur with Poisson rate (1 − ε)p(i, j) and branching
maps braij occur with Poisson rate εp(i, j). Here is a simulation of such a
process, started in the fully occupied initial state:
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One can check that product measure with intensity ε is a reversible in-
variant law for this process. Moreover, if the process is started with finitely
many 1’s, then the position of the right-most one evolves like a continuous-
time random walk that jumps with Poisson rate (1− ε)1

2
one step to the left

and with Poisson rate 1
2
one step to the right. These observations suggest

that the process should have a diffusive scaling limit as we rescale all spatial
distances by ε and time by ε2. The simulations suggest that just like co-
alescing Brownian motions, this limiting process comes down from infinity.
The limit process is not simply branching and coalescing Brownian motions,
however. Indeed, if we follow the right-most one, then this one branches to
the right with rate ε, while we rescale time by a factor ε2. This means that
in the rescaled process, the number of branchings per time unit is ε−1 and
hence tends to infinity as ε→ 0.

We next add deaths as well. We will be interested in voter models with
branching and deaths and generator of the form

Gf(x)= (1− ε)
∑
i,j∈Λ

p(i, j)
{
f
(
votji(x)

)
− f

(
x
)}

+ε
∑
i,j∈Λ

p(i, j)
{
f
(
braji(x)

)
− f

(
x
)}

+δε2
∑
i∈Λ

{
f
(
dthi(x)

)
− f

(
x
)} (

x ∈ {0, 1}Λ
)
,

(1.18)

where δ > 0 is a fixed constant and we rescale space by ε and time by ε2 and
send ε → 0. In this case, the limit looks much more nontrivial than in the
case without deaths:
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For the dual process, the picture looked already complicated in the case
without deaths, and adding deaths does not complicate things much further:

Note that since deaths occur only with rate δε2, and we rescale time by
a factor ε2, for the rescale process the death rate is δ. So compared to the
picture with only branching and coalescing, we have just added deaths with
rate δ.

1.5 Outline

In the next chapters, we will develop a mathematical theory for diffusive
scaling limits of (biased) voter models and their dual systems (branching)
coalescing random walks. It turns out that mathematically, the collection of
all open paths in a graphical representation is a good object to work with.
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Our first aim will be to construct the Brownian web, which can informally be
described as an infinite collection of paths of coalescing Brownian motions,
starting from every point in space and time. In a second step, we will then
add branching, which yields the Brownian net. Adding also deaths yields the
Brownian net with killing.

The Brownian web arose from the work of Arratia [Arr79, Arr81], was
further developed by Tóth and Werner [TW98], and then further by Fontes,
Isopi, Newman, and Ravishankar [FINR04]. The Brownian net was invented
by Rongfeng Sun and myself in [SS08] and independently by Newman, Rav-
ishankar, and Schertzer in [NRS10]. The Brownian net with killing was
introduced by the same authors in [NRS15].

The Brownian web and net are believed to be universal scaling limits, that
occur in a wide range of problems. For the Brownian web, there are results
that show this is the limit even when the kernel is not nearest-neighbour
[NRS05], but the analogue result for the Brownian net is at the moment still
open (though being investigated right now). Other models that have been
shown to be related to the Brownian web and net are self-repellent random
walks in one dimension [TW98] and one-dimensional stochastic Potts models
at low temperatures [NRS17]. We conclude this chapter by showing, as an
illustration, a picture of such a Potts model.



Chapter 2

Topological prerequisites

2.1 Topological spaces

We are interested in diffusive scaling limits of systems of branching and
coalescing particles with small branching rate. In order to to be able to
formulate the convergence, in the present chapter, we introduce the right
spaces. In particular, we will need a space of paths, introduced in Section 2.7,
and the space of all compact sets of paths, equipped with the Hausdorff
metric, introduced in Section 2.5.

A topological space is a set X equipped with a collection O of subsets of
X that are called open sets, such that

(i) If (Oγ)γ∈Γ is any collection of (possibly uncountably many) sets Oγ ∈
O, then

⋃
γ∈ΓOγ ∈ O.

(ii) If O1, O2 ∈ O, then O1 ∩O2 ∈ O.

(iii) ∅,X ∈ O.

Any such collection of sets is called a topology. It is fairly standard to also
assume the Hausdorff property

(iv) For each x1, x2 ∈ X , x1 ̸= x2 ∃O1, O2 ∈ O s.t. O1 ∩ O2 = ∅, x1 ∈ O1,
x2 ∈ O2.

A set V ⊂ X is a neighbourhood of a point x ∈ X if x ∈ O ⊂ V for some
O ∈ O. We let Vx denote the set of all neighbourhoods of x. A fundamental
system of neighbourhoods of x is a set V ′

x ⊂ Vx such that

∀V ∈ Vx ∃V ′ ∈ V ′
x s.t. V ′ ⊂ V.

21
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For example, the set of all O ∈ O such that x ∈ O is a fundamental system
of neighbourhoods of x. A sequence of points xn ∈ X converges to a limit
x in a given topology O if for each V ∈ Vx there is an n such that xm ∈ V
for all m ≥ n. It suffices to check this condition for a fundamental system of
neighbourhoods V ′

x. If the topology is Hausdorff, then limits are unique, i.e.,
xn → x and xn → x′ implies x = x′.

If (X ,O) is a topological space (with O the collection of open subsets of
X ) and X ′ ⊂ X is any subset of X , then X ′ is also naturally equipped with
a topology given by the collection of open subsets O′ := {O ∩ X ′ : O ∈ O}.
This topology is called the induced topology from X . If xn, x ∈ X ′, then
xn → x in the induced topology on X ′ if and only if xn → x in X .

A basis of a topology is a subset O′ ⊂ O such that each element of O
can be written as the union of (possibly uncountably many) elements of O′.
Equivalently, this says that

O = {O ⊂ X : ∀x ∈ O ∃O′ ∈ O′ s.t. x ∈ O′ ⊂ O}.

If O′ is a basis for O, then V ′
x := {O ∈ O′ : x ∈ O} is a fundamental system

of neighbourhoods of x. A topology is first countable if every x ∈ X has
a countable fundamental system of neighbourhoods. A topology is second
countable if there exists a countable basis of the topology.

A set C ⊂ X is called closed if its complement is open. Because of
property (i) in the definition of a topology, for each A ⊂ X , the union of all
open sets contained in A is itself an open set. We call this the interior of
A, denoted as int(A) :=

⋃{O : O ⊂ A, O open}. Then clearly int(A) is the
largest open set contained in A. Similarly, by taking complements, for each
set A ⊂ X there exists a smallest closed set containing A. We call this the
closure of A, denoted as A :=

⋂{C : C ⊃ A, C closed}. If the topology is
first countable, then

A = {x ∈ X : ∃xn ∈ X s.t. xn → x}, (2.1)

i.e., A is the set of all limits of sequences in A. A similar statement holds
for general topological spaces if we replace sequences by the more general
concept of a net, that we will not discuss here. Since a set is closed if and only
if it coincides with its closure, it follows from (2.1) that in a first countable
topological space, knowing all convergent sequences and their limits uniquely
determines the closed sets and their complements, the open sets, and hence
the whole topology.

A topological space is called separable if there exists a countable set D ⊂
X such that D is dense in X , where we say that a set D ⊂ X is dense if
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its closure is X , or equivalently, if every nonempty open subset of X has a
nonempty intersection with D.

A metric on a set X is a function d : X × X → [0,∞) such that for all
x, y, z ∈ X ,

(i) d(x, y) = d(y, x),

(ii) d(x, z) ≤ d(x, y) + d(y, z),

(iii) d(x, y) = 0 implies x = y.

A metric space is a space with a metric defined on it. If d is a metric on X ,
and Bε(x) := {y ∈ X : d(x, y) < ε} denotes the open ball around x of radius
ε, then

O :=
{
O ⊂ X : ∀x ∈ O ∃ε > 0 s.t. Bε(x) ⊂ O

}
defines a Hausdorff topology on X such that convergence xn → x in this
topology is equivalent to d(xn, x) → 0. Note that the open balls form a
basis for this topology. Since open balls of radius 1/n around a point x form
a fundamental system of neighbourhoods, metric spaces are first countable.
We say that the metric d generates the topology O. If for a given topology
O there exists a metric d that generates O, then we say that the topological
space (X ,O) is metrisable. Such a metric, if it exist, can always be chosen
such that it is bounded. For example, if d is any metric on X , then d′(x, y) :=
d(x, y)∧1 is a bounded metric that generates the same topology. A metrisable
space is always first countable. It is second countable if and only if it is
separable.

A sequence xn in a metric space (X , d) is a Cauchy sequence if for all
ε > 0 there is an n such that d(xk, xl) ≤ ε for all k, l ≥ n. A metric
space is complete if every Cauchy sequence converges. Every metric space
(X , d) has a completion, i.e., there exists a complete metric space (X , d) such
that X ⊂ X is dense and the metric on X is the induced metric from X ,
i.e., d(x, y) = d(x, y) for all x, y ∈ X . Such a completion is unique up to
isometries.

A Polish space is a separable topological space (X ,O) such that there
exists a metric d on X with the property that (X , d) is complete and d
generates O. Warning: there may be many different metrics on X that
generate the same topology. It may even happen that X is not complete
in some of these metrics, and complete in others (in which case X is still
Polish).1 Example: R is separable and complete in the usual metric d(x, y) =

1The use of the term “Polish space” has a long history and there is some variation in
its definition. While our use of the term is in line with most of the modern literature,
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|x − y|, and therefore R is a Polish space. But d′(x, y) := | arctan(x) −
arctan(y)| is another metric that generates the same topology, while (R, d′)
is not complete. Indeed, the completion of R w.r.t. the metric d′ is [−∞,∞].

2.2 Compactness

A subset K of a general topological space X (with collection of open sets
O) is called compact if every open cover has a finite subcover, i.e., if for
any collection (Oγ)γ∈Γ of open subsets of X such that

⋃
γ∈ΓOγ ⊃ K, there

exists a finite ∆ ⊂ Γ such that
⋃

γ∈∆Oγ ⊃ K. Using this definition, it is
easy to see that the image of a compact set under a continuous function is
again compact. Compact subsets of Hausdorff topological spaces are closed.
A subset K of a metric space X is compact if and only if it is complete
and totally bounded, which means that for every ε > 0 there exists a finite
collection {Bε(x1), . . . , Bε(xn)} of open balls such that

Bε(x1) ∪ · · · ∪Bε(xn) ⊃ K.

From this, it is not hard to see that compact metrisable spaces are always
separable. If (xn)n∈N is a sequence and m : N → N is a function such that
m(n) → ∞ as n → ∞, then setting x′n := xm(n) (n ∈ N) defines a new
sequence. Such a sequence is called a subsequence of the original sequence.
A cluster point of a sequence is a limit of a subsequence.

Theorem 2.1 (Bolzano-Weierstrass) Let X be a metrisable space and
let K ⊂ X . Then K is compact if and only if every sequence in K has a
subsequence that converges to a limit in K.

The Bolzano-Weierstrass theorem also holds for second countable spaces.
(Note that metrisable spaces need in general not be second countable, and
conversely, not every second countable space is metrisable.) There is also a
version of the Bolzano-Weierstrass theorem that holds in general topological
spaces but in this case one has to replace sequences by the more general nets.
A set A is precompact if its closure is compact. In metrisable spaces, this
is equivalent to the statement that each sequence of points xn ∈ A has a
convergent subsequence. Note that in this case we do not require that the
limit is an element of A. The following simple lemma is often useful.

Lemma 2.2 (Convergence and compactness) Let X be a metrisable
space and let x, xn ∈ X . Then xn → x if and only if the following two
conditions are satisfied.

some authors use “topologically Polish” for what we call “Polish” and reserve the latter
term for the more restricted setting of a complete and separable metric space.
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(i) The set {xn : n ∈ N} is precompact.

(ii) For every subsequence xn(m) such that xn(m) −→
m→∞

x′ for some x′ ∈ X ,

one has x′ = x.

If (X ,O) is a topological space, then a compactification of X is a compact
topological space X such that X is a dense subset of X and the topology
on X is the induced topology from X . If X is metrisable, then we say that
X is a metrisable compactification of X . It turns out that each separable
metrisable space X has a metrisable compactification [Cho69, Theorem 6.3].

A topological space X is called locally compact if for every x ∈ X there
exists a compact neighbourhood of x. We cite the following proposition from
[Eng89, Thms 3.3.8 and 3.3.9].

Proposition 2.3 (Compactification of locally compact spaces) Let X
be a metrisable topological space. Then the following statements are equiva-
lent.

(i) X is locally compact and separable.

(ii) There exists a metrisable compactification X of X such that X is an
open subset of X .

(iii) For each metrisable compactification X of X , X is an open subset of X .

We note that if X satisfies the equivalent conditions of Proposition 2.3,
then it is possible to find a metrisable compactification X of X such that X\X
consists of just one point, usually denoted by ∞. In this case, X = X ∪{∞}
is called the one-point compactification of X . The open sets of X ∪{∞} are
all open sets of X plus all sets of the form {∞}∪O where X\O is a compact
subset of X .

A subset A ⊂ X of a topological space X is called a Gδ-set if A is
a countable intersection of open sets (i.e., there exist Oi ∈ O such that
A =

⋂∞
i=1Oi. If X is metrisable, then every closed set A ⊂ X is a Gδ-set,

since it is the intersection of the open sets {x ∈ X : d(x,A) < 1/n}. The
following result can be found in [Bou58, §6 No. 1, Theorem. 1]. See also
[Oxt80, Thms 12.1 and 12.3].

Proposition 2.4 (Compactification of Polish spaces) Let X be a metris-
able topological space. Then the following statements are equivalent.

(i) X is Polish.

(ii) There exists a metrisable compactification X of X such that X is a
Gδ-subset of X .
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(iii) For each metrisable compactification X of X , X is a Gδ-subset of X .

Moreover, a subset Y ⊂ X of a Polish space X is Polish in the induced
topology if and only if Y is a Gδ-subset of X .

We note that if X is a compactification of a Polish space X , equipped with
a concrete metric, then X is also the completion of X in this metric. Thus,
unless X is itself compact, it will never be complete in such a metric (even
though, by the definition of a Polish space, there exists metrics generating
the same topology with respect to which X is complete).

2.3 Weak convergence

Let X be a metrisable space. We let B(X ) denote Borel-σ-field on X , i.e.,
the σ-field generated by the open sets. We let C(X ) denote the space of
all continuous functions f : X → R. We let Bb(X ) denote the space of all
bounded Borel-measurable real functions on X and we let Cb(X ) := C(X ) ∩
Bb(X ) denote the space of all bounded continuous real functions on X . We
equip Cb(X ) with the supremumnorm

∥f∥∞ := sup
x∈X

|f(x)|.

With this norm, Cb(X ) is a Banach space [Dud02, Theorem 2.4.9]. We let
M(X ) denote the space of all finite measures on (X ,B(X )) and writeM1(X )
for the subspace of all probability measures. We cite the following well-known
fact from [EK86, Theorems 3.1.7 and 3.3.1].

Proposition 2.5 (Weak convergence) Let X be a separable metrisable
space. Then it is possible to equip M1(X ) with a metric dP such that

(i) (M1(X ), dP) is a separable metric space,

(ii) dP(µn, µ) → 0 if and only if
∫
fdµn →

∫
fdµ for all f ∈ Cb(X ).

If X is a Polish space, then dP can be chosen such that (M1(X ), dP) is
moreover complete.

In many applications, we are not interested in the precise choice of dP
(there are several canonical ways to define such a metric). Since a metrisable
topology is uniquely characterized by its convergent sequences, property (ii)
uniquely characterizes the topology generated by dP in terms of the topology
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on X . We call this topology the topology of weak convergence and denote
convergence in this topology as

µn ⇒ µ.

Proposition 2.5 shows in particular that if X is a Polish space, then so is
M1(X ), equipped with the topology of weak convergence.

One possible choice for a metric dP as in Proposition 2.5 is the Prohorov
metric. For each subset A ⊂ X and ε > 0, we set

Aε :=
{
x ∈ X : d(x,A) < ε

}
with d(x,A) := inf

y∈A
d(x, y).

If (X , d) is a metric space, then the Prohorov metric is the metric dP on
M1(X ) defined as

dP(µ, ν) := inf{ε > 0 : µ(A) ≤ ν(Aε) + ε ∀A ∈ B(X )
}
.

It follows from [EK86, Lemma 3.1.1] that dP is a metric. It is possible to
give an alternative characterisation of dP in terms of coupling. Let C(µ, ν)
denote the space of all probability measures η on X × X whose first and
second marginals are given by µ and ν, respectively. We cite the following
lemma from [EK86, Thm 3.1.2].

Lemma 2.6 (Prohorov metric and coupling) Let (X , d) be a separable
metric space and let µ, ν ∈ M1(X ). Then

dP(µ, ν) =

inf
{
ε > 0 : ∃η ∈ C(µ, ν) s.t. η({(x, y) ∈ X 2 : d(x, y) ≥ ε}) ≤ ε

}
.

(2.2)

In words, (2.2) says that dP(µ, ν) is the infimum of all ε > 0 for which
it is possible to couple random variables X, Y with laws µ, ν such that
P[d(X, Y ) ≥ ε] ≤ ε. We cite the following lemmas from [EK86, Thms 3.1.7
and 3.3.1].

Lemma 2.7 (Properties of Prohorov metric) Let (X , d) be a separable
metric space and let dP be the Prohorov metric. Then (M1(X ), dP) is a
separable metric space. If (X , d) is complete, then so is (M1(X ), dP).

Lemma 2.8 (Prohorov metric and weak convergence) Let (X , d) be
a separable metric space and let dP be the Prohorov metric. Then µn, µ ∈
M1(X ) satisfy dP(µn, µ) → 0 if and only if

∫
fdµn →

∫
fdµ for all f ∈

Cb(X ).
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In particular, Lemmas 2.7 and 2.8 imply Proposition 2.5. The following
well-known alternative characterisation of weak convergence [EK86, Theo-
rem 3.3.1] is sometimes useful.

Lemma 2.9 (Characterization with open and closed sets) Let µn

and µ be probability measures on a metrisable space X . Then the following
statements are equivalent.

(i) µn ⇒ µ.

(ii) lim supn→∞ µn(C) ≤ µ(C) for all closed C ⊂ X .

(iii) lim infn→∞ µn(O) ≥ µ(O) for all open O ⊂ X .

Exercise 2.10 (Measures concentrated on a subset) Let X be a Polish
space and let X ′ ⊂ X be a Gδ-set, equipped with the induced topology. We nat-
urally identify M1(X ′) with the subset of M1(X ) consisting of all µ ∈ M1(X )
such that µ(X ′) = 1. Show that the topology on M1(X ′) coincides with the
induced topology from its embedding in M1(X ). (Hint: Lemma 2.9.) Use this
to conclude that M1(X ′) is a Gδ-subset of M1(X ). (Hint: Proposition 2.4).

A very useful characterization of weak convergence in terms of coupling
is given by the next theorem [EK86, Cor 3.1.6 and Thm 3.1.8].

Theorem 2.11 (Skorohod representation) Let µn and µ be probability
measures on a Polish space X . Then µn ⇒ µ if and only if it is possible to
couple random variables Xn, X with laws µn, µ, respectively, in such a way
that Xn → X a.s.

The next result is known as Prohorov’s theorem (see, e.g., [EK86, Theo-
rem 3.2.2] or [Bil99, Theorems 5.1 and 5.2]).

Theorem 2.12 (Prohorov)Let X be a Polish space. Let M1(X ) be equipped
with the topology of weak convergence. Then a subset C ⊂ M1(X ) is precom-
pact if and only if C is tight, i.e.,

∀ε > 0 ∃K ⊂ X compact, s.t. sup
µ∈C

µ(X\K) ≤ ε.

2.4 Locally uniform convergence

Let (X , d) be a metric space and let I ⊂ R be a closed interval. We let CI(X )
denote the space of all continuous functions f : I → X .
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Lemma 2.13 (Locally uniform convergence) For fn, f ∈ CI(X ), the
following conditions are equivalent:

(i) sup
t∈C

d
(
fn(t), f(t)

)
−→
n→∞

0 for all compact C ⊂ I,

(ii) fn(tn) −→
n→∞

f(t) for all tn, t ∈ I such that tn −→
n→∞

t.

Proof Assume (i) and let tn, t ∈ I satisfy tn −→
n→∞

t. By Lemma 2.2 (i), there

exists a compact set C ⊂ I such that tn ∈ C for all n (and hence also t ∈ C).
Then for each ε > 0, there exists an N < ∞ such that d(fn(t), f(t)) ≤ ε for
all n ≥ N . Now

d
(
fn(tn), f(t)

)
≤ d

(
fn(tn), f(tn)

)
+ d

(
f(tn), f(t)

)
≤ ε+ d

(
f(tn), f(t)

)
for all n ≥ N , and hence

lim sup
n→∞

d
(
fn(tn), f(t)

)
≤ ε

by the continuity of f . Since ε > 0 is arbitrary, this shows that (i) implies
(ii). On the other hand, if (i) fails for some compact C ⊂ I, then for s
suitable subsequence we can choose tn ∈ C and ε > 0 such that

d
(
fn(tn), f(tn)

)
≥ ε ∀n.

Since C is compact, by going to a further subsequence, we can without loss
of generality assume that tn → t for some t ∈ C. Since

d
(
fn(tn), f(t)

)
≥ d

(
fn(tn), f(tn)

)
− d

(
f(tn), f(t)

)
≥ ε+ d

(
f(tn), f(t)

)
,

using the continuity of f , we see that for our chosen subsequence

lim inf
n→∞

d
(
fn(tn), f(t)

)
≥ ε,

which contradicts (ii).

There exists a metrisable topology on CI(X ) such that a fn ∈ CI(X ) con-
verges to a limit f if and only if the equivalent conditions of Lemma 2.13
are satisfied. Note that by (2.1) and the remarks below it, these condi-
tions uniquely determine the topology. Note also that by condition (ii) of
Lemma 2.13, the topology on CI(X ) depends only on the topology on X and
not on the precise choice of the metric on X . A possible choice of a metric
on CI(X ) is

ρ(g, f) :=
∞∑
n=1

2−n sup
t∈[−n,n]∩I

d
(
g(t), f(t)

)
,
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where d is a bounded metric that generates the topology on X . Such a metric
can always be found: if d is any metric generating the topology on X , then
d′(x, y) := d(x, y) ∧ 1 is a bounded metric that generates the same topology.
Usually, we do not care about the precise choice of the metric on CI(X ); apart
from ρ, there are many other possible choices. We call this the topology on
CI(X ) the topology of locally uniform convergence.

2.5 The Hausdorff metric

Let (X , d) be a metric space, let K(X ) be the space of all compact subsets
of X and set K+(X ) := {K ∈ K(X ) : K ̸= ∅}. Then the Hausdorff metric
dH on K+(X ) is defined as

dH(K1, K2) := sup
x1∈K1

d(x1, K2) ∨ sup
x2∈K2

d(x2, K1)

= inf
{
ε > 0 : K1 ⊂ Kε

2 and K2 ⊂ Kε
1

}
,

(2.3)

where as before d(x,A) := infy∈A d(x, y) denotes the distance between a point
x ∈ X and a set A ⊂ X and Aε :=

{
x ∈ X : d(x,A) < ε

}
. The corresponding

topology is naturally called the Hausdorff topology. Note the subtle difference
between “the Hausdorff topology” (the topology generated by the Hausdorff
metric) and “a Hausdorff topology” (any topology satisfying condition (iv)
of Section 2.1). We extend this topology to K(X ) by adding ∅ as an isolated
point.

A correspondence between two sets A and B is a set R ⊂ A × B such
that

∀a ∈ A ∃b ∈ B s.t. (a, b) ∈ R and ∀b ∈ B ∃a ∈ A s.t. (a, b) ∈ R.

In words, this says that for each element of A, there is a “corresponding”
element of B and conversely for each element of B, there is a correspond-
ing element of A. We let Corr(A,B) denote the set of all correspondences
between A and B. The following exercise relates the Hausdorff metric to
correspondences.

Exercise 2.14 Let (X , d) be a metric space. Show that

dH(K1, K2) = inf
R∈Corr(K1,K2)

sup
(x1,x2)∈R

d(x1, x2)
(
K1, K2 ∈ K+(X )

)
. (2.4)

A good source for the Hausdorff topology is [SSS14, Appendix B]. Some
more information can be found in [BBI01, Chapter 7]. The basic properties
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of the Hausdorff topologies can be summarised in three lemmas. We first
state all three lemmas, and then give proofs. The first lemma shows that
the Hausdorff topology depends only on the topology on X , and not on the
choice of the metric.

Lemma 2.15 (Convergence criterion) Let Kn, K ∈ K+(X ) (n ≥ 1).
Then Kn → K in the Hausdorff topology if and only if the following three
conditions are satisfied

(i) There exists a compact C ⊂ X such that Kn ⊂ C for all n.

(ii) K =
{
x ∈ X : ∃xn ∈ Kn s.t. xn → x

}
.

(iii) K =
{
x ∈ X : ∃xn ∈ Kn s.t. x is a cluster point of (xn)n∈N

}
.

The next lemma shows that K+(X ) is Polish if X is.

Lemma 2.16 (Properties of the Hausdorff metric)

(a) If (X , d) is separable, then so is (K+(X ), dH).

(b) If (X , d) is complete, then so is (K+(X ), dH).

The final and third lemma implies in particular that K+(X ) is compact
if X is compact.

Lemma 2.17 (Compactness in the Hausdorff topology) A set A ⊂
K+(X ) is precompact if and only if there exists a compact C ⊂ X such that
K ⊂ C for each K ∈ A.

We now set out to prove Lemmas 2.15–2.17. We start by giving an alter-
native formulation of conditions (ii) and (iii) of Lemma 2.15.

Lemma 2.18 (Cluster and limit points) Conditions (ii) and (iii) of
Lemma 2.15 are equivalent to

(ii)’ K =
{
x ∈ X : lim

n→∞
d(x,Kn) = 0

}
,

(iii)’ K =
{
x ∈ X : lim inf

n→∞
d(x,Kn) = 0

}
.

Proof If for some x ∈ X there exist (xn)n∈N with xn ∈ Kn for all n and
xn → x ∈ K, then d(x,Kn) ≤ d(x, xn) → 0, and conversely, if d(x,Kn) → 0,
then we can choose xn ∈ Kn such that d(x, xn) ≤ 2d(x,Kn) → 0, proving the
first equality. Similarly, if for some x ∈ X there exist (xn)n∈N with xn ∈ Kn

for all n and an infinite set N ⊂ N such that the subsequence (xn)n∈N satisfies

lim
N∋n→∞

d(xn, x) = 0,
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then clearly lim infn→∞ d(x,Kn) = 0, and conversely, if this holds, then we
can choose an infinite set N ⊂ N such that

lim
N∋n→∞

d(x,Kn) = 0,

and for each n ∈ N we can choose xn ∈ Kn such that d(x, xn) ≤ 2d(x,Kn).
Using the fact that Kn ̸= ∅ for all n, we can extend (xn)n∈N to a sequence
(xn)n∈N with xn ∈ Kn for all n ∈ N that has x as a cluster point.

Proof of Lemma 2.15 We claim that condition (ii) of Lemma 2.15 implies
that

sup
x∈K

d(x,Kn) −→
n→∞

0. (2.5)

Indeed, if this is not the case, then there exist an ε > 0 and an infinite N ⊂ N
such that supx∈K d(x,Kn) ≥ 2ε for all n ∈ N . Then we can choose xn ∈ K
such that d(xn, Kn) ≥ ε for all n ∈ N . Since K is compact, the sequence
(xn)n∈N has a subsequence that converges to a limit in K, i.e., there exists
an infinite N ′ ⊂ N and x ∈ K such that

x = lim
N ′∋n→∞

xn.

Since d(x,Kn) ≥ d(xn, K)− d(x, xn) ≥ ε− d(x, xn) for all n ∈ N ′, we have

lim inf
N ′∋n→∞

d(x,Kn) ≥ ε,

which contradicts condition (ii)’ of Lemma 2.18. We next claim that condi-
tions (i) and (iii) of Lemma 2.15 imply that

sup
x∈Kn

d(x,K) −→
n→∞

0. (2.6)

Indeed, if this is not the case, then there exist an ε > 0 and an infinite
N ⊂ N such that supx∈Kn

d(x,K) ≥ 2ε for all n ∈ N . Then we can choose
xn ∈ Kn such that d(xn, K) ≥ ε for all n ∈ N . By condition (i), there exists
a compact C such that Kn ⊂ C for all n. It follows that there exists an
infinite N ′ ⊂ N and x ∈ C such that

x = lim
N ′∋n→∞

xn.

Since d(x,K) ≥ d(xn, K) − d(x, xn) ≥ ε − d(x, xn) for all n ∈ N ′, taking
the limit, we see that d(x,K) ≥ ε and hence x ̸∈ K. On the other hand,
x is a cluster point of the sequence (xn)n∈N, so we arrive at a contradiction
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with condition (iii). Together, (2.5) and (2.6) show that (i)–(iii) imply that
dH(Kn, K) → 0 as n→ ∞.

Assume, conversely, that dH(Kn, K) → 0 as n → ∞. Set K∞ := K and
N := N ∪ {∞}. We claim that C :=

⋃
n∈NKn is compact. To see this, let

(xk)k∈N be a sequence with xk ∈ C for all k. We claim that (xk)k∈N has a
subsequence that converges to a limit in C. For each k ∈ N, we can choose
n(k) ∈ N such that xk ∈ Kn(k). If there exists an n ∈ N such that n(k) = n
for infinitely many values of k, then the claim follows from the compactness
of Kn. In the opposite case, there exists an infinite set N ⊂ N such that
n(k) ∈ N for each k ∈ N and n(k) ̸= n(k′) for each k, k′ ∈ N with k ̸= k′.
For each k ∈ N , we can find x′k ∈ K such that d(x′k, xk) ≤ 2d(K,Kn(k)). Since
K is compact, we can find an infinite set N ′ ⊂ N such that the sequence
(x′k)k∈N ′ converges to a limit x ∈ K. Since d(x, xk) ≤ d(x, x′k)+2d(K,Kn(k))
tends to zero as N ′ ∋ k → ∞, we conclude that (x′k)k∈N ′ converges to
x ∈ K ⊂ C, proving the compactness of C. In particular, this proves that
the sets Kn satisfy condition (i).

To see that conditions (ii) and (iii) hold too, we observe that for each
x ∈ K, one has d(x,Kn) ≤ d(K,Kn) → 0 as n → ∞, while for x ̸∈ K, one
has d(x,Kn) ≥ d(x,K) − d(K,Kn) → d(x,K) > 0 as n → ∞. This shows
that{

x ∈ X : lim inf
n→∞

d(x,Kn) = 0
}
⊂ K ⊂

{
x ∈ X : lim

n→∞
d(x,Kn) = 0

}
,

so by Lemma 2.18 we conclude that conditions (ii) and (iii) are satisfied.

The proofs of Lemmas 2.16 and 2.17 need a little preparation. Recall that
in any metric space (X , d), by definition, a set A ⊂ X is totally bounded if for
every ε > 0 there exists a finite collection of points x1, . . . , xn ∈ X such that
A ⊂ ⋃n

i=1Bε(xi), where Bε(x) denotes the open ball of radius ε around x.
It is well-known that total boundedness is equivalent to the statement that
every sequence xn ∈ A has a Cauchy subsequence. As a consequence, a set
A ⊂ X is compact if and only if it is complete and totally bounded.

Lemma 2.19 (Totally bounded sets in the Hausdorff metric) A set
A ⊂ K+(X ) is totally bounded in the metric dH if and only if the set A :=
{x ∈ X : ∃K ∈ A s.t. x ∈ K} is totally bounded in the metric d.

Proof Let Bε(x) denote the open ball in X of radius ε around a point
x ∈ X , and let Bε(x) denote the open ball in K+(X ) of radius ε around a
point K ∈ K+(X ).

Assume that A is totally bounded. Let ε > 0 and let ∆ ⊂ X be a finite set
such that A =

⋃
x∈∆Bε(x). Let K ∈ A and set ∆′ := {x ∈ ∆ : Bε(x) ∩K ̸=
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∅}. Then for all y ∈ K there is an x ∈ ∆′ such that d(x, y) < ε and for all
x ∈ ∆′ there is a y ∈ K such that d(x, y) < ε proving that dH(∆

′, K) < ε.
This shows that

A ⊂
⋃
∆′

Bε(∆
′),

where we take the union over all nonempty subsets ∆′ ⊂ ∆. Since there are
finitely many such ∆′, and each ∆′ is a compact subset of X , this proves that
A is totally bounded.

Conversely, if A is totally bounded, then for each ε > 0 we can find
K1, . . . , Kn ∈ K+(X ) such that A ⊂ ⋃n

k=1 Bε/2(Kn), where Bε(K) denotes
the open ball in the Hausdorff metric of radius ε centered around a compact
set K. Since compact sets are totally bounded, for each k we can find finitely
many points xk,1, . . . , xk,mk

∈ X such that Kk ⊂ ⋃mk

j=1Bε/2(xk,j). It follows
that A ⊂ ⋃n

k=1

⋃mk

j=1Bε(xk,j), showing that A is totally bounded.

Proof of Lemma 2.16 To prove part (a), let D be a countable dense subset
of (X , d), and let A be the set of all finite nonempty subsets of D. Then
A ⊂ K+(X ) and A is countable, so it suffices to prove that A is dense in
(K+(X ), dH). We will show that for eachK ∈ K+(X ) and ε > 0, there exists a
set A ∈ A such that dH(A,K) ≤ ε. SinceK is compact, it is totally bounded,
so we can find a finite set B ⊂ X such that K ⊂ ⋃

x∈B Bε/2(x). Without loss
of generality, we can assume that d(x,K) < ε/2 for all x ∈ B. Since D is
dense, for each x ∈ B we can find an x′ ∈ D such that d(x, x′) < ε/2. Then
A := {x′ : x ∈ B} is a finite subset of D such that for all y ∈ K, there exists
a z ∈ A such that d(y, z) < ε and conversely, for all z ∈ A, there exists a
y ∈ K such that d(y, z) < ε, proving that dH(A,K) ≤ ε.

To prove part (b), let Kn ∈ K+(X ) be a Cauchy sequence and let

A :=
{
x ∈ X : lim

n→∞
d(x,Kn) = 0

}
, B :=

{
x ∈ X : lim inf

n→∞
d(x,Kn) = 0

}
.

We claim that A = B. Indeed, if there exists some x ∈ B\A, then there
is some ε > 0 such that for each k ≥ 1 we can find n,m ≥ k such that
d(x,Kn) ≤ ε and d(x,Km) ≥ 2ε, hence dH(Kn, Km) ≥ ε, contradicting the
assumption that the Kn form a Cauchy sequence.

Let K := A = B. We claim that K is closed. To prove this, we will show
that if xk ∈ A satisfy xk → x for some x ∈ X , then x ∈ B. Since xk ∈ A
we can find xk,n ∈ Kn such that xk,n → xk as n → ∞. For each k, we can
choose n(k) ≥ k such that d(xk,n(k), xk) ≤ d(xk, x). Then n(k) → ∞ and
d(x,Kn(k)) ≤ d(xk,n(k), x) ≤ 2d(xk, x) → 0 as k → ∞ and hence x ∈ B.

We next claim that K is compact. Since each sequence in the set {Kn :
n ≥ 1} contains a Cauchy subsequence, the set {Kn : n ≥ 1} is totally
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bounded, hence by Lemma 2.19, there exists some totally bounded set con-
taining all of the Kn. Let C denote its closure. Then C is compact since X
is complete, hence also K ⊂ C is compact since K is closed.

Since the sets Kn are contained in the compact set C and since A = B,
we see that conditions (i)–(iii) of Lemma 2.15 are satisfied, so we conclude
that dH(Kn, K) → 0 as n→ ∞. We have shown that every Cauchy sequence
in

(
K+(X ), dH

)
is converges, i.e., this space is complete.

Proof of Lemma 2.17 Assume that A ⊂ K+(X ) and that there exists
a compact C ⊂ X such that K ⊂ C for all K ∈ A. Then C is totally
bounded and complete, so by Lemmas 2.19 and 2.16 (b), the same is true for
{K ∈ K+(X ) : K ⊂ X}, implying the latter is compact and hence its subset
A is precompact.

Conversely, if A ⊂ K+(X ) is precompact, then its closure A in the metric
dH is compact. To complete the proof, it suffices to show that C = {x ∈
X : ∃K ∈ A s.t. x ∈ K} is compact. Since A is compact, it is totally
bounded, so Lemma 2.19 implies that C is totally bounded too. It therefore
suffices to show that C is complete. Any cluster point of a Cauchy sequence
must necessarily be a limit point. Therefore, to show that C is complete,
it suffices to show that each Cauchy sequence xn ∈ C has a cluster point
x ∈ C. Choose Kn ∈ A such that xn ∈ Kn. Since A is compact, by going to
a subsequence if necessary, we may assume that Kn → K for some K ∈ A.
Since dH(Kn, K) → 0, we can choose x′n ∈ K such that d(xn, x

′
n) → 0. Since

K is compact, by going to a further subsequence if necessary, we may assume
that x′n → x for some x ∈ K. Since d(xn, x) ≤ d(xn, x

′
n) + d(x′n, x) → 0 this

proves that the original sequence xn has a cluster point x ∈ K ⊂ C.

We conclude this section with two more lemmas. The first lemma is useful
when proving convergence of K+(X )-valued random variables.

Lemma 2.20 (Tightness criterion) Assume that X is a Polish space and
let Kn (n ∈ N) be K+(X )-valued random variables. Then the collection of
laws {P[Kn ∈ · ] : n ∈ N} is tight if and only if for each ε > 0 there exists a
compact C ⊂ X such that P[Kn ⊂ C] ≥ 1− ε for all n ∈ N.

Proof This is an immediate consequence of Lemma 2.17. Indeed, if a C ⊂ X
is compact, then by Lemma 2.17, the set C := {K ∈ K+(X ) : K ⊂ C} is
compact, so it is clear that the conditions of the lemma imply tightness of the
laws {P[Kn ∈ · ] : n ∈ N}. Conversely, if these laws are tight, then for each
ε > 0 there exists a compact C ⊂ K+(X ) such that P[Kn ∈ C] ≥ 1 − ε for
all n ∈ N, which by Lemma 2.17 implies the existence of a compact C ⊂ X
such that K ⊂ C for all K ∈ C and hence also P[Kn ⊂ C] ≥ 1− ε.

The next and final lemma of this section says that if ψ : X → Y is a
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continuous map between metrisable topological spaces, then K+(X ) ∋ K 7→
ψ(K) ∈ K+(Y) is also a continuous map.

Lemma 2.21 (Map acting on compact sets) Let X and Y be metrisable
topological spaces, let ψ : X → Y be a continuous map, and let

ψ̂(K) :=
{
ψ(x) : x ∈ K

} (
K ∈ K+(X )

)
denote the image of a compact set K ⊂ X under ψ. Then ψ(K) ∈ K+(Y)
for all K ∈ K+(X ), and the map ψ̂ : K+(X ) → K+(X ) is continuous with
respect to the Hausdorff topology.

Proof The well-known fact that the continuous image of a compact set is it-
self a compact set has already been mentioned at the beginning of Section 2.2.
To see that ψ̂ : K+(X ) → K+(X ) is continuous, assume that Kn → K. Then
by Lemma 2.15,

∃C ∈ K+(X ) s.t. Kn ⊂ C ∀n ≥ 1 (2.7)

and

K = {x ∈ X : ∃xn ∈ Kn s.t. xn → x}
= {x ∈ X : ∃xn ∈ Kn s.t. x is a cluster point of (xn)n∈N}.

(2.8)

Since ψ̂(C) is compact and ψ̂(Kn) ⊂ ψ̂(C) for all n ≥ 1, by Lemma 2.15, to
prove that ψ̂(Kn) → ψ̂(K), it suffices to show that

ψ̂(K)= {y ∈ X : ∃yn ∈ ψ̂(Kn) s.t. yn → y}
= {y ∈ X : ∃yn ∈ ψ̂(Kn) s.t. y is a cluster point of (yn)n∈N}.

The latter condition can be rewritten as{
ψ(x) : x ∈ K

}
= {y ∈ X : ∃xn ∈ Kn s.t. ψ(xn) → y}

= {y ∈ X : ∃xn ∈ Kn s.t. y is a cluster point of
(
ψ(xn)

)
n∈N}.

It therefore suffices to prove that

(i)
{
ψ(x) : x ∈ K

}
⊂ {y ∈ X : ∃xn ∈ Kn s.t. ψ(xn) → y},

(ii) {y ∈ X : ∃xn ∈ Kn s.t. y is a cluster point of
(
ψ(xn)

)
n∈N}

⊂
{
ψ(x) : x ∈ K

}
.

To prove (i), we use that by (2.8), for each x ∈ K there exist xn ∈ Kn such
that xn → x, and hence ψ(xn) → ψ(x) by the continuity of ψ. To prove
(ii), assume that xn ∈ Kn (n ∈ N) and there exists a sequence (n(m))m≥1
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with limm→∞ n(m) = ∞ such that y = limm→∞ ψ(xn(m)). By (2.7) and the
compactness of C, by going to a further subsequence if necessary, we can
assume without loss of generality that limm→∞ xn(m) = x for some x ∈ C.
Then x ∈ K by (2.8) and limm→∞ ψ(xn(m)) = ψ(x) by the continuity of ψ
which shows that y = ψ(x).

2.6 Squeezed space

Let (X , d) be a metric space, let {∗} be a set containing a single element
called ∗, which we assume is not an element of X , and let

R(X ) :=
(
X × R) ∪

{
(∗,−∞), (∗,+∞)

}
. (2.9)

See Figure 2.1 for a picture of R(R), with R := [−∞,∞]. We will show that
it is possible to equip R(X ) with a metrisable topology such that (xn, tn) →
(x, t) ∈ X ×R if and only if xn → x and tn → t, while (xn, tn) → (∗,±∞) if
and only if tn → ±∞ (with no conditions on xn). We can think of the space
R(X ) as being obtained from X × R by squeezing the sets X × {±∞} into
the single points (∗,±∞). For this reason, we call R(X ) the squeezed space.

(0, 0)

(∗,∞)

(∗,−∞)

(−∞,−1)

(∞, 2)

Figure 2.1: The squeezed space R(R).

To define a metric on R(X ) with the desired properties, we first extend
d to X ∪ {∗} by setting d(x, ∗) = d(∗, x) := ∞ if x ̸= ∗ and := 0 otherwise.
Let R := [−∞,∞] denote the usual two-point compactification of the real
line. We fix a continuous function ϕ : R → [0,∞) such that ϕ(t) > 0 for all
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t ∈ R and ϕ(±∞) = 0, we choose a metric dR that generates the topology
on R, and we define dsqz : R(X )2 → [0,∞) by

dsqz
(
(x, s), (y, t)

)
:=

(
ϕ(s)∧ϕ(t)

)(
d(x, y)∧1

)
+
∣∣ϕ(s)−ϕ(t)∣∣+dR(s, t) (2.10)

Lemma 2.22 (Metric on squeezed space) The function dsqz is a metric
on R(X ).

Proof For brevity, we write d′(x, y) := d(x, y)∧1. Then d′ is a metric on X .
The only nontrivial statement that we have to prove is the triangle inequality,
and it suffices to prove this for the function

d′sqz
(
(x, s), (y, t)

)
:=

(
ϕ(s) ∧ ϕ(t)

)
d′(x, y) +

∣∣ϕ(s)− ϕ(t)
∣∣.

We estimate

d′sqz
(
(x, s), (z, u)

)
≤

(
ϕ(s)∧ϕ(u)

)(
d′(x, y)+d′(y, z)

)
+
∣∣ϕ(s)−ϕ(u)

∣∣. (2.11)
If ϕ(t) ≥ ϕ(s) ∧ ϕ(u), then ϕ(s) ∧ ϕ(u) is less than ϕ(s) ∧ ϕ(t) and also less
than ϕ(t) ∧ ϕ(u), so we can simply estimate the expression in (2.11) from
above by(
ϕ(s) ∧ ϕ(t)

)
d′(x, y) +

(
ϕ(t) ∧ ϕ(u)

)
d′(y, z)

)
+
∣∣ϕ(s)− ϕ(t)

∣∣+ ∣∣ϕ(t)− ϕ(u)
∣∣

and we are done. On the other hand, if ϕ(t) < ϕ(s) ∧ ϕ(u), then∣∣ϕ(s)− ϕ(t)
∣∣+ ∣∣ϕ(t)− ϕ(u)

∣∣ = ∣∣ϕ(s)− ϕ(u)
∣∣+ 2

(
ϕ(s) ∧ ϕ(u)− ϕ(t)

)
.

Using the fact that d′ ≤ 1, we can now estimate the right-hand side of (2.11)
from above by

ϕ(t)
(
d′(x, y) + d′(y, z)

)
+ 2

(
ϕ(s) ∧ ϕ(u)− ϕ(t)

)
+
∣∣ϕ(s)− ϕ(u)

∣∣
=

(
ϕ(s) ∧ ϕ(t)

)
d′(x, y) +

(
ϕ(t) ∧ ϕ(u)

)
d′(y, z)

+
∣∣ϕ(s)− ϕ(t)

∣∣+ ∣∣ϕ(t)− ϕ(u)
∣∣,

and again we are done.

The following lemma shows that the topology generated by the metric
dsqz has the desired properties we stated earlier. In particular, this lemma
shows that the topology generated by the metric dsqz depends only on the
topology on X and not on the choice of the metric on X . Recall that by (2.1),
a metrisable topology is uniquely characterised by its convergent sequences,
so the topology on R(X ) is uniquely characterised by the conditions (i) and
(ii) below.
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Lemma 2.23 (Topology on squeezed space) A sequence (xn, tn) ∈ R(X )
converges to a limit (x, t) in the metric dsqz defined in (2.10) if and only if
the following two conditions are satisfied:

(i) tn → t in the topology on R,

(ii) if t ∈ R, then xn → x in the topology on X .

Proof This is immediate from the definition of dsqz.

The following lemma shows that R(X ) is a Polish space if X is Polish.

Lemma 2.24 (Properties of squeezed space)

(a) If (X , d) is separable, then so is (R(X ), dsqz).

(b) If (X , d) is complete, then so is (R(X ), dsqz).

Proof If D is a countable dense subset of (X , d), then D×Q is a countable
dense subset of (R(X ), dsqz), proving (a).

To prove (b), let (xn, tn) be a Cauchy sequence in (R(X ), dsqz). Then by
(2.10) tn is a Cauchy sequence in R and hence tn → t for some t ∈ R. If t ∈ R,
then by (2.10) xn is a Cauchy sequence in (X , d) so by the completeness of
the latter, xn → x for some x ∈ X . By Lemma 2.23, it follows that (xn, tn)
converges, proving the completeness of (R(X ), dsqz).

The following lemma identifies the compact subsets of R(X ). In partic-
ular, the lemma shows that R(X ) is compact if X is compact.

Lemma 2.25 (Compactness criterion) A set A ⊂ R(X ) is precompact
if and only if for each T < ∞, there exists a compact set K ⊂ X such that
{x ∈ X : (x, t) ∈ A, t ∈ [−T, T ]} ⊂ K.

Proof Assume that A ⊂ R(X ) has the property that for each T <∞, there
exists a compact setK ⊂ X such that {x ∈ X : (x, t) ∈ A, t ∈ [−T, T ]} ⊂ K.
To show that A is precompact, we will show that each sequence (xn, tn) ∈ A
has a convergent subsequence. By the compactness of R, we can select a
subsequence (x′n, t

′
n) such that t′n → t for some t ∈ R. If t = ±∞, then by

Lemma 2.23 (x′n, t
′
n) → (∗,±∞) and we are done. Otherwise, there exists a

T < ∞ such that t′n ∈ [−T, T ] for all n large enough. By assumption, there
then exists a compact set K ⊂ X such that x′n ∈ K for all n large enough,
so we can select a further subsequence such that (x′′n, t

′′
n) converges to a limit

(x, t) ∈ X × R.
Assume, on the other hand, that A ⊂ R(X ) has the property that for

some T <∞, there does not exist a compact set K ⊂ X such that {x ∈ X :
(x, t) ∈ A, t ∈ [−T, T ]} ⊂ K. Set

B :=
{
x ∈ X : (x, t) ∈ A for some t ∈ [−T, T ]

}
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The closure of B cannot be compact, since this would contradict our assump-
tion. It follows that there exists a sequence xn ∈ B that does not contain a
convergent subsequence, and there exist tn ∈ [−T, T ] such that (xn, tn) ∈ A.
But then, in view of Lemma 2.23, the sequence (xn, tn) cannot contain a
convergent subsequence either, proving that A is not precompact.

2.7 Path space

Let X be a metrisable space and let R(X ) be the squeezed space defined
in Section 2.6. By definition, a path in X is a nonempty compact subset
π ⊂ R(X ) such that {x ∈ X : (x, t) ∈ π} has at most one element for each
given t ∈ R and the set

Iπ := {t ∈ R : ∃x ∈ X ∪ {∗} s.t. (x, t) ∈ π
}

(2.12)

is a closed subinterval of R. We call Iπ := Iπ ∩ R the domain of π and we
call

σπ := inf Iπ and τπ := sup Iπ (2.13)

the starting time and final time of the path π. For each t ∈ Iπ, we define
π(t) ∈ X ∪ {∗} by {π(t)} := {x ∈ X : (x, t) ∈ π}. Then Iπ ∋ t 7→ π(t) is a
function from Iπ to X . We let Π(X ) denote the set of all paths in X .

Lemma 2.26 (Path viewed as a function) The domain Iπ of a path
π ∈ Π(X ) is a closed subinterval of R, and t 7→ π(t) is a continuous function
from Iπ to X . Conversely, if I ⊂ R is a closed interval and t 7→ f(t) is a
continuous function from I to X , then there exists a path π ∈ Π(X ) such
that Iπ = I and π(t) = f(t) (t ∈ I). The path π is uniquely determined by
the interval I and function f , except in the trivial case when I = ∅, in which
case there are two possible choices for π.

Proof We first show that for each π ∈ Π(X ), the function Iπ ∋ t 7→ π(t)
is continuous. Assume that tn, t ∈ Iπ and tn → t. Since π is compact,
the sequence (π(tn), tn) is precompact. Since π(t) is the only element of
{x ∈ X : (x, t) ∈ π}, each subsequence of the (π(tn), tn) must converge
to (π(t), t). By Lemma 2.2, we conclude that (π(tn), tn) → (π(t), t). Since
t ∈ R, by Lemma 2.23, we conclude that π(tn) → π(t), which shows that
Iπ ∋ t 7→ π(t) is continuous on I as claimed.

Let I ⊂ R be a closed interval and let f : I → X be continuous. Assume
that I is nonempty. Let I be the closure of I in R. Extend f to I by setting
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f(t) := ∗ if t = ±∞. Let π := {(f(t), t) : t ∈ I}. It follows from Lemma 2.23
and the continuity of f that the map

I ∋ t 7→
(
f(t), t

)
∈ R(X ) (2.14)

is continuous. Since I is compact and since π is the image of I under the
continuous map (2.14), we conclude that π is compact. Clearly, {x ∈ X :
(x, t) ∈ π} has precisely one element for t ∈ I, and is empty for t ̸∈ I.
This shows that π ∈ Π(X ). Since I is the only closed subinterval of R such
that I ∩ R = I, we see that π is uniquely determined by the interval I and
function f .

In the special case that I = ∅, it is easy to see that there exist precisely
two paths π such that Iπ = I (the condition π(t) = f(t) (t ∈ I) is void in this
case). These are the trivial paths with Iπ = {−∞} or = {∞}, respectively.

In view of Lemma 2.26, we often view a path π ∈ Π(X ) as a continuous
function defined on a closed interval Iπ ⊂ R. If I ⊂ R is a closed nonempty
interval, then we identify the space CI(X ) defined in Section 2.4 with the
subset of Π(X ) defined as {π ∈ Π(X ) : Iπ = I}.

Let K+(R(X )) be the set of nonempty compact subsets of the squeezed
space R(X ). We equip K+(R(X )) with the Hausdorff topology. We observe
that Π(X ) is a subset of K+(R(X )). We naturally equip Π(X ) with the
induced topology from its embedding in K+(R(X )).

Lemma 2.27 (Paths with a fixed domain) Let I ⊂ R be a closed
nonempty interval. The induced topology on CI(X ) from its embedding in
Π(X ) is the topology of locally uniform convergence.

Proof Assume that πn, π ∈ CI(X ), viewed as functions, satisfy πn → π
locally uniformly. We need to show that viewed as compact subsets of R(X ),
the sets πn, π satisfy πn → π in the Hausdorff topology on K+(R(X )). Let I
denote the closure of I in R. By Lemma 2.15, we need to show that

⋃
n πn

is precompact and

π ⊂
{
(x, t) ∈ R(X ) : ∃tn ∈ I s.t.

(
πn(tn), tn

)
→ (x, t)

}
,{

(x, t) ∈ R(X ) : (x, t) is a cluster

point of
(
πn(tn), tn

)
for some tn ∈ I

}
⊂ π.

(2.15)

To see that
⋃

n πn is precompact, we need to show that each sequence of
the form (πn(m)(tm), tm)m≥1 has a convergent subsequence. If n(m) infinitely
often takes the same value n, then the claim is obvious from the compactness
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of πn, so without loss of generality we may assume that n(m) → ∞. Going
to a subsequence if necessary, we may assume that tm → t for some t ∈ I. If
t = ±∞, then the claim is again obvious so we may assume that t ∈ I. In
this case Lemma 2.13 (ii) tells us that πn(m)(tm) → π(t) so we have found a
convergent subsequence as required.

To prove the first inclusion in (2.15), let (π(t), t) ∈ π and set tn := t for
all n. If t ∈ I, then πn(t) → π(t) since locally uniform convergence implies
pointwise convergence, and if t = ±∞ then trivially (∗, t) → (∗, t) as n→ ∞.
To prove the second inclusion, assume that (πn(m)(tn(m)), tn(m)) → (x, t) as
m → ∞ for some (x, t) ∈ R(X ), tn ∈ I, and n(m) → ∞. If t ∈ I, then we
can use Lemma 2.13 (ii) which tells us that πn(m)(tn(m)) → π(t) and hence
(x, t) = (π(t), t) ∈ π. If t = ±∞, then trivially x = ∗ and (∗, t) ∈ π.

Assume, conversely, that πn → π in the Hausdorff topology onK+(R(X )).
We need to show that πn, π ∈ CI(X ) and that πn → π locally uniformly.
Assume that tn, t ∈ I such that tn → t. By Lemma 2.13 (ii), it suffices
to show that πn(tn) → π(t) for all such tn, t. Equivalently, we may show
that (πn(tn), tn) → (π(t), t). By Lemma 2.2, it suffices to show that the
set {(πn(tn), tn) : n ∈ N} is precompact and (π(t), t) is the only cluster
point of the sequence (πn(tn), tn). By Lemma 2.15, there exists a compact
set C ⊂ R(X ) such that πn ⊂ C for all n, so {(πn(tn), tn) : n ∈ N} is
precompact as required. Let (x, t) be any cluster point. By Lemma 2.15 (ii),
(x, t) ∈ π and hence x = π(t), which shows that πn(tn) → π(t) as required.

Our next proposition says that the space of paths in X is Polish provided
X has this property.

Proposition 2.28 (Polish space) If X is a Polish space, then so is Π(X ).

The proof of Proposition 2.28 needs some preparations. Let d be a metric
generating the topology on X and let π ∈ Π(X ). For each π ∈ Π(X ), δ > 0
and T <∞, we define

mT,δ(π) := sup
{
d
(
π(s), π(t)

)
: s, t ∈ Iπ, −T ≤ s ≤ t ≤ T, t− s ≤ δ

}
.

(2.16)
The quantity mT,δ(π) is called the modulus of continuity of the path π. More
generally, for any compact subset K ⊂ R(X ), we can define

mT,δ(K) := sup
{
d
(
x, y

)
: (x, s), (y, t) ∈ K, −T ≤ s ≤ t ≤ T, t− s ≤ δ

}
,

which coincides with our previous definition if π is a path. In analogy with
(2.12), we also define

IK :=
{
t ∈ R : ∃x ∈ X ∪ {∗} s.t. (x, t) ∈ K

}
.
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Lemma 2.29 (Characterisation of paths) A compact subset π ⊂ R(X )
is an element of the path space Π(X ) if and only if IK is a closed subinterval
of R and lim

δ→0
mT,δ(π) = 0 for all T <∞.

Proof Assume that π ∈ K+(R(X )) and lim supδ→0mT,δ(π) > 0 for some
T <∞. Then we can find (xn, sn), (yn, tn) ∈ π and δ > 0 with d(xn, yn) ≥ δ,
−T ≤ sn ≤ tn ≤ T , and tn − sn ≤ 1/n. Since π is compact, by going to a
subsequence, we can assume that (xn, sn) → (x, s) and (yn, tn) → (y, t) for
some (x, s), (y, t) ∈ π with d(x, y) ≥ δ > 0, −T ≤ s ≤ t ≤ T , and t− s = 0.
This shows that π ̸∈ Π(X ).

Conversely, if π ̸∈ Π(X ), then either Iπ is not a closed subinterval of
R or there exist (x, t), (y, t) ∈ π with x ̸= y. In the latter case, since
(∗,±∞) are the only points in R(X ) with time coordinate ±∞ we must
have t ∈ R. But then mT,δ(π) ≥ d(x, y) > 0 for all T ≥ |t|, which shows that
lim supδ→0mT,δ(π) > 0 for some T <∞.

Proof of Proposition 2.28 If X is a Polish space, then by Lemma 2.24 so
is R(X ) and hence by Lemma 2.16 so is K+(R(X )). Let us set

K′ :=
{
K ∈ K+(R(X )) : IK is a closed subinterval of R

}
. (2.17)

Then K′ is a closed subset of K+(R(X )) and hence Polish in the induced
topology by Proposition 2.4. For each ε, δ > 0 and T <∞, the set

AT,ε,δ := {K ∈ K′ : mT,δ(K) ≥ ε}

is a closed subset of K′ and hence its complement Ac
T,ε,δ is open. By Lemma

2.29,

Π(X ) =
⋂
n,m

⋃
k

Ac
n,1/m,1/k,

which is a countable intersection of open sets, i.e., a Gδ-set. By Proposi-
tion 2.4, it follows that Π(X ) is a Polish space.

A set A ⊂ Π(X ) is called equicontinuous if

lim
δ→0

sup
π∈A

mT,δ(π) = 0 (T <∞).

The following theorem identifies the compact subsets of Π(X ). Condition (ii)
is called the compact containment condition. If I ⊂ R is a closed nonempty
interval, then CI(X ) is a closed subset of Π and hence the following theorem
can also be used to identify the precompact subsets of CI(X ). In this con-
text, the result is known as the Arzela-Ascoli theorem. Note that while the
definition of equicontinuity depends (at least a priori) on the choice of the



44 CHAPTER 2. TOPOLOGICAL PREREQUISITES

metric d on X , whether a set A ⊂ Π(X ) is precompact only depends on the
topology on X , so when verifying conditions (i) and (ii) below, we are free
to choose any metric d that generates the topology on X .

Theorem 2.30 (Arzela-Ascoli) A set A ⊂ Π(X ) is precompact if and only
if

(i) A is equicontinuous,

(ii) for each T < ∞, there exists a compact set C ⊂ X such that π(t) ∈ C
for all π ∈ A, t ∈ [−T, T ].

Proof Let K′ be the space defined in (2.17), equipped with the Hausdorff
topology. Let A denote the closure of A, viewed as a subset of the space K′.
Then A is a precompact subset of Π(X ) if and only if A is a compact subset
of K′ and A ⊂ Π(X ). By Lemmas 2.17 and 2.25, A is a compact subset of K′

if and only if condition (ii) holds. To complete the proof, it suffices to show
that assuming that (ii) holds, one has A ⊂ Π(X ) if and only if (i) holds.

We first show that (i) implies A ⊂ Π(X ). Assume that πn ∈ A converge
in the Hausdorff topology to a compact subset π ⊂ R(X ). To show that
π ∈ Π(X ), will apply Lemma 2.29. If (x, s), (y, t) ∈ π, then by Lemma 2.15,
there exist (xn, sn), (yn, tn) ∈ πn such that (xn, sn) → (x, s) and (yn, tn) →
(y, t). If s, t ∈ [−T, T ] and |t − s| ≤ δ, then for n large enough we have
sn, tn ∈ [−T − 1, T + 1] and |tn − sn| ≤ 2δ. Since d(xn, yn) → d(x, y), it
follows that

lim sup
δ→0

mT,δ(π) ≤ lim sup
δ→0

sup
n
mT+1,2δ(πn) = 0 (δ > 0, T <∞),

which by Lemma 2.29 implies that π ∈ Π(X ).

Assume now that (ii) holds but (i) fails. Then there exist T < ∞ and
ε > 0 such that for each n ≥ 1, we can find πn ∈ A withmT,1/n(πn) ≥ ε. This
means that there exist −T ≤ sn ≤ tn ≤ T such that d(πn(sn), πn(tn)) ≥ ε
and tn − sn ≤ 1/n. By (ii), A is a compact subset of K′, so by going a
subsequence we may assume that πn → π ∈ K′. By going to a further
subsequence, we may assume that sn → s and tn → t for some s, t ∈ [−T, T ].
But then s = t since tn − sn ≤ 1/n. Let xn := πn(sn) and yn := πn(tn). By
(ii), we can select a further subsequence such that xn → x and yn → y for
some x, y with d(x, y) ≥ ε. By Lemma 2.15, we have (x, t), (y, t) ∈ π which
shows that π ̸∈ Π(X ) and hence A is not a subset of Π(X ).
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2.8 Tightness

In this section, we use the general results from the previous section to derive
a tightness criterion for sequences of random variables with values in the
space Π(R).

Lemma 2.31 (Precompactness) Let A be a subset of Π(R). Then A is
precompact if and only if for all T <∞ and ε > 0, there exists a δ > 0 such
that ∣∣π(u)− π(t)

∣∣ ≤ ε for all π ∈ A and σπ ≤ t ≤ u

s.t. (π(t), t), (π(u), u) ∈ [−T, T ]2, u− t ≤ δ.

This statement remains true if we drop one of the conditions (π(t), t) ∈
[−T, T ]2 or (π(u), u) ∈ [−T, T ]2.

Proof Let ϕ : R → [−1, 1] be strictly increasing and continuous with
ϕ(±∞) = ±1. Then

d(x, y) :=
∣∣ϕ(x)− ϕ(y)

∣∣ (x, y ∈ R).

is a metric generating the topology on R. Since R is compact, by the Arzela-
Ascoli theorem (Theorem 2.30), A is precompact if and only if it is equicon-
tinuous, i.e.,

sup
{
d
(
π(t), π(u)

)
: π ∈ A, σπ ≤ t ≤ u ≤ τπ,

t, u ∈ [−T, T ], u− t ≤ δ
}
−→
δ→0

0 ∀T <∞.

In other words, A is not precompact if and only if

∃T <∞ and ε > 0 s.t. ∀δ > 0 ∃π ∈ A and σπ ≤ t ≤ u ≤ τπ

s.t. t, u ∈ [−T, T ], u− t ≤ δ and d
(
π(t), π(u)

)
> ε.

(2.18)

We claim that this is equivalent to

∃S, T <∞ and ε > 0 s.t. ∀δ > 0 ∃π ∈ A and σπ ≤ t ≤ u ≤ τπ s.t.

t, u ∈ [−T, T ], π(t), π(u) ∈ [−S, S], u− t ≤ δ and d
(
π(t), π(u)

)
> ε/3.

(2.19)
The implication (2.19)⇒(2.18) is trivial. To prove the converse, assume that
(2.18) holds for some T < ∞ and ε > 0. Making ε smaller if necessary,
we can without loss of generality assume that 0 < ε < 1. We can choose
the function ϕ in the definition of our metric d on R to be symmetric and
then define S > 0 by d(±S,±∞) = ε/3. Now fix δ > 0 and let π be
as in (2.18). If π(t), π(u) ∈ [−S, S] already holds we are done. If π(t) ̸∈
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[−S, S], then either 1. π(t) ∈ [−∞,−S) or 2. π(t) ∈ (S,∞]. Assume that
we are in case 1. Since d

(
π(t), π(u)

)
> ε, we must have π(u) ∈ (−S,∞].

Therefore, by continuity, there must be some t′ ∈ [t, u] such that π(t′) = −S.
Then d

(
π(t′), π(u)

)
> (2/3)ε. If π(u) ≤ S we are done. Otherwise, by

continuity, there must be some u′ ∈ [t′, u] such that π(u′) = S and now
d
(
π(t′), π(u′)

)
= d(−S, S) > ε/3. Case 2 is similar, by symmetry, and the

case that π(t) ∈ [−S, S] but π(u) ̸∈ [−S, S] can also be treated in the same
way.

If we drop one of the conditions π(t) ∈ [−S, S] or π(u) ∈ [−S, S] from
(2.19), then this condition is weaker than (2.19) but stronger than (2.18).
However, we have already shown that (2.18) implies (2.19), so all conditions
are equivalent. In other words, A is precompact if and only if for all S, T <∞
and ε > 0, there exists a δ > 0 such that

d
(
π(t), π(u)

)
≤ ε/3 for all π ∈ A and σπ ≤ t ≤ u s.t.

π(t), π(u) ∈ [−S, S], t, u ∈ [−T, T ], u− t ≤ δ,

and the same is true if we drop one of the conditions π(t) ∈ [−S, S] or
π(u) ∈ [−S, S]. Replacing S and T by S ∨T + δ if necessary, we can simplify
this by saying that A is precompact if and only if for all T < ∞ and ε > 0,
there exists a δ > 0 such that

d
(
π(t), π(u)

)
≤ ε for all π ∈ A and σπ ≤ t ≤ u s.t.(

π(t), t
)
,
(
π(u), u

)
∈ [−T, T ]2, u− t ≤ δ,

and the same is true if we drop one of the conditions
(
π(t), t

)
∈ [−T, T ]2 or(

π(u), u
)
∈ [−T, T ]2. We can choose the function ϕ that we used to define the

metric d on R to be Lipschitz continuous with Lipschitz constant one; then d
has the property that d(x, y) ≤ |x−y| for all x, y ∈ R. Conversely, as long as
at least one of π(t) and π(u) lies inside [−T, T ], by making d

(
π(t), π(u)

)
as

small as we wish, we can also make
∣∣π(t)− π(u)

∣∣ as small as we wish. From
these observations, the claim of the lemma follows.

Proposition 2.32 (Almost sure precompactness) Let A be a random
subset of Π(R). Then A is almost surely a precompact subset of Π(R) if and
only if

P
[ ∣∣π(u)− π(t)

∣∣ ≥ ε for some π ∈ A and σπ ≤ t ≤ u ≤ τπ

s.t. (π(t), t), (π(u), u) ∈ [−T, T ]2, u− t ≤ δ
]
−→
δ→0

0 ∀T <∞, ε > 0.

The same is true if we drop one of the conditions
(
π(t), t

)
∈ [−T, T ]2 or(

π(u), u
)
∈ [−T, T ]2.
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Proof We only prove the claim with both conditions
(
π(t), t

)
∈ [−T, T ]2

and
(
π(u), u

)
∈ [−T, T ]2 in place. If we drop one of these conditions, then

the argument goes precisely in the same way. Let Aδ
T,ε denote the event that∣∣π(u)− π(t)

∣∣ ≥ ε for some π ∈ A and σπ ≤ t ≤ u ≤ τπ

s.t. (π(t), t), (π(u), u) ∈ [−T, T ]2, u− t ≤ δ.

Then δ ≤ δ′ implies Aδ
T,ε ⊂ Aδ′

T,ε and AT,ε :=
⋂

δ>0A
δ
T,ε is the event that

∀δ > 0 ∃π ∈ A and σπ ≤ t ≤ u ≤ τπ

s.t. (π(t), t), (π(u), u) ∈ [−T, T ]2, u− t ≤ δ, and
∣∣π(u)− π(t)

∣∣ ≥ ε.

The assumption of the proposition says that limδ→0 P (A
δ
T,ε) = 0, which im-

plies P (AT,ε) = 0. Since this holds for all T < ∞ and ε > 0, it follows
that

P
( ⋃
n≥1

⋃
m≥1

An,1/m

)
= 0,

which shows that almost surely, for all n ≥ 1 and m ≥ 1, there exists a δ > 0
such that ∣∣π(u)− π(t)

∣∣ < 1/m for all π ∈ A and σπ ≤ t ≤ u ≤ τπ

s.t. (π(t), t), (π(u), u) ∈ [−n, n]2, u− t ≤ δ.

By Lemma 2.31, it follows that A is almost surely precompact.
On the other hand, if the assumption of the proposition does not hold,

then the event AT,ε has positive probability for some T <∞ and ε > 0, which
by Lemma 2.31 implies that A is with positive probability not precompact.

Proposition 2.33 (Tightness of random compact sets of paths) Let
K+(Π(R)) be the set of nonempty compact subsets of Π(R), equipped with
the Hausdorff topology. Let (An)n≥1 be a sequence of random variables with
values in K+(Π(R)). Then the probability laws

(
P[An ∈ · ]

)
n≥1

are tight if
and only if

sup
n≥1

P
[ ∣∣π(u)− π(t)

∣∣ ≥ ε for some π ∈ An and σπ ≤ t ≤ u ≤ τπ

s.t. (π(t), t), (π(u), u) ∈ [−T, T ]2, u− t ≤ δ
]
−→
δ→0

0

for all T <∞ and ε > 0. The same is true if we drop one of the conditions(
π(t), t

)
∈ [−T, T ]2 or

(
π(u), u

)
∈ [−T, T ]2.
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Proof We only prove the claim with both conditions
(
π(t), t

)
∈ [−T, T ]2 and(

π(u), u
)
∈ [−T, T ]2 in place. If we drop one of these conditions, then the

argument goes precisely in the same way. By Theorem 2.12, the probability
laws

(
P[An ∈ · ]

)
n≥1

are tight if and only if for each η > 0, there exists a

compact set C ⊂ K+(Π(R)) such that

inf
n≥1

P[An ∈ C] ≥ 1− η.

Equivalently, we may show that there exists a precompact set C ⊂ K+(Π(R))
with this property, because its closure C is then compact with P[An ∈ C] ≥
P[An ∈ C]. By Lemma 2.17, a subset C ⊂ K+(Π(R)) is precompact if and
only there exists a compact C ⊂ Π(R) such that A ⊂ C for all A ∈ C. It
follows that the probability laws

(
P[An ∈ · ]

)
n≥1

are tight if and only if2

∀η > 0 ∃ compact C ⊂ Π(R) s.t. inf
n≥1

P[An ⊂ C] ≥ 1− η. (2.20)

Let

Aδ
T,ε :=

{
π ∈ Π(R) :

∣∣π(u)− π(t)
∣∣ < ε ∀σπ ≤ t ≤ τπ

s.t.
(
π(t), t

)
,
(
π(u), u

)
∈ [−T, T ]2, u− t ≤ δ

}
.

The assumption of the proposition then says that

inf
n≥1

P
[
An ⊂ Aδ

T,ε

]
−→
δ→0

1 (T <∞, ε > 0).

Let (ηk,m)k,m≥1 be positive constants. Then we can choose δ(k,m) > 0 such
that

inf
n≥1

P
[
An ⊂ Aδ(k,m)

k,1/m

]
≥ 1− ηk,m (k,m ≥ 1).

Then
inf
n≥1

P
[
An ⊂

⋂
k,m≥1

Aδ(k,m)
k,1/m

]
≥ 1−

∑
k,m≥1

ηk,m.

By Lemma 2.31, the set
⋂

k,m≥1A
δ(k,m)
k,1/m is precompact. Since the positive

constants (ηk,m)k,m≥1 are arbitrary, we can make
∑

k,m≥1 ηk,m as small as

we wish. Taking for C the closure of
⋂

k,m≥1A
δ(k,m)
k,1/m , this proves (2.20) and

shows that the assumption of the proposition implies tightness of the laws(
P[An ∈ · ]

)
n≥1

.

2Indeed, the existence of such a C is necessary by our previous condition and
Lemma 2.17, and conversely, if such a C exists, then by Lemma 2.17 C := {A : A ⊂ C} is
compact so we can apply our previous condition.
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Assume, conversely, that these laws are tight and hence (2.20) holds. Fix
T < ∞ and ε > 0. By (2.20), for each η > 0, there exists a compact C such
that

sup
n≥1

P[An ̸⊂ C] ≤ η.

Since C is compact, by Lemma 2.31, there exists a δ > 0 such that C ⊂ Aδ
T,ε.

This shows that for each η > 0, there exists a δ > 0 such that

sup
n≥1

P
[
An ̸⊂ Aδ

T,ε

]
≤ η,

which implies that the assumption of the proposition is satisfied.

2.9 Cadlag paths

Paths, as we have defined them in Section 2.7, correspond to continuous
functions defined on a closed time interval and taking values in a metrisable
space X . For some purposes, it will occasionally be necessary to generalise the
concept of a path so that paths can make jumps. We recall that a function,
defined on a closed real interval and taking values in a metrisable space X ,
is called cadlag (from the French “continue à droit, limite à gauche”) if it is
right-continuous and has left limits at each time. It is possible to define a
space of cadlag paths that extends the space of continuous paths defined in
Section 2.7. This has been done in detail in [NS22]. Since the technicalities
are somewhat involved, we will only cite some of the results of that paper
without proof. Our set-up differs slightly from the set-up in the main body
of [NS22], but the results we cite below can be translated into our set-up
using [NS22, Lemma 5.3].

Let X be a metrisable space and let ⪯ be a partial order on X . By
definition, the partial order ⪯ is compatible with the topology if the set

X ⟨2⟩ :=
{
(x, y) ∈ X 2 : x ⪯ y

}
is a closed subset of X 2, equipped with the product topology. Equivalently,
this says that if xn → x, yn → y, and xn ⪯ yn for all n, then it should always
be true that x ⪯ y.

By definition, a cadlag path in X is a nonempty compact subset π ⊂ R(X )
that is equipped with a relation ⪯ such that:

(i) for each t ∈ R, the set
{
x ∈ X : (x, t) ∈ π

}
has at most two elements,

(ii) Iπ :=
{
t ∈ R : ∃x ∈ X ∪ {∗} s.t. (x, t) ∈ π

}
is a closed subset of R,
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(iii) ⪯ is a total order on π that is compatible with the topology on π and
(x, s) ⪯ (y, t) for all (x, s), (y, t) ∈ π with s < t.

We call σπ := inf Iπ and τπ := sup Iπ the starting time and final time of π,
and we set Iπ := Iπ ∩ R. For each t ∈ Iπ, we define π(t−), π(t+) ∈ X ∪ {∗}
by {

π(t−), π(t+)
}
=

{
x ∈ X : (x, t) ∈ π

}
with π(t−) ⪯ π(t+).

The total order ⪯ on a cadlag path π corresponds to the time order and
helps us, when the set

{
x ∈ X : (x, t) ∈ π

}
contains two elements, to find

out which element is the “first” and which the “second” in the time order.
It is shown in [NS22, Lemma 3.2] that cadlag paths, as we have just defined
them, correspond to cadlag functions in the usual sense of the word, in the
sense that the function Iπ ∋ t 7→ π(t+) is right-continuous and the function
Iπ ∋ t 7→ π(t−) satisfies

π(t−) = lim
s↑t

π(t+) (t ∈ Iπ, σπ < t).

The limit from the left is not defined at t = σπ, however, and contrary to the
usual conventions for cadlag functions, it may happen that π(σπ−) ̸= π(σπ+).
Likewise, it is possible that a cadlag path π makes a jump at its final time τπ.

Recall the definition of a correspondence from Section 2.5. We write
z1 ≺ z2 as a shorthand for z1 ⪯ z2 and z1 ̸= z2, and say that a correspondence
R between two cadlag paths π, π′ is monotone if

there are no (z1, z
′
1), (z2, z

′
2) ∈ R such that z1 ≺ z2 in π and z′2 ≺ z′1 in π′.

We let Corr+(π1, π2) denote the set of all monotone correspondences between
two cadlag paths π1 and π2. We denote the space of cadlag paths in X by
ΠS(X ) and in analogy with (2.4), we define a metric dS on ΠS(X ) by

dS(π, π
′) := inf

R∈Corr+(π,π′)
sup

(z,z′)∈R
dsqz(z, z

′)
(
π, π′ ∈ ΠS(X )

)
, (2.21)

where dsqz is the metric on the squeezed space R(X ). It is shown in [NS22,
Prop 3.3] that if X is a Polish space, then so is ΠS(X ), equipped with the
topology generated by dS. By [NS22, Lemma 3.5], the space of (continuous)
paths Π(X ) is a closed subset of ΠS(X ), and by [NS22, Prop 3.4], the topology
on Π(X ) coincides with the induced topology from its embedding in ΠS(X ).
It is shown in [NS22, Section 3.4] for sequences of paths that are all defined on
the same time interval and that do not jump at the endpoints of this interval,
convergence in the topology on ΠS(X ) corresponds to correspondence in the
classical Skorohod topology.
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For cadlag paths, there is an analogue of the Arzela-Ascoli theorem (The-
orem 2.30). The Skorohod modulus of continuity of a cadlag path π is defined
as

mS
T,δ(π) := sup

{
d
(
x2, {x1, x3}

)
: (xi, ti) ∈ π, ti ∈ [−T, T ] (i = 1, 2, 3),

(x1, t1) ⪯ (x2, t2) ⪯ (x3, t3), t3 − t1 ≤ δ
}
.

(2.22)
We say that a set A ⊂ ΠS(X ) is Skorohod-equicontinuous if

lim
δ→0

sup
π∈A

mS
T,δ(π) = 0 (T <∞).

The following theorem, that we cite from [NS22, Thm 3.7], is very similar to
Theorem 2.30.

Theorem 2.34 (Compactness criterion) A set A ⊂ ΠS(X ) is precompact
if and only if

(i) A is Skorohod-equicontinuous,

(ii) for each T < ∞, there exists a compact set C ⊂ X such that π(t) ∈ C
for all π ∈ A, t ∈ [−T, T ].
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Chapter 3

The Brownian web

3.1 Arrow configurations

In this chapter, we are interested in the diffusive scaling limit of the (un-
perturbed, standard) voter model, and its dual system of coalescing random
walks. We will focus on the systems coalescing random walks, and more
precisely on the collection of all open paths in their graphical representation.
Thus, we will be interested in collections of coalescing random walks, start-
ing from each point in space-time, and their diffusive scaling limit, which can
informally be described as coalescing Brownian motions, start starting from
each point in space-time.

In the context of the voter model, it is natural to consider coalescing
random walks in discrete space and continuous time. It is sometimes more
convenient to consider coalescing random walks in discrete space and time.
We will therefore start by studying the latter, and prove that they have
a diffusive scaling limit. In Section 3.7 below, we will indicate how the
arguments can be adapted to the continuous-time setting of the voter model.

By definition, we call

Z2
even :=

{
(x, t) ∈ Z2 : x+ t is even

}
the even sublattice of Z2. Let ω = (ωz)z∈Z2

even
be an i.i.d. collection of random

variables that are uniformly distributed on {−1,+1}. We can use ω to define
a random directed graph with vertex set Z2

even and set of oriented edges

E⃗ :=
{(
x, t), (x+ ω(x,t), t+ 1)

)
: (x, t) ∈ Z2

even

}
.

We call the random directed graph (Z2
even, E⃗) an arrow configuration. See

Figure 3.1 for a picture.

53
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Figure 3.1: An arrow configuration.

In Section 2.7, for any metrisable space X , we gave a definition of the path
space Π(X ). Recall that Iπ denotes the domain of a path π ∈ Π(X ) and that
σπ, τπ denote its starting time and final time, respectively. We will especially
be interested in the case that the metrisable space X is R := [−∞,∞], the
extended real line. We let

Π↑ :=
{
π ∈ Π(R) : τπ = ∞

}
.

We call Π↑ the space of all upward paths. In view of Lemma 2.26, elements
of Π↑ correspond to continuous functions π : Iπ → R, where Iπ is an interval
of the form [σπ,∞) if the starting time σπ is finite, and

Iπ = R if σπ = −∞ and Iπ = ∅ if σπ = +∞.

We will call the point

zπ :=
(
π(σπ), σπ

)
the starting point of the path π. Note that in general zπ is an element of
R(R), the squeezed space defined in Section 2.6. By definition, a open path

in the arrow configuration (Z2
even, E⃗), or simply a open path in ω, is a path

π ∈ Π↑ with the following properties:

(i) σπ ∈ Z ∪ {−∞,+∞} and
(
π(t), t

)
∈ Z2

even (t ∈ Z, t ≥ σπ),

(ii) π(t+ 1) = π(t) + ω(π(t),t) (t ∈ Z, t ≥ σπ),

(iii) π(t+ s) = (1− s)π(t) + sπ(t+ 1) (0 ≤ s ≤ 1, t ∈ Z, t ≥ σπ).
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In words, these are upward paths that visit points in the even sublattice at
integer times and follow the arrows, with linear interpolation between integer
times. We let

U = U(ω) :=
{
π ∈ Π↑ : π is a open path in ω

}
. (3.1)

We let U denote the closure of U in the topology on Π↑. The following
proposition says that U is a.s. compact and compared to U only contains a
few extra trivial paths. Below, we use the notation Z := Z ∪ {−∞,∞}, i.e.,
this is the closure of Z in R.

Proposition 3.1 (Compact set of paths) The closure U of the random
set of upward paths U defined in (3.1) is almost surely a compact subset of
Π↑. Moreover, almost surely, the set U\U consists of all paths π ∈ Π↑ with
σπ ∈ Z and either π(t) = −∞ for all t ∈ Iπ or π(t) = +∞ for all t ∈ Iπ.

Proof Since paths in U are Lipschitz continuous with Lipschitz constant
one, equicontinuity is obvious so U is precompact by Proposition 2.32 and
hence U is compact.

Let s ∈ Z and let π ∈ Π↑ be defined by σπ := s and π(t) := −∞ for all
σπ ≤ t <∞. To see that π ∈ U , choose xn ∈ Z such that (xn, s) ∈ Z2

even and
xn → −∞. Let πn ∈ U be the unique open path started at (xn, t). Since
U is compact, by going to a subsequence if necessary, we can assume that
πn → π′ for some π′ ∈ Π↑. Since πn is a random walk starting from (xn, t)
and xn → −∞, the law of πn(t) converges weakly to the delta measure on
−∞ for each t ≥ s, from which we conclude that π′ = π and hence π ∈ U .
In the same way, we see that U contains all trivial paths π with σπ ∈ Z
and π(t) = ∞ for all σπ ≤ t < ∞. Since U is closed, it also contains all
limits of such paths, so letting σπ → ∞ or σπ → −∞ we see that U also
contains all trivial paths with σπ = −∞ and either π(t) = −∞ for all t ∈ R
or π(t) = +∞ for all t ∈ R, as well as the trivial path with σπ = +∞.

To complete the proof, we must show that if π ∈ U satisfies π(t) ∈ R
for some t ≥ σπ, then π(t) ∈ R for all t ≥ σπ. We first note that paths
in U are noncrossing in the sense that there do not exist π, π′ ∈ U and
σπ ∨ σπ′ ≤ s < t <∞ such that π(s) < π′(s) while π′(t) < π(t). It is easy to
see that this property is preserved in the limit so paths in U are noncrossing
too. Now assume that π ∈ U satisfies π(t) ∈ R for some t ≥ σπ. Choose
zn = (xn, sn) ∈ Z2

even with sn < σπ such that zn → (∞, s) for some s ∈ R, and
let πn ∈ U denote the open path started from zn. Then πn is a random walk
started from zn. By our previous arguments, πn(t) → ∞ a.s. so π(t) < πn(t)
for all n large enough. Since paths in U are noncrossing it follows that there
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exists an n such that π(t) ≤ πn(t) < ∞ for all t ≥ σπ. In the same way, by
symmetry, we see that −∞ < π(t) for all t ≥ σπ.

We now turn to what we are mainly interested in, which is the diffusive
scaling limit of arrow configurations. For each ε > 0, we define a diffusive
scaling map θε : R2 → R2 by

θε(x, t) := (εx, ε2t)
(
(x, t) ∈ R2

)
. (3.2)

Let R(R) be the squeezed space defined in Section 2.6. We extend θε con-
tinuously to R(R) in the obvious way, by setting

θε(±∞, t) := (±∞, ε2t) (t ∈ R) and θε(∗,±∞) := (∗,±∞).

For any subset A ⊂ R(R), we let

θε(A) :=
{
θε(z) : z ∈ A

}
denote the image of A under θε. In particular, this notation applies to paths
π ∈ Π(R), which according to their defininition in Section 2.7 correspond to
compact subsets of R(R). It is easy to see that θε(π) ∈ Π↑ for all π ∈ Π↑, so
the diffusive scaling map θε : R(R) → R(R) naturally gives rise to a diffusive
scaling map from Π↑ to Π↑ which by a slight abuse of notation we also denote
by θε. Going one step further, for any subset A ⊂ Π↑, we let

θε(A) :=
{
θε(π) : π ∈ A

}
denote the image of A under this map.

In Section 2.5, we equipped the space K(X ) of all compact subsets of a
metrisable topological space X with the Hausdorff topology. As an immediate
consequence of Lemma 2.21, we obtain:

Lemma 3.2 (Scaling of paths) For each ε > 0, the map θε : Π
↑ → Π↑ is

continuous.

Proof Immediate from Lemma 2.21, the continuity of the map θε : R(R) →
R(R), and the fact that in Section 2.7 we viewed the path space Π(R) as
a subset of K(R(R)) and equipped it with the induced topology from this
embedding.

Let U be the set of all open paths in an arrow configuration and let U
be its closure, which by Proposition 3.1 is a random compact subset of Π↑.
Then, since the continuous image of a compact set is compact, by Lemma 3.2,
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for each ε > 0, the diffusively rescaled set of paths θε(U) is a random compact
subset of Π↑. Our aim is to prove that

P
[
θε(U) ∈ ·

]
=⇒
ε→0

P
[
W ∈ ·

]
(3.3)

where ⇒ denotes weak convergence of probability laws on the space K(Π↑),
equipped with the Hausdorff topology, and W is a random compact subset
of Π↑ that will be called the Brownian web.

3.2 Coalescing Brownian motions

As a first step towards proving (3.3), we start by proving something like
convergence of finite dimensional distributions. More precisely, for each ε >
0, we choose finitely many points zε1, . . . , z

ε
n in the diffusively rescaled lattice

θε(Z2
even), in such a way that

(zε1, . . . , z
ε
n) −→

ε→0
(z1, . . . , zn)

for some z1, . . . , zn ∈ R2. Letting πε
1, . . . , π

ε
n denote the paths in U with start-

ing points zε1, . . . , z
ε
n, we will argue that (π

ε
1, . . . , π

ε
n) converges in distribution

to a collection of coalescing Brownian motions.
Let B1 = (B1

t )t≥0 and B2 = (B2
t )t≥0 be two independent standard one-

dimensional Brownian motions started from initial states Bi
0 = xi (i = 1, 2),

and let
τ := inf{t ≥ 0 : B1

t = B2
t },

which is a.s. finite since (B1
t −B2

t )t≥0 is a Brownian motion (with double the
quadratic variation of a standard Brownian motion), and one-dimensional
Brownian motion is point recurrent. Let B̃2 = (B̃2

t )t≥0 be defined by

B̃2
t :=

{
B2

t if t ≤ τ,

B1
t if τ ≤ t.

Then it is possible to check1 that B̃2 is a standard Brownian motion, and our
definition is symmetric in the sense that if we define B̃1

t := B1
t (t ≤ τ) and

:= B2
t (τ ≤ t), then (B̃1

t , B
2
t )t≥0 is equally distributed with (B1

t , B̃
2
t )t≥0. The

processes B1 and B̃2 are of course not independent. The process (B1
t , B̃

2
t )t≥0

is a Markov process that is known as coalescing Brownian motions.
We can carry out the same construction for any finite number of Brownian

motions, that can moreover start at different times. See Figure 3.2 for an

1In fact, one way to prove this is to derive it from Proposition 3.3 below.
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Figure 3.2: Coalescing Brownian motions.

illustration. Let z1, . . . , zn ∈ R2 with zi = (xi, si) (i = 1, . . . , n), and let
B1, . . . , Bn be independent Brownian motions such that Bi = (Bi

t)t≥si starts
at time si in B

i
si
= xi. We set τ1 := ∞, A1 := {(B1

t , t) : s1 ≤ t < ∞} and
define inductively for j = 2, . . . , n

τj := inf
{
t ≥ sj : (B

j
t , t) ∈ A1 ∪ · · · ∪ Aj−1

}
,

Aj :=
{
(Bj

t , t) : sj ≤ t < τj
}
.

By the recurrence of one-dimensional Brownian motion, almost surely τj <∞
for all 2 ≤ j ≤ n. Note that the sets A1, . . . , An are disjoint. In view of this,
we can uniquely define ι(j) ∈ {1, . . . , j − 1} by the requirement that

(Bj
τj
, τj) ∈ Aι(j).

Using this, we define inductively B̃1 := B1 and

B̃j
t :=

{
Bj

t if si ≤ t ≤ τj,

B̃
ι(j)
t if τj ≤ t.

We call B̃1, . . . , B̃n coalescing Brownian motions starting from the space-time
points z1, . . . , zn ∈ R2.

We are now ready to formulate a result about the convergence in law of
finitely many open paths in an arrow configuration. We have already become
used (hopefully!) to the slight abuse of notation by which θε can denote both
a diffusive scaling map acting on space-time points, or on sets of space-time
points such as paths, or even sets of paths. Taking this one step further, we
also denote

θε(z1, . . . , zn) :=
(
θε(z1), . . . , θε(zn)

)
, θε(π1, . . . , πn) :=

(
θε(π1), . . . , θε(πn)

)
when z1, . . . , zn are space-time points and π1, . . . , πn are paths.
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Proposition 3.3 (Convergence of finite dimensional distributions)
Let εk > 0 satisfy εk → 0. Fix n ≥ 1 and for each k, let zk1 , . . . , z

k
n ∈ Z2

even.
Assume that

θεk(z
k
1 , . . . , z

k
n) −→

k→∞
(z1, . . . , zn) ∈ (R2)n.

Fix an arrow configuration and for each k, let πk
1 , . . . , π

k
n be the unique open

paths in the arrow configuration with starting points zk1 , . . . , z
k
n. Then

P
[
θεk(π

k
1 , . . . , π

k
n) ∈ ·

]
=⇒
k→∞

P
[
(π1, . . . , πn) ∈ ·

]
,

where ⇒ denotes weak convergence of probability measures on (Π↑)n and
π1, . . . , πn are coalescing Brownian motions starting from z1, . . . , zn.

Proof Our definition of coalescing Brownian motions involved a procedure
that started with n independent Brownian motions (B1, . . . , Bn) and used
them to construct n coalescing Brownian motions (B̃1, . . . , B̃n). More for-
mally, we can view (B̃1, . . . , B̃n) as the image of (B1, . . . , Bn) under a map

(π1, . . . , πn) 7→ (π̃1, . . . , π̃n) (3.4)

that takes n paths π1, . . . , πn in Π↑ with starting points in R2 and maps them
into n new paths π̃1, . . . , π̃n with the same starting points.

For each k, let (Rk,1, . . . , Rk,n) be a collection of independent random
walks started from zk1 , . . . , z

k
n, and let (R̃k,1, . . . , R̃k,n) be its image under the

map from (3.4). Then (R̃k,1, . . . , R̃k,n) are coalescing random walks. It is
easy to see that they are equal in law with (πk

1 , . . . , π
k
n). We want to show

that
P
[
θεk(R̃

k,1, . . . , R̃k,n) ∈ ·
]
=⇒
k→∞

P
[
(B̃1, . . . , B̃n) ∈ ·

]
.

It is easy to see that the diffusive scaling map commutes with the map in
(3.4), i.e., the random variable in the left-hand side of our equation is the
same as what we would obtain if we first diffusively rescale the independent
random walk paths and then apply the map from (3.4).

Weak convergence in law of diffusively rescaled independent random walks
to independent Brownian motions follows from Donsker’s invariance princi-
ple. Using Skorohod’s representation theorem (Theorem 2.11), we can couple
our random variables such that

θεk(R
k,1, . . . , Rk,n) −→

k→∞
(B1, . . . , Bn) a.s.

in the topology on (Π↑)n. If the map in (3.4) would be continuous with
respect to the topology on (Π↑)n, then the rest of the proof would now be
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easy, since we would just apply this map to both sides of our last equation
and we would be done.

Things are not quite so simple, however, since it is easy to check (even for
n = 2) that the map in (3.4) is not continuous with respect to the topology
on (Π↑)n. It turns out, however, that (B1, . . . , Bn) is almost surely a point of
continuity of this map, which is just as good. Here, with a point of continuity
of the map in (3.4) we mean, of course, a collection of paths (π1, . . . , πn) with
the property that for each (πk

1 , . . . , π
k
n) such that

(πk
1 , . . . , π

k
n) −→

k→∞
(π1, . . . , πn),

one also has

(π̃k
1 , . . . , π̃

k
n) −→

k→∞
(π̃1, . . . , π̃n).

That (B1, . . . , Bn) is almost surely a point of continuity follows quite easily
from our definitions and from Lemma 3.4 and Exercise 3.5 below. We leave
the details to the reader.

Lemma 3.4 (Brownian paths cross when they meet) Let Bi = (Bi
t)t≥si

(i = 1, 2) be independent Brownian motions started from deterministic space-
time points zi = (xi, si) (i = 1, 2), respectively, and let

τ := inf{t ≥ s1 ∨ s2 : B1
t = B2

t }.

Then almost surely, for each ε > 0, there exist times t−, t+ ∈ [τ, τ + ε] such
that

B1
t− < B2

t− and B1
t+
> B2

t+
.

Proof By the strong Markov property, (B1
τ+t −B2

τ+t)t≥0 is a Brownian mo-
tion, so it suffices to prove that for a Brownian motion (Bt)t≥0 started in
zero both τ− := inf{t ≥ 0 : Bt < 0} and τ+ := inf{t ≥ 0 : Bt > 0} are a.s.
zero. Since (Bt)t≥0 is equally distributed with (

√
λBλ−1t)t≥0, we see that τ±

is equally distributed with λ−1τ±, for each λ > 0. It follows that the function
λ 7→ P[τ± ≥ λ] is constant on (0,∞). However, if P[τ± ≥ 1] > 0, then it
is easy to see that P[τ± ≥ 2] must be strictly smaller than P[τ± ≥ 1], so we
conclude that P[τ± ≥ λ] = 0 for all λ > 0.

Exercise 3.5 (Convergence of meeting times) Let π1, π2 ∈ Π↑ have
starting points zi = (xi, si) (i = 1, 2), respectively, and assume that their first
meeting time

τ := inf{t ≥ s1 ∨ s2 : π1(t) = π2(t)}



3.3. THE BROWNIAN WEB 61

satisfies τ < ∞. Assume moreover that for each ε > 0, there exist times
t−, t+ ∈ [τ − ε, τ + ε] such that

π1(t−) < π2(t−) and π1(t+) > π2(t+).

Let πk
1 , π

k
2 ∈ Π↑ satisfy πk

i → πi (i = 1, 2). Then the first meeting times τk of
πk
1 and πk

2 satisfy τk → τ . Hint: First show that generally τ ≤ lim infk→∞ τk.
Then use the assumption about crossing to prove that lim supk→∞ τk ≤ τk.

3.3 The Brownian web

Let D ⊂ R2 be countable. Since D is countable, we can enumerate it as
D := {zi : i ≥ 1} where (zi)i≥1 be a sequence of space-time points zi ∈
R2. Then for each n ≥ 1, we can construct a collection of random paths
(π1, . . . , πn) that are distributed as coalescing Brownian motions starting
from (z1, . . . , zn). Since these laws are consistent, by Kolmogorov’s extension
theorem, we can construct a random collection of paths (πz)z∈D such that for
each finite set ∆ ⊂ D, the paths (πz)z∈∆ that are distributed as coalescing
Brownian motions starting from the points in ∆. We call (πz)z∈D a collection
of coalescing Brownian motions started from the countable set D.

Proposition 3.6 (Precompactness) Let (πz)z∈D be a collection of coa-
lescing Brownian motions started from a countable set D ⊂ R2. Then
{πz : z ∈ D} is almost surely a precompact subset of Π↑.

Proof (sketch) We apply Proposition 2.32 to A := {πz : z ∈ D}. Fix
T <∞ and ε, δ > 0 and consider the grid

Gε,δ :=
{
(1
3
kε, lδ) : k, l ∈ Z

}
.

Let A′ = {π′
z : z ∈ D ∪ Gε,δ} be a collection of coalescing Brownian motions

started from the countable set D ∪ Gε,δ. We can couple A′ to A such that
π′
z = πz for each z ∈ D. Since paths inA cannot cross paths in {π′

z : z ∈ Gε,δ},
it is not hard to see (see Figure 3.3) that almost surely on the event∣∣π(u)− π(t)

∣∣ ≥ ε for some π ∈ A and σπ ≤ t ≤ u

s.t. (π(t), t) ∈ [−T, T ]2, u− t ≤ δ

one has that∣∣π′
(x,s)(s+ r)− x

∣∣ ≥ 1
3
ε

for some (x, s) ∈ Gε,δ ∩ [−T − ε, T + ε]2 and r ∈ [0, 2δ].
(3.5)
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By Lemma 3.11 below, if B is a standard Brownian motion, then

P
[

sup
r∈[0,2δ]

|Br| ≥ 1
3
ε
]
≤ Ce−cε

2/δ,

for some C < ∞ and c > 0. A simple union bound then tells us that the
probability of the event in (3.5) can be estimated from above by

CT ε
−1δ−1e−cε

2/δ

for some CT < ∞ and c > 0. This quantity goes to zero as δ → 0 for fixed
T < ∞ and ε > 0, so by Proposition 2.32 we conclude that {πz : z ∈ D} is
almost surely precompact.

t

u

π π′

1
3
ε

δ

z

z′

Figure 3.3: The tightness argument. The blue path π moves a distance ≥ ε
during a time interval [t, u] of length ≤ δ, forcing the green path π′ starting
from the point z ∈ Gε,δ to move a distance ≥ ε/3 from its starting position
during a time interval of length 2d. Note that the blue path could have
passed below the point z′ ∈ Gε,δ that lies just above z.

We adopt the following notation. If A ⊂ K(Π↑) is a collection of paths
and D ⊂ R(R) is a set, then we let

A(D) :=
{
π ∈ A : zπ ∈ D

}
(3.6)

denote the subset of A consisting of all paths that have their starting points
in D. In particular, for z ∈ R(R), we write A(z) := A({z}). As before, we
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let A denote the closure of a set A ⊂ Π↑. The following theorem introduces
the main object of interest of these lecture notes. See Figure 3.4 for an
illustration.

Theorem 3.7 (The Brownian web) There exists a random compact set
W ⊂ K(Π↑) whose distribution is uniquely determined by the following prop-
erties.

(i) For each z ∈ R2, almost surely there exists a unique πz ∈ Π↑ such that
W(z) = {πz}.

(ii) For each z1, . . . , zn ∈ R2, the paths (πz1 , . . . , πzn) are distributed as
coalescing Brownian motions starting from z1, . . . , zn.

(iii) For each countable dense set D ⊂ R2, almost surely W = W(D).

Figure 3.4: Artist’s impression of the Brownian web.

Remark 1 In Section 4.4, we will see that in point (i) of Theorem 3.7, the
order of the “for all” and “almost surely” statements cannot be interchanged.
Although for a fixed, deterministic z ∈ R2, it is true that almost surely, W(z)
consists of a single path, there exist random points z ∈ R2 in which W(z)
has two, or even three elements.
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Remark 2 A collection of paths of the form W(D), where D is any deter-
ministic countable dense subset of R2, is called a skeleton of the Brownian
web.

Proof of Theorem 3.7 Let D ⊂ R2 be countable and dense and let (πz)z∈D
be a collection of coalescing Brownian motions started from D. Then {πz :
z ∈ D} is precompact by Proposition 3.6 and hence

W := {πz : z ∈ D} (3.7)

is a random compact subset of Π↑. We claim that paths in W do not cross,
in the sense that there do not exist π, π′ ∈ W and σπ ∨σπ′ ≤ s < t such that
π(s) < π′(s) but π′(t) < π(t). Indeed, if such paths would exist, then they
would be limits of paths πn, π

′
n in {πz : z ∈ D} that would also have to cross

for n large enough, which is not possible.
We will now show that W has the properties (i)–(iii) from the theorem.

Fix z = (x, s) ∈ R2. Let εn be positive constants converging to zero, let
z±n := (x, s ± εn), and let D′ := D ∪ {z±n : n ≥ 1}. We can couple (πz)z∈D
to a collection of coalescing Brownian motions (π′

z)z∈D′ started from D′ such
that πz = π′

z for all z ∈ D. Let

τn := inf{t ≥ 0 : π′
z−n
(t) = π′

z+n
(t)}. (3.8)

Since paths cannot cross, we see that τ1 ≥ τ2 ≥ · · · and hence τn → τ∞ a.s.
for some random variable τ∞. Using Lemma 3.4, it is easy to see that if we
start two independent Brownian motions from z−n and z+n , then their first
meeting time converges to zero in probability as n→ ∞. Together with our
earlier observation, this implies that τ∞ = s a.s. Since paths in W do not
cross the paths π′

z±n
, any path π ∈ W that starts in (π(σπ), σπ) = z must

satisfy

π′
z−n
(t) ≤ π(t) ≤ π′

z+n
(t) (t ≥ s). (3.9)

Since τ∞ = s a.s., there can be at most one such path, proving property (i).
Property (ii) now follows from the fact that we can couple (πz)z∈D to a

collection of coalescing Brownian motions (π′
z)z∈D∪{z1,...,zn} such that πz = π′

z

for all z ∈ D. To prove property (iii), we ust show that our construction does
not depend on the choice of the countable dense set D. Let D and D′ be
countable dense subsets of R2, let (πz)z∈D∪D′ be coalescing Brownian motions
started from D ∪D′, and let

W := {πz : z ∈ D}, W ′ := {πz : z ∈ D′},
and W ′′ := {πz : z ∈ D ∪ D′}.

(3.10)
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To prove (iii), it suffices to show that W = W ′. By symmetry, it suffices to
show that W ⊂ W ′. Since both W and W ′ are closed, it suffices to show
that for each z ∈ D, the path πz satisfies πz ∈ W ′. By what we have already
proved, there exists unique paths π′ ∈ W ′ and π′′ ∈ W ′′ with starting points
zπ′ = zπ′′ = z. Since π′ ∈ W ′′ we must have π′ = π′′ and since πz ∈ W ′′ we
must have π′′ = πz, so we conclude that πz = π′′ = π′ ∈ W ′.

For the next lemma, we let

Π↑
triv :=

{
π ∈ Π↑ : π(t) = −∞ ∀t ≥ σπ

}
∪
{
π ∈ Π↑ : π(t) = +∞ ∀t ≥ σπ

}
denote the set of trivial paths that are constantly −∞ or ∞.

Lemma 3.8 (Trivial paths) Let W be a Brownian web. Then Π↑
triv ⊂ W

a.s. and each π ∈ W\Π↑
triv satisfies π(t) ∈ R for all σπ ≤ t <∞.

Proof This follows from the same argument as in the proof of Proposi-
tion 3.1.

We still need to provide an estimate that we have used in the proof of
Proposition 3.6.

Lemma 3.9 (Reflection principle) Let (Bt)t≥0 be Brownian motion.
Then

P
[
sup
s∈[0,t]

Bs < a
]
= P

[
|Bt| ≤ a

]
(t, a > 0). (3.11)

Proof Let τ := inf{t > 0 : Bt = a}. By the strong Markov property and
the symmetry of Brownian motion, conditional on the event {τ < t}, the
events {Bt > a} and {Bt < a} have equal probabilities (see Figure 3.5).
Since P[Bt = a] = 0 and the event {Bt > a} almost surely implies {τ < t},
it follows that

P
[
sup
s∈[0,t]

Bs < a
]
= 1− 2P[Bt > a] = P

[
|Bt| ≤ a

]
. (3.12)

Lemma 3.10 (Tail estimate) Let N be a standard normal random vari-
able. Then

P[N ≥ a] ≤ 1
2
e−a

2/2. (3.13)

Proof This follows by writing

P[N ≥ a] =
1√
2π

∫ ∞

a

e−x
2/2dx =

1√
2π

∫ ∞

0

e−(x+ a)2/2dx

= e−a
2/2 1√

2π

∫ ∞

0

e−x
2/2− axdx

≤ e−a
2/2 1√

2π

∫ ∞

0

e−x
2/2dx = 1

2
e−a

2/2.

(3.14)
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a

tτ

Figure 3.5: The reflection principle: P[τ < t] = 2P[Bt > a].

Lemma 3.11 (Large displacements) Let (Bt)t≥0 be Brownian motion.
Then

P
[
sup
s∈[0,t]

|Bs| ≥ a
]
≤ 2ea

2/(2t). (3.15)

Proof Let N denote a standard normal random variable. We estimate, using
Lemmas 3.9 and 3.10,

P
[
sup
s∈[0,t]

|Bs| ≥ a
]
≤ 2P

[
sup
s∈[0,t]

Bs ≥ a
]
= 2P

[
|Bt| > a

]
= 4P[Bt > a]

= 4P[
√
tN > a] ≤ 2ea

2/(2t).
(3.16)

3.4 Dual arrow configurations

By definition, we call

Z2
odd :=

{
(x, t) ∈ Z2 : x+ t is odd

}
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the odd sublattice of Z2. In Section 3.1, we showed how an i.i.d. collection ω =
(ωz)z∈Z2

even
of uniformly distributed {−1,+1}-valued random variables defines

a random directed graph (Z2
even, E⃗) that we called an arrow configuration.

Given ω, we define ω̂ = (ω̂z)z∈Z2
odd

by

ω̂(x,t+1) = ω(x,t)

(
(x, t) ∈ Z2

even

)
. (3.17)

We can use ω̂ to define a random directed graph with vertex set Z2
odd and set

of oriented edges

F⃗ :=
{(
x, t), (x− ω̂(x,t), t− 1)

)
: (x, t) ∈ Z2

odd

}
.

We call the random directed graph (Z2
odd, F⃗ ) the dual arrow configuration

associated with the original (“forward”) arrow configuration (Z2
even, E⃗). The

dual arrows are uniquely characterised in terms of the forward arrows by the
property that dual arrows and forward arrows do not cross. See Figure 3.6
for a picture.

Figure 3.6: An arrow configuration (black) and its dual (white).

Recall that in general, σπ and τπ denote the starting and final time of a
path π ∈ Π(R). In particular, we define

Π↓ :=
{
π ∈ Π(R) : σπ = −∞

}
.

We call Π↓ the space of all downward paths. Clearly, Π↓ is equal to Π↑ after
a rotation over 180 degrees. When no confusion can arrive,2 we will call the

2We have to be careful since the intersection of Π↑ and Π↓ is not empty, but consists
of all bi-infinite paths for which σπ = −∞ and τπ = ∞. As we will see in a moment,
however, there are no nontrivial bi-infinite paths in an arrow configuration.
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point
zπ :=

(
π(τπ), τπ

)
the starting point of a downward path π ∈ Π↓. We define a downward open
path in the dual arrow configuration (Z2

odd, F⃗ ), or simply a open path in ω̂ in
exactly the same way as we defined upward open paths in the forward arrow
configuration. We let

U∗ = U∗(ω̂) :=
{
π ∈ Π↓ : π is a open path in ω̂

}
(3.18)

denote the set of all downward open paths in the dual arrow configuration
and we let U∗

denote the closure of U∗ in the topology on Π↓.

3.5 The dual Brownian web

We have already introduced notation for the diffusive scaling map θε which
may be applied to points z = (x, t) in space-time R(R), to subsets of space-
time such as paths, and even to sets of paths. We will use similar notation
for the map

R(R) ∋ (x, t) 7→ −(x, t) = (−x,−t) ∈ R(R).

Thus, for any set A ⊂ R(R), we set −A := {−z : z ∈ A}. In particular, this
applies to the case that A = π ∈ Π↑. Then Π↑ ∋ π 7→ −π ∈ Π↓ is a bijection
from Π↑ to Π↓. Also, if A ⊂ Π↑ is a sets whose elements are paths, then
we set −A := {−π : π ∈ A}. Using this notation, we say that π̂1, . . . , π̂n
are downward coalescing Brownian motions starting from space-time points
z1, . . . , zn if −π̂1, . . . ,−π̂n are (usual, forward) coalescing Brownian motions
starting from space-time points −z1, . . . ,−zn. In the same way, we define
countable collections of downward coalescing Brownian motions.

Let π̂1, π̂2 ∈ Π↓ be two downward paths started from space-time points
(xi, si) ∈ R2 (i = 1, 2), and let

τ = τ(π̂1, π̂2) := sup
{
t < s1 ∧ s2 : π̂1(t) = π̂2(t)

}
be their first meeting time (in the downward direction), which may be −∞.
The open set

W (π̂1, π̂2) :=
{
(x, t) : τ < t < s1 ∧ s2 : π̂1(t) < x < π̂2(t)

}
is called the wedge defined by π̂1, π̂2. See Figure 3.7 for an illustration. We
say that a (forward) path π ∈ Π↑ enters the wedge W (π̂1, π̂2) if there exist
times σπ ≤ s < t such that(

π(s), s)
)
̸∈ W (π̂1, π̂2) and

(
π(t), t)

)
∈ W (π̂1, π̂2),
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π̂1

π̂2

W (π̂1, π̂2)

Figure 3.7: The wedge W (π̂1, π̂2) defined by the dual paths π̂1 and π̂2.

whereW (π̂1, π̂2) denotes the closure of W (π̂1, π̂2). In a completely analogous
way, we define the first meeting time of two forward paths, the wedge defined
by two forward paths, and what it means for a downward path to enter such
a wedge. We make the following simple observation.

Lemma 3.12 (Limits of wedges) Let (π̂n
i )n≥1 (i = 1, 2) be sequences of

downward paths and let (πn)n≥1 be a sequence of forward paths. Assume that
there exist π̂i ∈ Π↓ (i = 1, 2) and π ∈ Π↑ such that

π̂n
i −→

n→∞
π̂i (i = 1, 2) and πn −→

n→∞
π

in the topologies on Π↓ and Π↑, and that moreover

τ(π̂n
1 , π̂

n
2 ) −→

n→∞
τ(π̂1, π̂2).

Assume that for each n, the path πn does not enter the wedge W (π̂n
1 , π̂

n
2 ).

Then the path π does not enter the wedge W (π̂1, π̂2).

Proof By definition, if π enters the wedge W (π̂1, π̂2), then there exist times
σπ ≤ s < t such that(

π(s), s)
)
̸∈ W (π̂1, π̂2) and

(
π(t), t)

)
∈ W (π̂1, π̂2).

Since πn → π, there exist times σπn ≤ sn < tn such that
(
πn(sn), sn)

)
→(

π(s), s)
)
and

(
πn(tn), tn)

)
→

(
π(t), t)

)
. We claim that for n sufficiently

large, (
πn(sn), sn)

)
̸∈ W (π̂n

1 , π̂
n
2 )
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Indeed, if
(
πn(sn), sn)

)
∈ W (π̂n

1 , π̂
n
2 ) for infinitely many values of n, then

going to a subsequence and taking the limit, using the convergence of the
paths and meeting times, we would find that

(
π(s), s)

)
∈ W (π̂1, π̂2), which

contradicts our assumptions. In the same way, we see that(
πn(tn), tn)

)
∈ W (π̂n

1 , π̂
n
2 )

for n sufficiently large, so we arrive at a contradiction with the assumption
that πn does not enter W (π̂n

1 , π̂
n
2 ).

Proposition 3.13 (Dual coalescing Brownian motions) Let D, D̂ be
countable dense subsets of R2. Then it is possible to construct a collection
(πz)z∈D of coalescing Brownian motions together with a collection (π̂z)z∈D̂ of
downward coalescing Brownian motions in such a way that:

� For each z ∈ D and z1, z2 ∈ D̂, the path πz does not enter the wedge
W (π̂z1 , π̂z2).

� For each z ∈ D̂ and z1, z2 ∈ D, the downward path π̂z does not enter
the wedge W (πz1 , πz2).

The proof of Proposition 3.13 makes use of the following simple lemma.

Lemma 3.14 (Tightness of joint law) Let X ,Y be Polish spaces, let
(Xn, Yn)n≥1 be a sequence of random variables with values in X ×Y, and let
X and Y be random variables with values in X and Y, respectively. Assume
that

P[Xn ∈ · ] =⇒
n→∞

P[X ∈ · ] and P[Yn ∈ · ] =⇒
n→∞

P[Y ∈ · ]

Then the probability laws (
P
[
(Xn, Yn) ∈ ·

])
n≥1

are tight.

Proof The convergence of the marginal laws implies that the probability
laws (

P[Xn ∈ · ]
)
n≥1

and
(
P[Yn ∈ · ]

)
n≥1

are tight, so for each ε > 0, there exist compact sets C ⊂ X and K ⊂ Y such
that

sup
n≥1

P[Xn ̸∈ C] ≤ ε and sup
n≥1

P[Yn ̸∈ K] ≤ ε
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Then C ×K is compact and

sup
n≥1

P
[
(Xn, Yn) ̸∈ C ×K

]
≤ 2ε.

Since ε > 0 is arbitrary, it follows that the laws of (Xn, Yn) are tight.

Proof of Proposition 3.13 (sketch) Let U be the collection of open paths
in an arrow configuration and let U∗ be the collection of downward open
paths in the associated dual arrow configuration. Let εn be positive constants
tending to zero. For each z ∈ D, choose zn ∈ Z2

even such that θεn(zn) → z,
and for each z ∈ D̂, choose zn ∈ Z2

odd such that θεn(z
n) → z. For each z ∈ D

and n ≥ 1, let Rn
z ∈ U be the unique forward open path starting at zn, let

R̂n
z ∈ U∗ be the unique downward open path starting at zn, and let

πn
z := θεn(R

n
z ) and π̂n

z := θεn(R̂
n
z )

denote the associated diffusively rescaled paths. We claim that

P
[
(πn

z )z∈D ∈ ·
]
=⇒
n→∞

P
[
(πz)z∈D ∈ ·

]
,

P
[
(π̂n

z )z∈D̂ ∈ ·
]
=⇒
n→∞

P
[
(π̂z)z∈D ∈ ·

]
,

where ⇒ denotes weak convergence of probability laws on the spaces (Π↑)D

and (Π↓)D, respectively, which are equipped with the product topology, and
(πz)z∈D is a collection of coalescing Brownian motions while (π̂z)z∈D̂ is a col-
lection of downward coalescing Brownian motions. Indeed, to prove this, by
the definition of the product topology, it suffices to prove convergence of finite
dimensional distribitions. But this has already been done in Proposition 3.3.

In fact, using Exercise 3.5, we can strengthen our previous claim in a
sense that also includes convergence of meeting times. More precisely, one
can show that

P
[(
(πn

z )z∈D, (τ(π
n
z1
, πn

z2
))(z1,z2)∈D2

)
∈ ·

]
=⇒
n→∞

P
[(
(πz)z∈D, (τ(πz1 , πz2))(z1,z2)∈D2

)
∈ ·

]
,

(3.19)

and similarly for the collection of downward paths.
By Lemma 3.14, going to a subsequence if necessary, we can assume that

the joint law of the random variables

(πn
z )z∈D, (τ(πn

z1
, πn

z2
))(z1,z2)∈D2 , (π̂n

z )z∈D, (τ(π̂n
z1
, π̂n

z2
))(z1,z2)∈D2

converges weakly. Then we can use Skorohod’s representation theorem (The-
orem 2.11) to couple our random variables so that the convergence is almost
sure, i.e., we can find a coupling such that

πn
z −→

n→∞
πz a.s. and τ(πn

z1
, πn

z2
) −→
n→∞

τ(πz1 , πz2) a.s.
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for all z, z1, z2 ∈ D, and likewise for downward paths. Since paths of U do
not enter wedges of U∗ and vice versa, we can use Lemma 3.12 to conclude
that the same is true for the limit object.

Theorem 3.15 (Wedge characterisation of the Brownian web) Let
D, D̂ be countable dense subsets of R2, let (πz)z∈D be a collection of coalescing
Brownian motions started from D, and let (π̂z)z∈D̂ be a collection of downward

coalescing Brownian motions started from D̂. Assume that paths in (πz)z∈D
do not enter wedges of (π̂z)z∈D̂. Let

W− := {πz : z ∈ D},
W+ :=

{
π ∈ Π↑ : π does not enter wedges of (π̂z)z∈D̂

}
.

Then W− = W+.

Proof (sketch) To prove the inclusion W− ⊂ W+, let π ∈ W−. Then there
exists zn ∈ D such that πzn → π as n→ ∞. Let z1, z2 ∈ D̂. By assumption,
πzn does not enter the wedge W (π̂z1 , π̂z2) for any n ≥ 1. By Lemma 3.12,
it follows that π does not enter W (π̂z1 , π̂z2). This completes the proof that
W− ⊂ W+.

Before we continue, we note that our assumptions imply that the forward
paths do not cross downward paths, in the sense that if z = (x, s) ∈ D and
z′ = (y, u) ∈ D̂ satisfy s < u, then πz(s) < π̂z′(s) implies πz(t) ≤ π̂z′(t) for all
t ∈ [s, u]. Indeed, we can always choose some z′′ = (y′, u′) ∈ D̂ with u ≤ u′

such that π̂z′(u) < π̂z′′(u) and the meeting time τ(π̂z′ , π̂z′′) is less than s.
Then πz(t) > π̂z′(t) for some t ∈ (s, u] would imply that πz enters the wedge
W (π̂z′ , π̂z′′), contradicting our assumptions.

We now prove that W+ ⊂ W−. Let π ∈ W+. By Lemma 3.8 we can
without loss of generality assume that π(t) ∈ R for all t ∈ Iπ. Fix σπ < t1 <
· · · < tm and ε > 0. We claim that there exists a z = (x, s) ∈ D such that
σπ < s < t1 and |πz(ti)−π(t)| ≤ ε for all i = 1, . . . ,m. To prove this, we will
use a “fish trap” construction illustrated in Figure 3.8. For each i = 1, . . . ,m,
we choose zi± = (xi±, t

i
±) ∈ D̂ such that ti± > ti and

π(ti)− ε < π̂z−(ti) < π(ti) < π̂z+(ti) < π(ti) + ε.

Since π does not enter the wedge W (π̂zi− , π̂zi+), the meeting time of π̂zi− and
π̂zi+ must satisfy

τ(π̂zi− , π̂zi+) ≤ σπ,

and we have π̂zi−(t) ≤ π(t) ≤ π̂zi+(t) for all t ∈ [σπ, ti]. We can now choose

z = (x, s) ∈ D such that σπ < s < t1 and

sup
1≤i≤m

π̂zi−(t1) < πz(t1) < inf
1≤i≤m

π̂zi+(t1).
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t1

t2

t3

t4
z4− z4+

z3− z3+

ππz

z

Figure 3.8: “Fish trap” construction showing that the path π that does not
enter wedges can be approximated by a path πz starting at a point z taken
from a deterministic countable dense set of space-time points.

Since the path πz cannot cross any of the downward paths π̂zi± , we must have

π̂z−(ti) < πz(ti) < π̂z+(ti) (1 ≤ i ≤ m)

and hence |πz(ti)− π(t)| ≤ ε for all i = 1, . . . ,m, proving our claim.
Now let εn > 0 satisfy εn → 0 and let σπ < t1 < · · · < tm. By what we

have just proved, for each n there exists a zn ∈ D such that |πzn(ti)−π(t)| ≤ ε
for all i = 1, . . . ,m. By Proposition 3.6, the closure of {πz : z ∈ D} is
compact, so we can find a convergent subsequence. It follows that there
exists a π′ ∈ W− such that π′(ti) = π(ti) for all i = 1, . . . ,m. Now let
{ti : i ∈ N} ⊂ (σπ,∞) be countable and dense. By what we have just
proved, for each m, there exists a πm ∈ W− such that πm(ti) = π(ti) for all
i = 1, . . . ,m. Since W+ is compact, we can find a convergent subsequence,
the limit of which must be the path π. This proves that W+ ⊂ W−.

3.6 Convergence to the Brownian web

Proposition 3.16 (Tightness of rescaled arrow configurations) Let U
be the set of all open paths in an arrow configurations and let U be its closure.
Let εn > 0 be positive constants such that εn → 0. The the probability laws(

P[θεn(U) ∈ · ]
)
n≥1
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on K(Π↑) are tight.

Proof (crude sketch) One needs to check the tightness criterion of Propo-
sition 2.33. This is very similar to the proof of Proposition 3.6. One uses
convergence of finite dimensional distributions (Proposition 3.3) and then
uses a grid as in the proof of Proposition 3.6 to estimate the event in Propo-
sition 2.33. We refer to [FINR04, Prop. B2] and [SSS16, Prop. 6.6.4] for
details.

Let D, D̂ be countable dense subsets of R2. By Proposition 3.13, we
can construct a collection (πz)z∈D of coalescing Brownian motions starting
from D and a collection (π̂z)z∈D̂ of downward coalescing Brownian motions

starting from D̂ such that paths in (πz)z∈D do not enter wedges of (π̂z)z∈D̂
and vice versa. We call the pair (W , Ŵ) defined as

W := {πz : z ∈ D} and Ŵ := {π̂z : z ∈ D̂} (3.20)

the double Brownian web and we call Ŵthe dual Brownian web

Lemma 3.17 (Double Brownian web) The law of the random variable
(W , Ŵ) does not depend on the choice of the countable dense sets D, D̂ ⊂ R2.

Proof The analogue statement for the Brownian web has already been
proved as part of the proof of Theorem 3.7, around (3.10). The statement
for a single web does, as far as I can see, not automatically imply the state-
ment for the double Brownian web, but one can adapt the argument given at
(3.10). Here we give an alternative argument that also reproofs the statement
for a single web and does not depend on the earlier argument.

Let D,D′, D̂ be countable dense subsets of R2. Let (πz)z∈D be a collection
of coalescing Brownian motions starting from D, let (π′

z)z∈D′ be a collection
of coalescing Brownian motions starting from D′, and let (π̂z)z∈D̂ be a collec-

tion (π̂z)z∈D̂ of downward coalescing Brownian motions starting from D̂. By
Proposition 3.13, we can couple (πz)z∈D to (π̂z)z∈D̂ in such a way that paths
in (πz)z∈D do not enter wedges of (π̂z)z∈D̂ and vice versa. Similarly, we can
couple (π′

z)z∈D′ to (π̂z)z∈D̂ in such a way that paths in (π′
z)z∈D′ do not enter

wedges of (π̂z)z∈D̂ and vice versa. We can then couple all three collections
(πz)z∈D, (π′

z)z∈D′ , and (π̂z)z∈D̂ in such a way that the joint law of (πz)z∈D
and (π̂z)z∈D̂ is as before and the joint law of (π′

z)z∈D′ and (π̂z)z∈D̂ is also as
before. For example, this can be achieved by making (πz)z∈D and (π′

z)z∈D′

conditionally indepenent given (π̂z)z∈D̂, and with the same conditional laws
as before.
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For this coupling, let (W , Ŵ) be defined using D, D̂ and let (W ′, Ŵ) be
defined using D′, D̂. Then Theorem 3.15 tells us that

W =
{
π ∈ Π↑ : π does not enter wedges of (π̂z)z∈D̂

}
= W ′ a.s.

It follows that the joint law of (W , Ŵ) is the same as the joint law of (W ′, Ŵ).
In the same way, we can also replace D̂ by another countable dense subset
of R2 without changing the law of the double Brownian web.

Figure 3.9: A rescaled discrete web and its dual.

The following theorem, which is the main result of this chapter, implies
in particular the convergence in (3.3). See Figure 3.9 for an illustration.

Theorem 3.18 (Approximation of the double Brownian web) Let U
be the set of open paths in an arrow configuration and let U∗ be the set of
downward open paths in the associated dual arrow configuration. Then

P
[
θε(U ,U∗

) ∈ ·
]
=⇒
ε→0

P
[
(W , Ŵ) ∈ ·

]
, (3.21)

where ⇒ denotes weak convergence of probability laws on the space K(Π↑)×
K(Π↓), and (W , Ŵ) is the double Brownian web.
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Proof Fix countable dense sets D, D̂ ⊂ R2 and define (W , Ŵ) as in (3.20).
It suffices to prove convergence along any sequence εn of positive constants
tending to zero. It follows from Proposition 3.16 (compare Lemma 3.14) that
the laws (

P
[
θεn(U ,U

∗
) ∈ ·

])
n≥1

are tight, so by going to a subsequence, we may assume that they converge
to some limit law P[(V , V̂) ∈ · ]. By Lemma 2.2, it suffices to show that each
such subsequential limit is equal to P[(W , Ŵ) ∈ · ].

As in the proof of Proposition 3.13, for each z ∈ D, we choose zn ∈ Z2
even

such that θεn(zn) → z, and for each z ∈ D̂, we choose zn ∈ Z2
odd such that

θεn(z
n) → z. For each z ∈ D and n ≥ 1, we let Rn

z ∈ U be the unique
forward open path starting at zn, we let R̂n

z ∈ U∗ be the unique downward
open path starting at zn, and we let

πn
z := θεn(R

n
z ) and π̂n

z := θεn(R̂
n
z )

denote the associated diffusively rescaled paths. In the proof of Proposi-
tion 3.13, we have shown that

P
[(
(πn

z )z∈D, (τ(π
n
z1
, πn

z2
))(z1,z2)∈D2

)
∈ ·

]
=⇒
n→∞

P
[(
(πz)z∈D, (τ(πz1 , πz2))(z1,z2)∈D2

)
∈ ·

]
,

and similarly for the collection of downward paths. We argued there that
going to a subsequence if necessary and using Skorohod’s representation the-
orem, we can couple our random variables such that

πn
z −→

n→∞
πz a.s. and τ(πn

z1
, πn

z2
) −→
n→∞

τ(πz1 , πz2) a.s.

for all z, z1, z2 ∈ D, and likewise for downward paths. We can extend this
argument to obtain that moreover

θεn(U ,U
∗
) −→
n→∞

(V , V̂) a.s.

in the topology on K(Π↑)×K(Π↓) for some random compact sets V ⊂ Π↑ and
V̂ ⊂ Π↓. We will show that for this particular coupling, (V , V̂) = (W , Ŵ)
a.s., where the latter is defined in terms of (πz)z∈D and (π̂z)z∈D̂. This shows
that all subsequential limit laws are the same and hence by Lemma 2.2 that
the original sequence converges.

By symmetry between forward and dual webs, it suffices to prove that
V = W . We will prove that W− ⊂ V ⊂ W+, where W− and W+ are defined
as in Theorem 3.15. Since W = W− = W+, the claim then follows.
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Since V is closed, to prove that W− ⊂ V , it suffices to prove that πz ∈ V
for all z ∈ D. Recalling Lemma 2.15, this is obvious since πn

z ∈ θεn(U) for all
n while πn

z → πz a.s. and θεn(U) → V a.s.
To prove that V ⊂ W+, we need to show that paths π ∈ V do not enter

wedges of (π̂z)z∈D̂. By Lemma 2.15, for each π ∈ V , there exist πn ∈ θεn(U)
such that πn → π. To see that π does not enter any wedge W (π̂z1 , π̂z2)
of (π̂z)z∈D̂, we use that for each n, the path πn does not enter the wedge
W (π̂n

z1
, π̂n

z2
). By our assumptions, the discrete paths π̂n

zi
(i = 1, 2) converge

a.s. to π̂zi (i = 1, 2) and moreover their meeting times converge a.s., so we
can use Lemma 3.12 to conclude that π does not enter W (π̂z1 , π̂z2).

Exercise 3.19 (Shortened paths) Let W be a Brownian web. Show that
almost surely, for each π ∈ W and s ≥ σπ, the path π′ defined by σπ′ := s
and π′(t) := π(t) (t ≥ s) satisfies π′ ∈ W.

3.7 Continuous time random walks

In this section we return to the one-dimensional nearest-neighbour voter
model and its dual system of coalescing random walks, introduced in Sections
1.1–1.3. We let ω denote the graphical representation of a nearest-neighbour
voter model on Z, i.e., ω is a Poisson point set with intensity measure as in
(1.2), where Λ = Z and p(i, j) is the nearest-neighbour kernel defined in (1.9).
Elements of ω are of the form (votji, t), where votji is a nearest-neighbour
voter map (i.e., |i − j| = 1) that has to be applied at time t. In pictures,
we draw space Z horizontally, time vertically, and we represent an element
(votji, t) of the graphical representation ω by an arrow from the space-time
point (j, t) to (i, t) of the form: .

Slightly deviating from our conventions in Chapter 1, we define

ω↓ :=
{(

rwij, t
)
:
(
votji, t

)
∈ ω

}
, (3.22)

i.e., this is the graphical representation of the dual system of coalescing
random walks defined in (1.11), except that we have not reversed time. In
pictures, we represent an element (rwij, t) of the graphical representation ω

↓

by an arrow from (i, t) to (j, t) of the form: . In other words, ω↓ is
obtained from ω by reversing the direction of all arrows, but not turning the
picture upside down, as we did earlier.

Let Z + 1
2
:= {i + 1

2
: i ∈ Z}. We can define voter maps votji and

coalescing random walk maps rwij with i, j ∈ Z + 1
2
in the same way as we

did for i, j ∈ Z. The difference is that these maps now act on configurations
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in {0, 1}Z+ 1
2 instead of {0, 1}Z. In pictures, we represent these maps by

arrows just as we are used to. With these conventions, we define

ω↑ :=
{(

rwi− 1
2
,i+ 1

2
, t
)
:
(
voti−1,i, t

)
∈ ω

}
∪
{(

rwi+ 1
2
,i− 1

2
, t
)
:
(
voti+1,i, t

)
∈ ω

}
.

(3.23)

The reason behind this definition is that if we apply the voter map voti−1,i

to a configuration that has a boundary between the ones and zeros at the
position i− 1

2
, then this boundary moves to i+ 1

2
. Likewise, an application of

voti+1,i moves a boundary from i+ 1
2
to i− 1

2
. In particular, if we start the

voter model with each site in a different colour, then the boundaries between
these colours evolve as coalescing random walks described by the graphical
representation ω↑.

We next define downward open paths in the graphical representation ω↓

and upward open paths in the graphical representation ω↑. A technical issue
that we have to deal with is that because we work in continuous time, these
open paths will have jumps. We use the formalism of cadlag paths described
in Section 2.9. Recall that ΠS(R), defined there, is the space of cadlag paths
in R, equipped with a topology that (at least for paths defined on fixed
domains) corresponds to the Skorohod topology. We let

Π↑
S :=

{
π ∈ ΠS(R) : τπ = ∞

}
and Π↓

S :=
{
π ∈ ΠS(R) : σπ = −∞

}
denote the spaces of cadlag half-infinite upward and downward paths. We
say that a path π ∈ Π↑

S is an open upward path if

(i) π(t−), π(t+) ∈ Z+ 1
2
for all t ∈ Iπ,

(ii) if π(t+) ̸= π(t−), then (rwπ(t−),π(t+), t) ∈ ω↑,

(iii) if t > σπ and (rwπ(t−),j, t) ∈ ω↑ for some j ∈ Z+ 1
2
, then π(t+) = j.

Similarly, we say that a path π ∈ Π↓
S is a open downward path if

(i) π(t−), π(t+) ∈ Z for all t ∈ Iπ,

(ii) if π(t+) ̸= π(t−), then (rwπ(t+),π(t−), t) ∈ ω↓,

(iii) if t < τπ and (rwπ(t+),j, t) ∈ ω↑ for some j ∈ Z, then π(t−) = j.

See Figure 3.10 for an illustration. We let U↑ and U↓ denote the sets of all
open upward and open downward paths, respectively. The reason for the
conditions t > σπ and t < τπ in point (iii) of each definition is that we want
to work with compact sets of paths. If (rwi,j, t) ∈ ω↑, then for each n ≥ 1,
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there exists an open upward path πn in ω↑ that starts at (i, t + n−1), and
these paths converge to a limit path π that starts at (i, t) but does not jump
at its starting time. Thus, if we would require (iii) also for t = σπ, then the
set of open upward paths would not be closed. On the other hand, with our
present definition, one can prove the following statement, that is similar to
Proposition 3.1. For brevity, we skip its proof.

h

Figure 3.10: Open upward and downward paths in the graphical representa-
tion of a one-dimensional nearest-neighbour voter model.

Proposition 3.20 (Compact set of paths) The closure U↑
of the ran-

dom set of open upward paths U↑ is almost surely a compact subset of Π↑
S.

Moreover, almost surely, the set U↑\U↑ consists of all paths π ∈ Π↑
S with

either π(t) = −∞ for all t ∈ Iπ or π(t) = +∞ for all t ∈ Iπ. An analogue
statement holds for U↓.

In the remainder of this section, we sketch the proof of the following
theorem, that is similar to Theorem 3.18.

Theorem 3.21 (Convergence to the double Brownian web) Let U↑

be the set of open upward paths in ω↑ and let U↓ be the set of open downward
paths in ω↓. Then

P
[
θε(U↑

,U↓
) ∈ ·

]
=⇒
ε→0

P
[
(W , Ŵ) ∈ ·

]
, (3.24)

where ⇒ denotes weak convergence of probability laws on the space K(Π↑
S)×

K(Π↓
S), and (W , Ŵ) is the double Brownian web.
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Proof (crude sketch) The proof is completely analogous to the proof of
Theorem 3.18. Convergence of rescaled continuous-time random walks to
Brownian motion is standard, so one obtains convergence of finite dimen-
sional distributions precisely as in the discrete time setting (Proposition 3.3).
Using Exercise 3.5, one sees that this convergence can be strengthened so that
it also includes convergence of meeting times in the sense of (3.19). Adapting
the argument of Proposition 3.16 (which itself is an adaptation of the proof
of Proposition 3.6), using also Lemma 3.14, one can moreover show that if
εn are positive constants tending to zero, then the laws(

P[θεn(U
↑
,U↓

) ∈ · ]
)
n≥1

(3.25)

on K(Π↑
S)×K(Π↓

S) are tight. For brevity, we are rather sloppy on this part.
To fill in the details, one would need to work with Skorohod-equicontinuity
and Theorem 2.34 to prove a tightness criterion for laws on K(Π↑

S), which
is similar to Proposition 2.33, but the conditions of which are weaker, since
Skorohod-equicontinuity is a weaker concept than the usual equicontinuity.

To complete the proof, one needs to show that if the laws in (3.25) con-
verge weakly along a subsequence to a limit law on K(Π↑

S) × K(Π↓
S), then

this limit law must be the law of a double Brownian web. We fix a count-
able dense set D ⊂ R2 and for each z ∈ D, we choose zn ∈ Z × R such
that θεn(zn) → z. Since the points zn are deterministic, at each zn there
almost surely start a unique upward and downward open path. By what
we have already proved, these paths converge in law to coalescing Brownian
motions, and also their meeting times converge in law. Using Skorohod’s
representation, we can find a coupling for which the convergence is almost
sure. Let (πz)z∈D and (π̂z)z∈D be the almost sure limits of the chosen upward
and downward open paths, respectively. Using the argument of Lemma 3.12,
we see that paths in (πz)z∈D do not enter wedges of (π̂z)z∈D. Theorem 3.15
now tells us that the sets W− and W+ defined there satisfy W− = W+, and
both are distributed as a Brownian web. Letting V denote the almost sure

limit of θεn(U
↑
), as in the proof of Theorem 3.18, it then suffices to show that

W− ⊂ V ⊂ W+.
The inclusion W− ⊂ V is straightforward. If we would know that V ⊂ Π↑

almost surely, then the inclusion V ⊂ W+ would follow by exactly the same
argument as in the proof of Theorem 3.18, but for the moment we have only
indicated how one can obtain the weaker statement that V ⊂ Π↑

S, where Π↑
S

is the space of cadlag upward paths. Therefore, one way to complete the
argument is to show that V ⊂ Π↑ almost surely, which can probably be done
by using arguments similar to those used in the proof of Proposition 3.6. An
alternative argument, that is probably easier, is to strengthen Theorem 3.15
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by showing that the set W+ there can be replaced by the (a priori larger) set

W ′
+ :=

{
π ∈ Π↑

S : π does not enter wedges of (π̂z)z∈D
}
.

It seems this should follow from the same arguments as those used in the
proof of Theorem 3.15, but because of time restrictions, we skip the details.

Though there is no doubt among experts in the field that Theorem 3.21
holds, it seems nobody so far has bothered to write down a detailed proof. In
fact, the only published paper that I am aware of that shows convergence of
collections of cadlag paths is [EFS17], which however deals with the Brownian
net instead of the web and shows convergence for a different approximating
model.

3.8 Some historical notes

The Brownian web originated from Arratia’s PhD thesis [Arr79] and a sub-
sequential unfinished manuscript [Arr81]. The topic remained dormant until
the work of Tóth and Werner [TW98] who used the Brownian web to study
a form of one-dimensional self-repellent random walk. They classified all
types of special points. Together with Soucaliuc [STW00] they also proved
that forward and dual paths interact through Skorohod reflection. Fontes,
Isopi, Newman and Stein got interested in the Brownian web motivated by a
one-dimensional model in mathematical physics [FINS01], which led Fontes,
Isopi, Newman and Ravishankar [FINR04] to study this object in more de-
tail. In particular, they were the first to give the Brownian web its name,
view it as a compact set of paths, and prove convergence with respect to
the Hausdorff topology. Wedges were first introduced in the framework of
the Brownian net in [SS08]. A more detailed account of the history of the
Brownian web can be found in [SSS16].
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Chapter 4

Properties of the Brownian web

4.1 The coalescing point set

Let (W , Ŵ) be a double Brownian web, i.e., a Brownian web and its dual.
For each s, t ∈ R with s ≤ t and closed A ⊂ R, we define

Xs,t(A) :=
{
x ∈ R : ∃π̂ ∈ Ŵ(x, t) s.t. π̂(s) ∈ A

}
,

Ys,t(A) :=
{
π(t) : π ∈ W(A× {s})

}
,

X̂t,s(A) :=
{
x ∈ R : ∃π ∈ W(x, s) s.t. π(t) ∈ A

}
,

Ŷt,s(A) :=
{
π̂(s) : π̂ ∈ Ŵ(A× {t})

}
.

(4.1)

We can think of the maps (Xs,t)s≤t as a continuum analogue of the stochastic
flow (Xs,t)s≤t defined in Section 1.1. Let us fix closed sets A,B ⊂ R and
define, in analogy with (1.5),

At := X0,t(A) and Bt := Y0,t(B) (t ≥ 0). (4.2)

Then we can think of the process (At)t≥0 as of some sort of continuum version
of the voter model and similarly, we can think of (Bt)t≥0 as a continuum
version of coalescing random walks, i.e., this process should correspond to
coalescing Brownian motions. We call (At)t≥0 the continuum voter model
and (Bt)t≥0 the coalescing point set. In Section 4.5 below, we will prove that
(At)t≥0 and (Bt)t≥0 are indeed Markov processes. In the present section,
we start by proving some elementary properties of the maps (Xs,t)s≤t and
(Ys,t)s≤t.

Lemma 4.1 (Additivity) One has Xs,t(A) ∈ K(R) for each A ∈ K(R) and
s ≤ t. Moreover,

Xs,t(A ∪B) = Xs,t(A) ∪ Xs,t(B)
(
A,B ∈ K(R), s ≤ t

)
. (4.3)

83



84 CHAPTER 4. PROPERTIES OF THE BROWNIAN WEB

Analogue statements hold with Xs,t replaced by Ys,t.

Proof If xn ∈ Xs,t(A) satisfy xn → x for some x ∈ R, then there exist

π̂n ∈ Ŵ(xn, t) such that π̂n(s) ∈ A. Since Ŵ is compact, by going to a
subsequence, we can assume that π̂n → π̂ for some π̂ ∈ Ŵ . Then π̂ ∈ Ŵ(x, t).
Since A is closed moreover π(t) ∈ A. Together, the last two observations
imply that x ∈ Xs,t(A), proving that Xs,t(A) is closed. The proof for Ys,t is
the same. Formula (4.3) follows immediately from the definitions of Xs,t and
Ys,t.

The following lemma is the continuum analogue of the duality relation
(1.15), for the moment restricted to coalescing Brownian motions without
branching or deaths.

Lemma 4.2 (Continuum duality) For each A,B ∈ K(R) and s, t ∈ R
with s ≤ t, one has

1{Xs,t(A) ∩B ̸= ∅} = 1{A ∩ Ŷt,s(B) ̸= ∅}.

Proof This is a straightforward consequence of our definitions, since

Xs,t(A) ∩B ̸= ∅ ⇔ ∃π̂ ∈ Ŵ
(
B × {t}

)
s.t. π̂(s) ∈ A ⇔ Ŷt,s(B) ∩ A ̸= ∅.

Our next aim is to show that the coalescing point set (Bt)t≥0 defined in
(4.2) “comes down from infinity” in the sense that regardless of the initial
state B, for each t > 0 the set Bt is locally finite. Since clearly B ⊂ B′

implies Y0,t(B) ⊂ Y0,t(B
′), it suffices to prove the claim for B = R. Roughly

speaking, the following result says that if we start particles performing co-
alescing Brownian motions from each point on the real line, then at each
positive time there are only locally finitely many particles left. This is some-
times described by saying that coalescing Brownian motions come down from
infinity.

Proposition 4.3 (Density of the coalescing point set) One has

E
[∣∣Y0,t(R) ∩ [a, b]

∣∣] = b− a√
πt

(a, b ∈ R, a < b, t > 0).

Proof We first calculate the probability that Y0,t(R) ∩ [a, b] ̸= ∅. We con-

struct (W , Ŵ) from collections (πz)z∈D and (π̂z)z∈D̂ of forward and downward
coalescing Brownian motions, so that paths in (πz)z∈D do not enter wedges
of (π̂z)z∈D̂ and vice versa. We choose D̂ such that (a, t), (b, t) ∈ D̂. Let

τa,b = τ(π̂(a,t), π̂(b,t))
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t

0

a b

π̂(a,t) π̂(b,t)

τa,b

t

0

a b

π̂(a,t) π̂(b,t)

τa,b

Figure 4.1: Illustration of formula (4.4). If τa,b > 0, then no path in W
starting at time 0 can pass through (a, b) at time t. On the other hand, if
τa,b < 0, then any path in W starting at time 0 between π̂(a,t)(0) and π̂(b,t)(0)
must pass through [a, b] at time t.

be the first meeting time of the downward paths started at (a, t) and (b, t).
We claim that (see Figure 4.1)

Y0,t(R) ∩ (a, b) ̸= ∅ implies τa,b ≤ 0 implies Y0,t(R) ∩ [a, b] ̸= ∅. (4.4)

Indeed, if τa,b > 0, then the paths π̂(a,t) and π̂(b,t) form a wedge that prevents
paths in W starting at time zero from passing between (a, t) and (b, t), prov-
ing the first implication. On the other hand, if τa,b ≤ 0, then for each time
s > 0 we can find some x such that π̂(a,t)(s) < x < π̂(b,t)(s). The web W
must contain a path π starting at (x, s) and since such a path cannot cross
the downward paths π̂(a,t) and π̂(b,t), it must satisfy a ≤ π(t) ≤ b. We can
construct such a path πs with starting time s for each s > 0, so using the
compactness of W , we see that W must also contain a path π0 starting at
time zero such that a ≤ π(t) ≤ b, proving the second implication.

The difference (B1(s) − B2(s))s≥0 of two Brownian motions is equally
distributed with (

√
2B(s))s≥0, where (B(s))t≥0 is a single Brownian motion.

Therefore, using the reflection principle,

P
[
τa,b ≤ 0] = P

[
sup
0≤s≤t

(
B2(s)−B1(s)

)
≤ b− a

]
= P

[
sup
0≤s≤t

B(s) ≤ b− a√
2

]
=

1√
2πt

∫ b−a√
2

− b−a√
2

e−x
2/2t dx.

In particular, this implies that

P[x ∈ Y0,t(R)] = lim
ε→0

P
[
Y0,t(R) ∩ (x− ε, x+ ε) ̸= ∅

]
= 0 (x ∈ R, t > 0),
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and hence

P
[
Y0,t(R) ∩ (a, b) ̸= ∅

]
= P

[
Y0,t(R) ∩ [a, b] ̸= ∅

]
= P[τa,b ≤ 0].

Now

E
[∣∣Y0,t(R) ∩ [0, 1]

∣∣] = lim
n→∞

2n∑
i=1

P
[
Y0,t(R) ∩ [(i− 1)2−n, i2−n] ̸= ∅

]
= lim

ε→0
ε−1 1√

2πt

∫ ε/
√
2

−ε/
√
2

e−x
2/2t dx =

1√
πt
.

A similar formula holds for the expectation of
∣∣Y0,t(R)∩ [0, r]

∣∣ for any r > 0
and the general result follows by translation invariance.

We conclude this section with some useful consequences of Proposition
4.3. In the following lemma, we let Π↕ := Π↑ ∩ Π↓ denote the space of all
bi-infinite paths and we let Π↕(R) := Π↕ ∩ Π(R) denote the space bi-infinite
paths with values in R (as opposed to R).

Lemma 4.4 (No bi-infinite paths) Let W be a Brownian web. Then
W ∩ Π↕(R) = ∅ a.s.

Proof We start by observing that

P
[
W ∩ Π↕(R) ̸= ∅

]
≤ lim

n→∞
P
[
∃π ∈ W s.t. σπ = −∞, π(0) ∈ [−n, n]

]
,

where by Lemma 3.8 the inequality is in fact an equality. Now Proposition 4.3
gives

P
[
∃π ∈ W s.t. σπ = −∞, π(0) ∈ [−n, n]

]
≤ lim

t→∞
P
[
∃π ∈ W s.t. σπ ≤ −t, π(0) ∈ [−n, n]

]
= lim

t→∞
2n√
πt

= 0,

Here again, with a bit of extra work, one can show that the inequality is in
fact an equality, but we do not presently need this.

Lemma 4.5 (Coalescence of paths) Almost surely, for all paths π, π′ ∈
W, if π(t) = π′(t) for some t > σπ ∨ σπ′, then π(u) = π′(u) for all u ≥ t.

Proof By Lemma 3.8, it suffices to prove the statement under the additional
assumption that π(t) = π′(t) ∈ R. Let T ⊂ R be countable and dense. If
t > σπ ∨ σπ′ , then there exist r, s ∈ T with σπ ∨ σπ′ < r < s ≤ t and the
paths obtained from π and π′ by cutting off the piece before time r are also



4.1. THE COALESCING POINT SET 87

paths in the Brownian web. Therefore, it suffices to prove for deterministic
r < s that if two paths π, π′ ∈ W with σπ = σπ′ = r satisfy π(t) = π′(t) for
some t ≥ s, then π(u) = π′(u) for all u ≥ t.

By Proposition 4.3, the random set

A :=
{
π(s) : π ∈ W , σπ = r

}
∩ R

is locally finite. We claim that for each x ∈ A, there exists a unique path
π(x,s) ∈ W(x, s), and conditional on A, the collection of paths

(π(x,s))x∈A

is distributed as coalescing Brownian motions. Indeed, this follows from the
fact (which can easily be proved using discrete approximation) that restric-
tions of the Brownian web to disjoint parts of space-time are independent.
As a result, the random set A is independent of W

(
R × [s,∞)

)
, so after

we condition on A, paths started from a countable collection of fixed points
(x, s) with x ∈ R will be distributed as coalescing Brownian motions.

The statement we want to prove now follows from the fact that if two
coalescing Brownian motions meet at some random time, then they coalesce,
i.e., the two paths are equal from that time onwards.

Lemma 4.6 (Minimal and maximal paths) Let W be a Brownian web.
Then almost surely, for each z = (x, s) ∈ R2, there exist paths π−

z , π
+
z ∈ W(z)

such that π−
z (t) ≤ π(t) ≤ π+(t) for all π ∈ W(z) and t ≥ 0. If x−n < x < x+n

satisfy x±n → x and π±
(n) ∈ W(x±n ), then

π±
(n) −→

n→∞
π±
z (4.5)

in the topology on Π↑.

Proof By symmetry, it suffices to prove the statements for π+
z . Let x < x+n

satisfy x+n → x and choose π+
(n) ∈ W(x+n ). By the compactness of W , the

set {π+
(n) : n ≥ 1} is precompact in the topology on Π↑. Let π+

z be any

subsequential limit of the sequence
(
π+
(n)

)
n≥1

. Then clearly π ∈ W(z). By

Lemma 4.5, each π ∈ W(z) satisfies π(t) ≤ π+
(n)(t) for all n ≥ 1 and t ≥ 0,

so taking the limit, we see that π(t) ≤ π+
z (t) for all t ≥ 0. This proves that

the set W(z) has a maximal element π+
z . Such a maximal element is clearly

unique, so the sequence
(
π+
(n)

)
n≥1

has a unique cluster point, which is π+
z .

Since {π+
(n) : n ≥ 1} is precompact, it follows that the sequence

(
π+
(n)

)
n≥1

converges to π+
z .

The following lemma says that if a sequence of paths in the web converges
(such as for example in (4.5)), then this convergence actually takes place in
a rather strong sense.
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Lemma 4.7 (Strong convergence of paths) Let W be a Brownian web.
Then almost surely, for all πn, π ∈ W such that πn → π, there exist times
tn > σπn ∨ σπ such that tn → σπ and πn(t) = π(t) for all t ≥ tn.

Remark We recall that the Brownian web has the property that almost
surely, for any countable dense set D ⊂ R2, one has W = W(D), where
W(D) is called a skeleton of W . Lemma 4.7 implies that for each path in
the web π ∈ W and for each ε > 0, there exists a skeletal path π′ ∈ W(D)
such that π(t) = π′(t) for all t ≥ σπ + ε.

Proof By Lemma 3.8, it suffices to prove the statement under the additional
assumption that π(t) ∈ R. Proposition 4.3 tells us that for each deterministic
s < t, the set

As,t :=
{
π(t) : π ∈ W , σπ ≤ s

}
∩ R

is a.s. a locally finite subset of R. Let T be a countable dense subset of R.
Then almost surely, As,t is locally finite for all s, t ∈ T with s < t. Now
if πn, π ∈ W satisfy πn → π, then for each s, t ∈ T with σπ < s < t, we
have for n sufficiently large that σπn < s and hence πn(t), π(t) ∈ As,t. Since
πn(t) → π(t) and since As,t is locally finite, it follows that πn(t) = π(t) for n
sufficiently large. By Lemma 4.5, πn(t) = π(t) implies πn(u) = π(u) for all
u ≥ t. Since T is dense, we can choose t as close to σπ as we wish, and hence
the statement of the lemma follows.

Exercise 4.8 Show that formula (4.4) can be strengthened (for deterministic
a, b, and t) in the sense that Y0,t(R)∩[a, b] ̸= ∅ almost surely implies Y0,t(R)∩
(a, b) ̸= ∅.

4.2 Brownian local time

In the next section, we will study the interaction between paths in the forward
and dual Brownian web. As a preparation, in the present section, we collect
some well-known facts about Skorohod reflection and Brownian local time.
Let C := C[0,∞)(R) denote the space of continuous functions f : [0,∞) → R.
We set

C0 :=
{
f ∈ C : f0 = 0

}
,

C+ :=
{
f ∈ C : f is nondecreasing

}
,

Cpos :=
{
f ∈ C : f ≥ 0

}
,

and we write C+
0 := C+ ∩ C0. We set

mt(f) := 0 ∧ inf
0≤s≤t

fs
(
t ≥ 0, f ∈ C

)
. (4.6)
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In particular, if f ∈ C0, then this is the running minimum of the function f .
Assume that h ∈ C satisfies h0 ≥ 0, and let

gt := ht −mt(h) (t ≥ 0). (4.7)

We observe that gt ≥ 0 and that ψt := −mt(h) is a nondecreasing function
that increases only at times when gt = 0. The following definition makes this
precise. Let g0 ∈ [0,∞) and f ∈ C0 be given. By definition, a solution to the
Skorohod reflection equation

dgt = dft + dψt (t ≥ 0) (4.8)

is a pair (g, ψ) of functions g ∈ Cpos and ψ ∈ C+
0 such that

(i) gt = g0 + ft + ψt (t ≥ 0),

(ii)

∫ ∞

0

1{gt>0}dψt = 0.

Here, the notation in point (ii) means that we integrate the function t 7→
1{gt>0} with respect to the measure whose distribution function is ψ, i.e.,
this is the unique measure µ on [0,∞) such that µ([0, t]) = ψt (t ≥ 0).
Condition (ii) makes the intuitive concept precise that ψt increases only at
times when gt = 0. See Figure 4.2 for an illustration. The following lemma
says that solutions to (4.8) are unique and given by (4.7).

Lemma 4.9 (Skorohod reflection) For each g0 ∈ [0,∞) and f ∈ C0, the
Skorohod reflection equation (4.8) has a unique solution (g, ψ) with initial
condition g0. This solution is given by

gt = f̃t −mt(f̃) and ψt = −mt(f̃) (t ≥ 0), (4.9)

where f̃t := g0 + ft (t ≥ 0).

Proof It is not hard to check that if we define g and ψ by (4.9), then (g, ψ)
is a solution to the Skorohod reflection equation (4.8). To prove uniqueness,
assume, conversely, that (4.8) has two solutions (g, ψ) and (g′, ψ′) that are
not equal but which satisfy g0 = g′0. Then, by condition (i) of the definition
of a solution to the Skorohod reflection equation, there must be a u > 0 such
that gu ̸= g′u. By symmetry, we can without loss of generality assume that
gu < g′u. Let s := sup{t ∈ [0, u] : gt = g′t}. By continuity, gs = g′s and gt < g′t
for all t ∈ (s, u]. Setting f̂t := ft − fs and ψ̂t := ψt − ψs, we observe that
(g, ψ̂) solves the Skorohod reflection equation

dgt = df̂t + dψ̂t (t ≥ s)
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t

ft

t

ψt

t

gt = ft + ψt

Figure 4.2: Reflected Brownian motion: the functions f, g, and ψ from
Lemma 4.9 in the case that f is a Brownian path.

on the time interval [s,∞), and an analogue statement holds for (g′, ψ′). In
view of this, shifting the time s to zero, if uniqueness does not hold, then we
can without loss of generality assume that we are in the following situation.
We have two solutions (g, ψ) and (g′, ψ′) to the Skorohod reflection equation
(4.8) with initial states g0 = g′0 for which there exists a u > 0 such that
gt < g′t for all t ∈ (0, u].

Since 0 ≤ gt < g′t for all t ∈ (0, u], condition (ii) of the definition of a
solution implies that ψ′

t = 0 for all t ∈ [0, u]. Together with the fact that
g0 = g′0 and condition (i) of the definition of a solution, this implies that
gt ≥ g′t for all t ∈ [0, u], contradicting our assumption that gt < g′t for all
0 < t ≤ u.

Exercise 4.10 Let f ∈ C0 be given and assume that (g, ψ) and (g′, ψ′)
are solutions to the Skorohod reflection equation (4.8) with possibly different
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initial states g0 and g′0. Show that

g0 ≤ g′0 implies gt ≤ g′t and g′t − gt ≤ g′0 − g0 (t ≥ 0). (4.10)

We will especially be interested in the case that the function f from
Lemma 4.9 is Brownian motion. In this case, the function g is reflected
Brownian motion, and ψ is its local time at the origin. To explain this in a
bit more detail, we need to take a small detour.

If (Bt)t≥0 is a d-dimensional Brownian motion, then we can define a
stochastic process (ℓt)t≥0 taking values in the space M(Rd) of finite mea-
sures on Rd by∫

Rd

ℓt(dx) f(x) :=

∫ t

0

ds f(Bs)
(
t ≥ 0, f ∈ Bb(Rd)

)
.

The random measure ℓt is called the occupation local measure of the Brownian
motion (Bt)t≥0. In particular

ℓt(A) =

∫ t

0

ds 1A(Bs)
(
A ∈ B(Rd)

)
is the amount of time the Brownian motion has spent inside a measurable
set A up to time t. In one dimension, it is well-known that ℓt has a density
with respect to the Lebesgue measure. The following theorem is originally
due to Trotter. The process (Lt)t≥0 below is called Brownian local time.

Theorem 4.11 (Brownian local time) Let (Bt)t≥0 be a one-dimensional
Brownian motion. Then almost surely, there exists a random continuous
function L : [0,∞)× R → [0,∞) such that∫

R
dxLt(x)f(x) =

∫ t

0

ds f(Bs)
(
t ≥ 0, f ∈ Bb(R)

)
.

Modern proofs of Theorem 4.11 are based on Tanaka’s formula, which
says that

|Bt| =
∫ t

0

sgn(Bs) dBs + Lt(0) (t ≥ 0), (4.11)

where the integral is an Itô stochastic integral. Tanaka’s formula can be used
as a definition of Brownian local time, for which one then proves the prop-
erties described in Theorem 4.11. For details, we refer to [McK69, Mey76,
RW87]. In fact, in the remainder of this chapter, we will mostly work with
Tanaka’s formula as the definition of Lt(0) and do not really need its inter-
pretation as local time in the sense of Theorem 4.11.
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Proposition 4.12 (Reflected Brownian motion) Let B = (Bt)t≥0 be
a standard Brownian motion and let (Lt(0))t≥0 be its local time at 0. Let
W = (Wt)t≥0 be another standard Brownian motion and let

At := Wt −mt(W ) and Lt := −mt(W ) (t ≥ 0). (4.12)

Then

P
[(
|Bt|, Lt(0)

)
t≥0

∈ ·
]
= P

[
(At, Lt)t≥0 ∈ ·

]
.

Proof (sketch) Let (Bt)t≥0 be a Brownian motion and let

Wt := −
∫ t

0

sgn(Bs) dBs (t ≥ 0).

It is not hard to show that W = (Wt)t≥0 is a Brownian motion. We will
show that At = |Bt| and Lt = Lt(0) (t ≥ 0). We apply Lemma 4.9. Tanaka’s
formula (4.11) says that |Bt| = Lt(0)−Wt (t ≥ 0). Clearly |Bt| is nonnegative
and Lt(0) is nondecreasing and increases only when |Bt| = 0. For the details,
we refer to [KS91, Thm 3.6.17].

4.3 Law of a forward and dual path

Let (W , Ŵ) be a double Brownian web, let (x, s), (y, u) ∈ R2, and let π ∈
W(x, s) and π̂ ∈ Ŵ(y, u) be the almost surely unique paths in the web and
dual web starting at these points. If s ≥ u, then it is easy to see (for example
using discrete approximation) that the paths π and π̂ are independent, but
this cannot be the case when s < u, since we have seen in Section 3.5 that π
and π̂ do not cross, which would have a positive probability for independent
forward and backward Brownian paths. In this section, we give a precise
description of the joint law of π and π̂. This goes back to [STW00].

Lemma 4.13 (Path reflected to the right off a dual path) Let π ∈ Π↑

and π̂ ∈ Π↓ satisfy σπ < τπ̂ and π̂(σπ) ≤ π(σπ). Then there exists a unique
path π′ ∈ Π↑ and continuous function ψ : R → R such that

(i) zπ′ = zπ and π′(t) = π(t) + ψ(t) (t ≥ σπ),

(ii) π̂(t) ≤ π′(t) for all s ≤ t ≤ u,

(iii) ψ is nondecreasing with ψ(σπ) = 0 and the measure
dψ is concentrated on

{
t ∈ [σπ, τπ̂] : π̂(t) = π′(t)

}
.
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Proof Let (x, s) :=
(
π(σπ), σπ

)
and (y, u) :=

(
π̂(τπ̂), τπ̂

)
denote the starting

points of π and π̂. Define f̃ : [s, u] → R by f̃t := π(t) − π̂(t) and set
ft := f̃t − f̃0 (t ∈ [s, u]). Then Lemma 4.9 tells us that the Skorohod
reflection equation

dgt = dft + dχt (s ≤ t ≤ u) (4.13)

has a unique solution with initial state gs = π(s) − π̂(s). (Lemma 4.9 is
stated for unbounded time domains but the statement and proof carry over
without a change if the time domain is bounded.) Define ψ : R → R by
ψ(t) := χt (t ∈ [s, u]), ψ(t) := χs (t ≤ s) and ψ(t) := χu (t ≥ u), and define
π′ ∈ Π↑(x, s) by π′(t) = π̂(t)+gt (t ∈ [s, u]) and π′(t) = π′(u)+

(
π(t)−π(u)

)
(t ≥ u). Then π′ and ψ satisfy conditions (i)–(iii) of the lemma if and only
if g and χ satisfy the Skorohod reflection equation (4.13) with initial state
gs = π(s)− π̂(s). Thus, existence and uniqueness of π′ and χ follow directly
from Lemma 4.9.

By symmetry, in complete analogy to Lemma 4.13, we can also define a
path by reflection to the left off a dual path.

Lemma 4.14 (Path reflected to the left off a dual path) Let π ∈ Π↑

and π̂ ∈ Π↓ satisfy σπ < τπ̂ and π̂(σπ) ≥ π(σπ). Then there exists a unique
path π′ ∈ Π↑ and continuous function ψ : R → R such that

(i) zπ′ = zπ and π′(t) = π(t)− ψ(t) (t ≥ σπ),

(ii) π̂(t) ≥ π′(t) for all s ≤ t ≤ u,

(iii) ψ is nondecreasing with ψ(σπ) = 0 and the measure
dψ is concentrated on

{
t ∈ [σπ, τπ̂] : π̂(t) = π′(t)

}
.

Let C(R) denote the space of all continuous functions ψ : R → R,
equipped with the topology of uniform convergence. Then we can define
a map Φ by

Π↑ × Π↓ ∋ (π, π̂)
Φ7−→ (π′, ψ) ∈ Π↑ × C(R), (4.14)

where:

� π′ := π and ψ(t) := 0 (t ∈ R) if σπ ≥ τπ̂,

� π′ and ψ are defined as in Lemma 4.13 if σπ < τπ̂ and π̂(σπ) < π(σπ),

� π′ and ψ are defined as in Lemma 4.14 if σπ ≤ τπ̂ and π(σπ) ≤ π̂(σπ).
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Lemma 4.15 (Continuity of the reflection map) Assume that πn, π ∈
Π↑ and π̂n, π̂ ∈ Π↓ satisfy πn → π and π̂n → π̂ in the topologies on Π↑ and
Π↓. Assume moreover that either σπ ≥ τπ̂ or σπ < τπ̂ and π̂(σπ) ̸= π(σπ).
Then

Φ(πn, π̂n) −→
n→∞

Φ(π, π̂)

in the topology on Π↑ × C(R).

Remark Our proof of Lemma 4.15 will show that the conclusion remains
valid even when σπ < τπ̂ and π̂(σπ) = π(σπ), provided that πn(σπn) ≤ π̂n(σπn)
for all n.

Proof of Lemma 4.15 In the proof of Lemma 4.13 we have seen that there
exists a one-to-one correspondence between solutions to conditions (i)–(iii)
of the lemma and solutions of the Skorohod reflection equation (4.13). By
Lemma 4.9, solutions of such a Skorohod reflection equation are of the form
(4.9). Thus, the claim follows from the fact that if a sequence of functions
f̃n ∈ C with f̃n

0 ≥ 0 converges locally uniformly to a limit f̃ , then also the
functions t 7→ mt(f̃

n) converge locally uniformly to t 7→ mt(f̃).
Note that if σπ < τπ̂, then we have to assume that π̂(σπ) < π(σπ) or

πn(σπn) ≤ π̂n(σπn) for all n because of the obvious discontinuity in our defi-
nition of the map Φ in points (π, π̂) with π̂(σπ) = π(σπ).

Theorem 4.16 (Interaction between forward and dual paths) Let
(W , Ŵ) be a double Brownian web, let (x, s), (y, u) ∈ R2, and let π, π̂ be
the almost surely unique paths such that π ∈ W(x, s) and π̂ ∈ Ŵ(y, u). Let
B = (Bt)t≥s be a Brownian motion started at Bs = x, independent of π̂, and
let (π′, ψ) := Φ(B, π̂), where Φ is the map in (4.14). Then (π, π̂) is equal in
law to (π′, π̂).

Proof We use discrete approximation. We first prove an analogue statement
for open paths in an arrow configuration and then take the limit, using
Skorohod’s representation theorem and the continuity properties of the map
Φ defined in (4.14).

Let U be the set of open paths in an arrow configuration and let U∗ be the
set of downward open paths in the associated dual arrow configuration. Fix
(y, u) ∈ Z2

odd and let P̂ be the unique element of U∗(y, u). Fix (x, s) ∈ Z2
even

and let (Xk)k≥s+1 be i.i.d. uniformly distributed {−1,+1}-valued random

variables, independent of P̂ . Let P be the random walk that is defined for
integer times by

Pt := x+
t∑

k=s+1

Xk (t ≥ s),
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and then for general t ≥ s by linear interpolation. We can then define a
reflected random walk P ′ = (P ′

t)t≥s started at P ′
s = x first for integer times

by

P ′
t :=


P ′
t−1 − 1 if t ≤ u, P̂t = P ′

t−1, and P̂t−1 = P ′
t−1 + 1,

P ′
t−1 + 1 if t ≤ u, P̂t = P ′

t−1, and P̂t−1 = P ′
t−1 − 1,

P ′
t−1 +Xt otherwise,

and then for general t ≥ s by linear interpolation. Then it is easy to see that
the conditional law of P ′ given P̂ is precisely the conditional law of the the
unique element of U(x, s) given P̂ .

t

P (t)

P̂ (t)

P ′(t)

t

Ψ(t)

Figure 4.3: A random walk reflected to the right off a dual random walk path
P̂ . The reflected path is P ′(t) = P (t) + Ψ(t), where P is an independent
random walk and Ψ is a reflection term. The steps where reflection takes
place are indicated in red.

If u ≤ s, then clearly P ′ = P ′. In the opposite case, we claim that P ′ is a
reflected version of P , very similar to the reflected paths defined in Lemmas
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4.13 and 4.14. To see this, let us first focus on the case that P̂ (s) < x. On
this event, we define Ψ : [s, t] → R by

Ψ(t) :=

∫ t

0

(
∂
∂r
P̂ (r)− ∂

∂t
P (r)

)
1{P̂ (r) + 1 = P ′(r)}dr

(
t ∈ [s, u]

)
,

with the convention that the derivatives are zero at integer times. We extend
Ψ to R by setting Ψ(t) := 0 for t ≤ s and Ψ(t) := Ψ(u) for t ≥ u. Then it is
straightforward to check (see Figure 4.3) that:

(i) P ′(t) = P (t) + Ψ(t) (t ≥ s),

(ii) P̂ (t) ≤ P ′(t) for all s ≤ t ≤ u,

(iii) Ψ is nondecreasing with Ψ(s) = 0 and the measure
dΨ is concentrated on

{
t ∈ [s, u] : P̂ (t) + 1 = P ′(t)

}
.

In other words, this says that P ′ is precisely the random walk path P , re-
flected to the right off the path

(
P̂ (t) + 1

)
t∈[s,u] in the sense of Lemma 4.13.

In a similar way, we see that on the event that x < P̂ (s), the path P ′ is the
random walk P , reflected to the left off the path

(
P̂ (t)− 1

)
t∈[s,u] in the sense

of Lemma 4.14.
We can now prove the statement of the theorem. We first treat the case

that s < u. We choose positive constants εn, tending to zero, and points
(xn, sn) ∈ Z2

even and (yn, un) ∈ Z2
odd such that

θεn(xn, sn) −→
n→∞

(x, s) and θεn(yn, un) −→
n→∞

(y, u).

Note that sn < un for all n large enough. We let P̂n be the unique element
of U(yn, un), we let Pn be an independent random walk started at Pn(s) = x,
and we define reflected paths P ′

n in terms of P̂n and Pn as above. We let Ψn

denote the associated reflection functions. It will also be handy to introduce
notation for the dual path P̂n shifted by +1 or −1 depending on whether
P̂n(s) < xn or xn < P̂n(s). We denote this modified dual path by P̃n, i.e.,

P̃n(t) :=

{
P̂n(t) + 1 if P̂n(s) < xn,

P̂n(t)− 1 if xn < P̂n(s)

(
t ∈ (−∞, un]

)
.

We denote the corresponding diffusively rescaled paths and functions by

(π̃n, Bn, B
′
n, ψn) := θεn(P̃n, Pn, P

′
n,Ψn).
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Note that we rescale the reflection function in the same way as the paths.
The properties (i)–(iii) above are preserved under rescaling, so on the event
that π̃n(sn) ̸= xn, we have that

(B′
n, ψn) = Φ(Bn, π̃n), (4.15)

where Φ is the map in (4.14). In the case when u ≤ s, we can without loss of
generality choose our approximating points such that un ≤ sn for all n. Then,
taking (4.15) as a definition, we also have that (B′

n, π̂n) is distributed as the
pair of rescaled forward and dual paths started from (xn, sn) and (yn, un).

The rest of the proof is now easy. It follows from Theorem 3.18 that the
pair of rescaled paths (B′

n, π̃n) converges in law to (π, π̂), the forward and
dual Brownian web paths mentioned in the theorem. On the other hand, the
pair of rescaled paths (π̃n, Bn) converges in law to a pair (π̂, B) where π̂ is
as before and B is an independent Brownian motion started at (x, s). Using
Skorhod’s representation theorem, we can couple our random variables such
that the latter convergence is almost sure. Since the event π̃(s) ̸= x has
probability one, we can use (4.15) and the continuity property of the map Φ
stated in Lemma 4.15, to conclude that for this coupling, (B′

n, ψn) converge
almost surely to (π′, ψ) := Φ(B, π̂). In particular, this implies that (π, π̂) is
equal in law to (π′, π̂), as claimed.

Figure 4.4 shows a numerical simulation of the set of all Brownian web
paths started at a fixed time s, together with the set of all dual Brownian web
paths started at a fixed time t > s, where one can (with a bit of imagination)
see the forward path being reflected off the dual paths, and vice versa.

4.4 Special points

We have defined the Brownian web W as the closure of {πz : z ∈ D}, where
(πz)z∈D is a collection of coalescing Brownian motions started from a count-
able dense set D ⊂ R2. Here {πz : z ∈ D} is precompact by Proposition 3.6
and hence W is a compact subset of Π↑. Using compactness and the fact
that D is dense, we see that for each z ∈ R2, there exists at least one path
π ∈ W that starts at z. For each z ∈ R2, we let

mout(z) :=
∣∣W(z)

∣∣
denote the number of paths in W that start at z. In Theorem 3.7, we have
proved that mout(z) = 1 a.s. for each deterministic z ∈ R2. In this section,
we will prove that in spite of this, almost surely, there exist points z with
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Figure 4.4: The sets of all Brownian web paths and dual Brownian web paths
started at two fixed times s < t.

mout(z) = 2 and even mout(z) = 3. The key to understanding this is (again)
duality.

We say that a path π ∈ Π↑ enters a point z = (x, u) ∈ R2 if σπ < u and
π(u) = x. We denote the set of Brownian web paths entering z by

Win(z) :=
{
π ∈ W : π enters z

}
.

We define an equivalence relation ∼ on Win(z) by setting π ∼ π′ if and only
if there exists a time s with σπ ∨ σπ′ ≤ s < u such that π(t) = π′(t) for all
t ∈ [s, u] and we let

Ẇin(z) :=
{
π̇ ∈ W : π ∈ Win(z)

}
with π̇ := {π′ ∈ Win(z) : π

′ ∼ π}
denote the set of equivalence classes. With these conventions,

min(z) :=
∣∣Ẇin(z)

∣∣
denotes the number of nonequivalent paths π ∈ W entering z. We call
(min(z),mout(z)) the type of a point z ∈ R2.

Theorem 4.17 (Special points of the Brownian web) Let W be a
Brownian web. Then almost surely, all points in R2 are of one of the following
types:

(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (2, 1),
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and all these types occur. For each deterministic t ∈ R, almost surely, all
points in R× {t} are of one of the following types:

(0, 1), (0, 2), (1, 1),

and all these types occur. A deterministic point (x, t) ∈ R2 is almost surely
of type (0, 1).

Points of type (1, 2) are further distinguished into points of type (1, 2)l
and (1, 2)r, depending on whether the incoming path is the left or right of the
two outgoing paths. The proof of Theorem 4.17 needs a few preparations.

Recall that in Section 2.7, we defined paths π ∈ Π(R) as subsets π ⊂ R(R)
with certain special properties. Our definitions excluded the case that π = ∅,
but for some purposes it is convenient to allow the empty paths, so we define
Π0(R) := Π(R) ∪ {∅}. If [s, u] ⊂ R is a compact nonempty interval, then we
define the restriction of a path π ∈ Π(R) to the interval [s, u] as

π
∣∣
[s,u]

:=
{
(x, t) ∈ π : t ∈ [s, u]

}
.

Note that π
∣∣
[s,u]

∈ Π0(R) for all π ∈ Π(R). If A ⊂ Π(R) is a set of paths,

then we define
A
∣∣
[s,u]

:=
{
π
∣∣
[s,u]

: π ∈ A
}
\
{
∅
}
,

where now we remove the empty path so that A
∣∣
[s,u]

⊂ Π(R).

Lemma 4.18 (Independent increments) Let −∞ < t0 ≤ · · · ≤ tn < ∞.
Then the restricted Brownian webs

W
∣∣
[t0,t1]

, . . . ,W
∣∣
[tn−1,tn]

are independent.

Proof (sketch) We use discrete approximation. Let −∞ < s < u < ∞,
choose positive constants εn, tending to zero, and let sn, un ∈ Z satisfy
ε2nsn → s and ε2nun → u. Let U be the set of paths in an arrow configuration.
Then we claim that

P
[
θεn(U

∣∣
[sn,un]

) ∈ ·
]
=⇒
n→∞

P
[
W

∣∣
[s,u]

∈ ·
]
, (4.16)

where ⇒ denotes weak convergence of probability laws on Π(R). This would
quite easily follow from Theorem 3.18 if the mapA 7→ A

∣∣
[s,u]

were continuous,

but that is not the case (Exercise 4.19 below). Nevertheless, (4.16) can be
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proved by adapting the proof of Theorem 3.18 in a straightforward manner.
For brevity, we skip the details.

Now let −∞ < t0 ≤ · · · ≤ tm <∞. Then we can find tn1 , . . . , t
n
m ∈ Z with

tn1 ≤ · · · ≤ tnm, such that ε2nt
n
i → ti for each 0 ≤ i ≤ m. Since the restricted

discrete webs
U
∣∣
[tn0 ,t

n
1 ]
, . . . ,U

∣∣
[tnm−1,t

n
m]

are independent, taking the limit, we see that the same is true for the re-
stricted Brownian webs.

Exercise 4.19 Show that the map A 7→ A
∣∣
[s,u]

is not continuous with respect

to the topology on K(Π(R)).

The following lemma shows how the type of a point in the dual Brownian
web can be derived from its type in the Brownian web. This lemma will also
be key in understanding why certain types of points must exist, or on the
other hand do not exist; see Figure 4.5.

Lemma 4.20 (Types of points in dual web) Let (m̂in(z), m̂out(z)) denote
the type of a point z ∈ R2 in the dual Brownian web Ŵ. Then for each z ∈ R2,

mout(z) = m̂in(z) + 1 and m̂out(z) = min(z) + 1.

Proof By symmetry, it suffices to prove that mout(z) = m̂in(z) + 1. If there
is an incoming path in Ŵ at z, then forward paths started on either side of
such a dual path cannot coalesce until the starting time of the dual path,
since otherwise the dual path would enter the wedge defined by these forward
paths. As a result, since the incoming paths divide the area just above z into
m̂in(z) + 1 regions, approaching the point z from different directions, using
the compactness of W , we see that there are at least m̂in(z)+1 distinct paths
in W starting at z. On the other hand, if there are two outgoing paths in
W at z, then any dual path that is started between these paths must stay
between these forward paths and pass through z. Therefore, m̂in ≥ mout− 1.
Together with our earlier claim that mout(z) ≥ m̂in(z) + 1, this proves the
claim.

Proof of Theorem 4.17 (sketch)] Let D ⊂ R2 be countable and dense and
let W(D) be the associated skeleton of the Brownian web. By Lemma 4.7
and the remark below it, if π ∈ W enters a point z, then there exists a
π′ ∈ W(D) such that π and π′ are two equivalent paths entering z. Thus, for
each z ∈ R2, we have that min(z) is also the number of non-equivalent paths
in the skeleton W(D) entering z. A completely analogue statement holds for
paths in the dual web.
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Figure 4.5: Possibe types of points in the Brownian web and its dual.

If z ∈ R2 is a deterministic point, then Theorem 3.7 tells us thatmout(z) =
1 and m̂out(z) = 1. By Lemma 4.20, this implies that z is almost surely of
type (0, 1).

If t ∈ R is a deterministic time, then clearly there exist (random) x ∈ R
such that min(x, t) = 1, while by our previous argument there also exist
x ∈ R such that min(x, t) = 0. We claim there exist no x ∈ R such that
min(x, t) ≥ 2. Indeed, by the remarks at the beginning of our proof, for
this to be true there would have to exist skeletal paths π, π′ ∈ W(D) with
π(t) = π′(t) while π(s) ̸= π′(s) for all σπ ∨ σπ′ ≤ s < t. For any two paths in
{πz : z ∈ D}, this event clearly has probability zero. Since D is countable,
we can conclude such paths π, π′ do not exist. By a similar argument, we see
that there exist no x ∈ R such that min(x, t) = 1 and m̂in(x, t) = 1. Indeed,
for this to be true, a path in {πz : z ∈ D} started below time t and a dual path
in {π̂z : z ∈ D} started above time t would have to be at the same location at
time t. By Lemma 4.18, what happens below time t is independent of what
happens above time t, and therefore such an event has probability zero. We
conclude that if t ∈ R is a deterministic time, then for each x ∈ R, one of the
following statements must be true: 1. min(x, t) = m̂in(x, t) = 0 (which is true
for deterministic x), 2. min(x, t) = 0 and m̂in(x, t) = 1, and 3. min(x, t) = 1
and m̂in(x, t) = 0, and all these cases occur. By Lemma 4.20, it follows that
all points on R× {t} are of the types (0, 1), (0, 2), (1, 1), and all these types
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occur.
To complete the proof, we must show that (at random times), points

of type (0,3), (1,2), and (2,1) also occur, but no other types of points can
occur. It is clear that there exist points z ∈ R2 with min(z) = 2, but by
the remarks at the beginning of our proof, there exist no points z ∈ R2 with
min(z) ≥ 3, because for that to occur, three Brownian motions started from
deterministic points would have to coalesce in one and the same point, which
has probability zero. There are in fact only countably many points z with
min(z) = 2, since these are the coalescence points of the countable collection
of coalescing Brownian motions {πz : z ∈ D}.

We claim that each point z with min(z) = 2 satisfies m̂in(z) = 0. To see
this, we need to consider the joint law of two forward paths started from
deterministic points and one dual path started from a deterministic point.
We claim that if we forget about the trajectory of the coalescing forward
Brownian motions after their coalescence time, then the conditional law of the
dual path given the trajectories of the forward paths up to their coalescence
time is described by a Brownian motion with Skorohod reflection off the two
forward paths. The proof of this is similar to the proof of Theorem 4.16, so
we skip the details. Now the conditional probability that the dual path hits
the two forward paths exactly in the point where they coalesce is zero, which
implies there are no points with min(z) = 2 and m̂in(z) ≥ 1.

By Lemma 4.20, these arguments show that there exist points of type
(2, 1), and by duality also of type (0, 3), but no points of type (n,m) with
n ≥ 3, or n = 2 and m ≥ 2, or n = 1 and m ≥ 3.

By Lemma 4.20, and our previous remarks, to complete the proof and
show that there exist points of type (1, 2), it suffices to prove that there exist
point z ∈ R2 with min(z) = 1 and m̂in(z) = 1. This follows from the fact
that forward paths reflect off dual paths, proved in Theorem 4.16.

Exercise 4.21 Let W be a Brownian web. Recall the definition of the
maximal path π+

z ∈ W(z) (z ∈ R2) from Lemma 4.6. Say that a point z ∈ R2

is a point of continuity of the map z 7→ π+
z if

π+
zn → π+

z for all zn ∈ R2 s.t. zn → z.

Show that the set of points of continuity of the map z 7→ π+
z is given by{

z ∈ R2 : m̂in(z) = 0
}
.

Exercise 4.22 Let x ∈ R be deterministic. Try to determine which types of
points almost surely occur, or do not occur, in the set {x}×R. Note: there is
one type of point for which this question is not so easy to answer rigorously
(although you may guess the correct answer).
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4.5 The continuum voter model

In this section, we return to the processes (At)t≥0 and (Bt)t≥0 defined in (4.2).
We will show that they are indeed Markov processes, which can be thought
of as the continuum limits of the voter model and coalescing random walks,
respectively.

Lemma 4.23 (Stochastic flow property) Let t ∈ R be deterministic.
Then almost surely,

Xt,u ◦ Xs,t = Xs,u and Yt,u ◦ Ys,t = Ys,u (s ≤ t ≤ u).

Proof We first prove the inclusion Xt,u ◦ Xs,t(A) ⊃ Xs,u(A) for each closed

A ⊂ R. If x ∈ Xs,u(A), then there exists a π̂ ∈ Ŵ(x, u) such that π̂(s) ∈ A.

Set x′ := π̂(t). By Excercise 3.19, there exists a π̂′ ∈ Ŵ(x′, t) that coincides
with π̂ on (−∞, t]. It follows that x′ ∈ Xs,t(A), which by the fact that
π̂(t) = x′ implies that x ∈ Xt,u ◦ Xs,t(A).

If t is deterministic, then the opposite conclusion can also almost surely
be draw. If x ∈ Xt,u ◦ Xs,t(A), then there exists an x′ ∈ R, π̂ ∈ Ŵ(x, t), and

π̂′ ∈ Ŵ(x′, t) such that π̂(t) = x′ and π̂′(s) ∈ A. Since t is deterministic and
m̂in(x

′, t) = 1, Theorem 4.17 allows us to conclude that (x′, t) is of type (1, 1).
But then π̂′ must coincide with π̂ on (−∞, t], which implies that x ∈ Xs,u(A).

This concludes the proof that if t ∈ R is deterministic, then Xt,u ◦ Xs,t =
Xs,u a.s. for all s ≤ t, u ≥ t, and closed A ⊂ R. The proof that Yt,u ◦ Ys,t =
Ys,u is basically the same.

Proposition 4.24 (Continuum voter model) Let K(R) be the space of
all compact subsets of R, equipped with the Hausdorff topology. Then setting

Pt(A, · ) :=P
[
X0,t(A) ∈ ·

]
,

Qt(A, · ) :=P
[
Y0,t(A) ∈ ·

] } (
A ∈ K(R), t ≥ 0),

defines transition kernels on K(R) such that for each A,B ∈ K(R), the pro-
cesses (At)t≥0 and (Bt)t≥0 defined in (4.2) are Markov processes with transi-
tion kernels (Pt)t≥0 and (Qt)t≥0, respectively.

Proof We need to show that for each deterministic 0 ≤ t ≤ u,

P
[
Au ∈ ·

∣∣ (As)0≤s≤t

]
= Pu−t(At, · ) a.s.

Since A is deterministic and As = X0,s(A) (0 ≤ s ≤ t), where X0,s is a
function of W

∣∣
[0,s]

, we see that (As)0≤s≤t is a function of W
∣∣
[0,t]

. Lemma 4.23

tells us moreover that

Au = X0,u(A) = Xt,u ◦ X0,t(A) = Xt,u(At).
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Since Xt,u is a function of W
∣∣
[t,u]

, by Lemma 4.18, it is independent of W
∣∣
[0,t]

and hence also of (As)0≤s≤t. This implies that

P
[
Xt,u(At) ∈ ·

∣∣ (As)0≤s≤t = (as)0≤s≤t

]
= P

[
Xt,u(at) ∈ ·

]
= Pu−t(at, · )

for almost every (as)0≤s≤t with respect to the law of (As)0≤s≤t. It follows
that

P
[
Au ∈ ·

∣∣ (As)0≤s≤t

]
= P

[
Xt,u(At) ∈ ·

∣∣ (As)0≤s≤t

]
= Pu−t(At, · ) a.s.

The proof for (Bt)t≥0 is completely the same.

Remark An alternative construction of a continuum voter models has been
given by Steve Evans in [Eva97]. His construction is based on duality with
coalescing motions, which can be very general Markov processes (not nec-
essarily Brownian motions, and with state space much more general than
the real line), and he also allows voter models with infinitely many types.
Because of the high level of abstraction, the paper is a bit hard to read.

Exercise 4.25 Let W be a Brownian web. Show that the set I :=
{
x ∈ R :

m̂in(x, 0) = 1} is a.s. countable. Conditional on W, let
(
χ(x)

)
x∈I be i.i.d.

uniformly distributed {0, 1}-valued random variables, and define (At)t>0 by

At :=
{
x ∈ R : ∃π̂ ∈ Ŵ(x, t) s.t. χ(π̂(0)) = 1

}
.

Show that for deterministic 0 < s < t, one has

At = Xs,t(As) a.s.

Sketch a proof that the process (At)t>0 is the scaling limit of voter mod-
els started in i.i.d. uniformly distributed initial laws (compare the picture in
Section 1.2).

4.6 The Arratia flow

Let (W , Ŵ) be a double Brownian web. Recall the definition of the minimal
and maximal paths π±

z starting at a point z ∈ R2 in Lemma 4.6. For z =
(y, t) ∈ R2, we similarly let π̂−

z and π̂+
z denote the unique elements of W(z)

such that π̂−
z (s) ≤ π̂(s) ≤ π̂+

z (s) for all s ≤ t. For each s, t ∈ R with s ≤ t,
we define a map Φs,t : R → R by

Φs,t(x) := π+
(x,s)(t) (s ≤ t, x ∈ R). (4.17)
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Similarly, we set

Φ̂t,s(y) := π̂+
(y,t)(s) (s ≤ t, y ∈ R). (4.18)

We say that a function f : R → R is monotone if it is nondecreasing, i.e.,
x ≤ y implies f(x) ≤ f(y). If f : R → R is monotone and right-continuous
with limx→±∞ f(x) = ±∞, then we define its generalised inverse as

f−1(y) := sup
{
x ∈ R : f(x) ≤ y

}
(y ∈ R). (4.19)

Then f−1 is monotone and right-continuous with limy→±∞ f−1(y) = ±∞, and
its generalised inverse is the function f . See Figure 4.6 for an illustration.

H

y

x

f(x)
H

y

x

f−1(y)

Figure 4.6: The generalised inverse f−1(y) := sup
{
x ∈ R : f(x) ≤ y

}
of a

monotone right-continuous function f : R → R.

Proposition 4.26 (Arratia flow) Almost surely, for all s, t ∈ R with s ≤ t,
the functions Φs,t are monotone and right-continuous with limx→±∞ Φs,t(x) =
±∞, and Φs,s is the identity map for each s ∈ R. Moreover, for each deter-
ministic s, t, u ∈ R with s ≤ t ≤ u, one has

Φt,u ◦ Φs,t = Φs,u a.s. (4.20)

For each deterministic t0 ≤ · · · ≤ tn,

the maps Φt0,t1 , . . . ,Φtn−1,tn are independent. (4.21)

Finally, almost surely for all s, t ∈ R with s ≤ t, the random map Φ̂t,s is the
generalised inverse of Φs,t.
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Property (4.20), together with the fact that Φs,s is the identity map for
each s ∈ R, say that (Φs,t)s≤t is a stochastic flow, and property (4.21) says
that (Φs,t)s≤t has independent increments. One has to be careful with the
order of the “for all” and “almost sure” statements. We will see in the proof
of Proposition 4.26 that while property (4.20) holds almost surely at deter-
ministic times, it fails to hold simultaneously for all times, since there almost
surely exist random times s ≤ t ≤ u such that (4.20) does not hold. By
contrast, all other statements of the proposition hold almost surely simulta-
neously for all times (deterministic or random).

Proof of Proposition 4.26 Since paths in the Brownian web coalesce as
soon as they meet (Lemma 4.5), the maps Φs,t are clearly monotone for
all s ≤ t, and right-continuity follows immediately from Lemma 4.6. By
monotonicity, the limit limx→∞Φs,t(x) exist. If this limit were finite, then
that would imply the existence of paths in the Brownian net coming in
from infinity, which by Lemma 3.8 does not happen, so we conclude that
limx→∞Φs,t(x) = ∞ and similarly limx→−∞ Φs,t(x) = −∞. These same ar-

guments also show that the functions Φ̂t,s are monotone and right-continuous

with limx→±∞ Φ̂t,s(x) = ±∞.
It is clear from the definition that Φs,s is the identity map for each s ∈ R.

We next prove (4.20). Since Φs,s is the identity map for each s ∈ R, it
suffices to prove the statement for s < t < u. Thus, we need to show that
for deterministic times s < t < u, one almost surely has

π+

(π+
(x,s)

(t),t)
(u) = π+

(x,s)(u) (x ∈ R). (4.22)

Since t is deterministic, by Theorem 4.17, almost surely for all x ∈ R, the
point (π+

(x,s)(t), t) is of one of the types (0, 1), (0, 2), or (1, 1). Since the

path π+
(x,s) enters this point, we must have min(π

+
(x,s)(t), t) ≥ 1, which allows

us to conclude that the point (π+
(x,s)(t), t) must be of type (1, 1). It follows

that π+

(π+
(x,s)

(t),t)
must be the continuation of π+

(x,s) and (4.22) holds. Note,

however, that this argument essentially uses that t is deterministic. There
exist random times t such that for a suitable choice of s < t and x ∈ R, the
point (π+

(x,s)(t), t) is of type (1, 2)l. In such cases, the path π−
(π+

(x,s)
(t),t)

is the

continuation of π+
(x,s) and (4.22) fails.

The independent increment property (4.21) follows from the analogue
proerty of the Brownian web, stated in Lemma 4.18. To complete the proof,
we must show that for all s, t ∈ R with s ≤ t, the random map Φ̂t,s de-
fined in (4.18) is the generalised inverse of Φs,t. We first make some general
observations. Let F denote the space of all monotone and right-continuous
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functions with limx→±∞ f(x) = ±∞. We adopt the notation

f(x−) := lim
x′↑x

f(x) (x ∈ R, f ∈ F).

Then x 7→ f(x−) is the left-continuous modification of f . It is not hard to
check that

f(x) < y ⇔ x < f−1(y−) (x, y ∈ R, f ∈ F), (4.23)

where y 7→ f−1(y−) is the left-continuous modification of the generalised
inverse of f . Therefore, to show that Φ̂t,s is the generalised inverse of Φs,t, it
suffices to show that

Φs,t(x) < y ⇔ x < Φ̂t,s(y−) (s ≤ t, x, y ∈ R).

The left-continuous modification of Φ̂t,s is given by

Φ̂s,t(y−) = π̂−
(y,t)(s) (s ≤ t, y ∈ R),

so we need to show that

π+
(x,s)(t) < y ⇔ x < π̂−

(y,t)(t). (4.24)

By the symmetry of the problem, it suffices to prove only the implication
⇒. Since forward and dual paths do not cross, π+

(x,s)(t) < y clearly implies

x ≤ π−
(y,t)(t). To see that in fact we must have x < π̂−

(y,t)(t) imagine that,

conversely, x = π̂−
(y,t)(t). Then there must exist a π ∈ W(x, s) such that

π̂−
(y,t) ≤ π on [s, t]. Since forward and dual paths interact via Skorohod

reflection, π must lie strictly on the right of π̂−
(y,t) at most times in [s, t], so

π+
(x,s) is not the maximal element of W(x, s), contradicting our assumptions.

Remark Our proof actually shows that for each deterministic t ∈ R, almost
surely, (4.20) holds for all s, u ∈ R such that s ≤ t ≤ u.

The following lemma, which is of interest in its own right, prepares for
an alternative proof of the fact that Φ̂t,s is the generalised inverse of Φs,t.

Lemma 4.27 (Evolution of halflines) The maps Xs,u defined in (4.1)
almost surely satisfy

Xs,u

(
[−∞, x]

)
= [−∞, π+

(x,s)(u)] (s ≤ u, x ∈ R).



108 CHAPTER 4. PROPERTIES OF THE BROWNIAN WEB

Proof By definition, y ∈ Xs,u

(
[−∞, x]

)
if and only if there exists a π̂ ∈

Ŵ(y, u) such that π̂(s) ≤ x. We need to show that y ∈ Xs,u

(
[−∞, x]

)
if and

only if y ≤ π+
(x,s)(u). If y ≤ π+

(x,s)(u), then there exists a π̂ ∈ Ŵ(y, u) such

that π̂(t) ≤ π+
(x,s)(t) for all t ∈ [s, u]. In particular, π̂(s) ≤ x, so we conclude

that y ∈ Xs,u

(
[−∞, x]

)
. Conversely, if y ∈ Xs,u

(
[−∞, x]

)
, then there exists

a π̂ ∈ Ŵ(y, u) such that π̂(s) ≤ x. It follows that there exists a π ∈ W(x, s)
such that π̂(t) ≤ π(t) for all t ∈ [s, u]. This implies y = π̂(u) ≤ π(u) ≤
π+
(x,s)(u).

Using Lemma 4.27, we can alternatively prove (4.24) by writing

π+
(x,s)(t) < y ⇔ Xs,t

(
[−∞, x]

)
∩ [y,∞] = ∅

⇔ [−∞, x] ∩ Ŷt,s

(
[y,∞]

)
= ∅ ⇔ x < π̂−

(y,t)(t),

where we have used the definition of the map Ŷt,s in (4.1) and the duality of
Lemma 4.2.

We extend the maps Φs,t to R by setting Φs,t(±∞) := ±∞, and similarly

for Φ̂t,s. For any set A ⊂ R, we let Φs,t(A) := {Φs,t(x) : x ∈ A} denote
the image of A under Φs,t. We also let Φ−1

s,t (A) := {x ∈ R : Φs,t(x) ∈ A}
denote the inverse image of a set A ⊂ R under the map Φs,t. Note that in
view of Proposition 4.3, for s < t, the maps Φs,t are very much not one-
to-one. Therefore, there is a big difference between the inverse image of a
set under Φs,t, and the image of the same set under the generalised inverse

Φ̂t,s. The following lemmas link these images and inverse images to the maps

Xs,t,Ys,t, X̂t,s, Ŷt,s defined in (4.1). Below, for obvious notational reasons, we
let

clos(A) := A

denote the closure of a set A ⊂ R.

Lemma 4.28 (Images) For each deterministic t ∈ R and deterministic
closed set A ⊂ R, one has almost surely

Yt,u(A) = Φt,u(A) (t ≤ u) and Ŷt,s(A) = Φ̂t,s(A) (s ≤ t).

Lemma 4.29 (Inverse images) For each deterministic t ∈ R, one has
almost surely

Xs,t(A) = clos
(
Φ̂−1

t,s (A)
)

and X̂u,t(A) = clos
(
Φ−1

t,u(A)
)

for all s ≤ t and u ≥ t and for all closed sets A ⊂ R.
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Proof of Lemma 4.28 By the symmetry between the Brownian web and
the dual Brownian web, it suffices to prove only the statement for Ys,t. Filling
in the definitions, we see that

Ys,t(A)=
{
π(t) : π ∈ W(A× {s})

}
,

Φs,t(A)=
{
π+
(x,s)(t) : x ∈ A

}
.

This immediately implies that the inclusion Φs,t(A) ⊂ Ys,t(A) holds almost
surely for all s ≤ t and for all closed A ⊂ R. We will show that if s and A
are deterministic, then the opposite inclusion also holds almost surely. Since
s is deterministic, Theorem 4.17 tells us that almost surely mout(x, s) ≤ 2
for all x ∈ R, so

Ys,t(A) =
{
π±
(x,s)(t) : s ∈ A

}
a.s.

Thus, if the inclusion Φs,t(A) ⊂ Ys,t(A) is strict, then there exist x ∈ A and
y ∈ R such that π−

(x,s)(t) = y but π+
(x′,s)(t) ̸= y for all x′ ∈ A. By Lemmas 4.6

and 4.7, this implies that there exists an ε > 0 such that (x− ε, x) ∩A = ∅.
It is not hard to see that the set

∂−A :=
{
x ∈ A : ∃ε > 0 s.t. (x− ε, x) ∩ A = ∅

}
of “left boundary points” of A is countable. Since A is deterministic, Theo-
rem 4.17 tells us that each point (x, s) with x ∈ ∂−A is almost surely of type
(0, 1). This contradicts the fact that π−

(x,s)(t) = y but π+
(x′,s)(t) ̸= y, so we

conclude that the inclusion Φs,t(A) ⊂ Ys,t(A) is in fact an equality.

Proof of Lemma 4.29 By the symmetry between the Brownian web and
the dual Brownian web, it suffices to prove only the statement for Xs,t. Filling
in the definitions, we see that

Xs,t(A)=
{
y ∈ R : ∃π̂ ∈ Ŵ(y, t) s.t. π̂(s) ∈ A

}
,

Φ̂−1
t,s (A)=

{
y ∈ R : π̂+

(y,t)(s) ∈ A
}
.

It follows from Lemma 4.6 that

π̂−
(y,s) = lim

y′↑y
π+
(y′,s) and π̂+

(y,s) = lim
y′↓y

π+
(y′,s)

(
(y, s) ∈ R2

)
. (4.25)

Since y ∈ clos
(
Φ̂−1

t,s (A)
)
if and only if it is the limit of yn ∈ Φ̂−1

t,s (A), using
moreover Lemma 4.7, it follows that

clos
(
Φ̂−1

t,s (A)
)
=

{
y ∈ R : π̂+

(y,t)(s) ∈ A
}
∪
{
y ∈ R : π̂−

(y,t)(s) ∈ A
}
. (4.26)

It follows that clos
(
Φ̂−1

t,s (A)
)
⊂ Xs,t(A), and this inclusion is strict if and only

if there exists an y ∈ R such that π̂−
(y,t)(s) ̸∈ A, π̂+

(y,t)(s) ̸∈ A, but π̂(s) ∈ A
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for some π ∈ Ŵ(y, t). This is possible only if (y, t) is of type (2, 1) (see
Figure 4.5), but by Theorem 4.17 such points almost surely do not occur at
deterministic times t.

Exercise 4.30 Recall the definition of points of types (1, 2)l and (1, 2)r. For
each z ∈ R, define

π↑
z :=

{
π−
z if z is of type (1, 2)l,

π+
z otherwise.

Modify the definition of the Arratia flow in (4.17) by replacing π+
x,s by π↑

x,s.
Show that with this modified definition, Φs,t may fail to be right-continuous
for some s, t, but on the other hand the stochastic flow property (4.20) now
holds almost surely for all s ≤ t ≤ u simultaneously.



Chapter 5

The Brownian net

5.1 Adding branching and deaths

As in Chapter 3, we let Z2
even and Z2

odd denote the even and odd sublattices
of Z2. Generalising the set-up of Chapter 3, let ω = (ωz)z∈Z2

even
be an i.i.d.

collection of random variables that take values in the subsets of {−1,+1}.
We can use ω to define a random directed graph with vertex set Z2

even and
set of oriented edges

E⃗ :=
{(

(x, t), (x+ y, t+ 1)
)
: (x, t) ∈ Z2

even, y ∈ ω(x,t)

}
.

Generalising our earlier definition, we will call the random directed graph
(Z2

even, E⃗) an arrow configuration. In particular, when ωz takes the values
{−1} and {+1} with equal probabilities, this is an arrow configuration as
defined in Section 3.1. In the present chapter, we look at sequences ωn of
arrow configurations where ωn = (ωn

z )z∈Z2
even

, for each n ≥ 1, is a an i.i.d.
collection with common law

P
[
ωn
z = {−1}

]
= ln, P

[
ωn
z = {+1}

]
= rn,

P
[
ωn
z = {−1,+1}

]
= bn, P

[
ωn
z = ∅

]
= dn.

(5.1)

Here ln is the probability that at a given point z ∈ Z2
even, there starts (only)

an arrow to the left, rn is the probability of an arrow to the right, bn is the
branching probability, i.e., the probability that both arrows are present, and
dn is the death probability, i.e., the probability that no arrows are present.

Recall that σπ and τπ denote the starting time and final time of a path
π ∈ Π(R). Generalising our definition from Section 3.1, we say that π is a
open path in the arrow configuration ωn if π ∈ Π(R) has following properties:

(i)
(
π(t), t

)
∈ Z2

even (t ∈ Z, t ≥ σπ),

111
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(ii) π(t+ 1)− π(t) ∈ ω(π(t),t) (t ∈ Z, t ≥ σπ),

(iii) π(t+ s) = (1− s)π(t) + sπ(t+ 1) (0 ≤ s ≤ 1, t ∈ Z, t ≥ σπ).

We let Vn denote the set of all open paths in ωn. Note that even in the
special case when ln = rn = 1

2
and bn = dn = 0, this is not quite the same

object as the set U defined in Section 3.1, since we allow open paths to end
at some final time τπ < ∞. We let Vn denote the closure of Vn in Π(R). In
this chapter, we will sketch a proof of the following theorem. Recall that θε
denotes the diffusive scaling map defined in (3.2).

Theorem 5.1 (The Brownian net with killing) Let εn be positive con-
stants tending to zero and let α ∈ R and β, δ ∈ [0,∞). Let ωn be arrow
configurations with probabilities ln, rn, bn, dn satisfying

ε−1
n (rn − ln) −→

n→∞
α, ε−1

n bn −→
n→∞

β, and ε−2
n dn −→

n→∞
δ. (5.2)

Let Vn be the set of open paths in the arrow configuration ωn. Then

P
[
θεn(Vn) ∈ ·

]
=⇒
n→∞

P
[
N∗ ∈ ·

]
, (5.3)

where ⇒ denotes weak convergence of probability laws on the space K(Π(R))
of compact sets of paths, equipped with the Hausdorff topology, and N∗ is a
random compact subset of Π(R), whose law only depends on the parameters
α, β, δ.

Exercise 5.2 Show that the conditions (5.2) are equivalent to

ln =
1
2
− 1

2
(β + α)εn + o(εn),

rn =
1
2
− 1

2
(β − α)εn + o(εn),

bn = βεn + o(εn),

dn = δε2n + o(ε2n),

 as n→ ∞.

In Theorem 5.1, the Brownian net with killing is obtained as the limit
of branching-coalescing random walks in discrete time. A similar result is
expected to hold for the collections of open paths in the graphical represen-
tations of biased voter models, though the details have nowhere been written
down. This is similar to what we saw in Section 3.7.

For most of the chapter, we will be concerned with the case that dn = 0
for all n, and hence also δ = 0. This will allow us to work with the space Π↑

of upward paths as we are used to from Chapter 5. In Section 5.8, we will
briefly indicate how the arguments can be generalised to allow for a positive
death probability. For simplicity, in what follows, we will moreover focus on
the case that α = 0 and β = 1. In this case, the limiting object in (5.3) is
known as the standard Brownian net.
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Figure 5.1: An arrow configuration with branching and deaths.

5.2 Left and right paths

We consider a sequence ωn of arrow configurations as in the previous section
with

dn = 0, ε−1
n (rn − ln) −→

n→∞
0 and ε−1

n bn −→
n→∞

1. (5.4)

We define Vn as in the previous section and set Un := Vn ∩ Π↑. Since the
death probability is zero, Vn can simply be recovered from Un by adding
all shortened paths, that are cut off at an arbitrary time in Z. Thus, all
information is contained in the set Un and we can continue to work with the
space Π↑ that we are used to from the previous chapter.

We define collections of {−1,+1}-valued random variables

ωl,n =
(
ωl,n
z

)
z∈Z2

even
and ωr,n =

(
ωr,n
z

)
z∈Z2

even

by

ωl,n
z :=

{
−1 if − 1 ∈ ωn

z ,

+1 otherwise,
and ωr,n

z :=

{
+1 if + 1 ∈ ωn

z ,

−1 otherwise.

Then ωl,n and ωr,n correspond to arrow configurations of the type we used
in Chapter 3 to approximate the Brownian web. They are constructed from
ωn by making a choice at each branching point z, in such a way that at each
such point, ωl,n

z only contains the left arrow and ωr,n
z only contains the right

arrow. We let U l
n and U r

n denote the sets of all paths in Π↑ that are open in
the arrow configurations ωl,n and ωr,n, respectively. We call U l

n and U r
n the

collections of left and right open paths.
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Figure 5.2: A left and a right open path in an arrow configuration with
branching.

We also define dual arrow configurations

ω̂l,n =
(
ω̂l,n
z

)
z∈Z2

odd

and ω̂r,n =
(
ω̂r,n
z

)
z∈Z2

odd

in terms of ωl,n and ωr,n as in (3.17). Then ω̂l,n is equally distributed with ωl,n

after a rotation over 180 degrees (but not after mirroring in the horizontal
axis!) and a shift to the odd sublattice, and the same is true for ω̂r,n and
ωr,n. We define ω̂n =

(
ω̂n
z

)
z∈Z2

odd

by

ω̂n
z := {ω̂l,n

z , ω̂r,n
z }.

Finally, we let

U∗
n, U l∗

n , and U r∗
n

denote all paths in Π↓ that are open in the arrow configurations ω̂n, ω̂l,n,
and ω̂r,n, respectively. Figure 5.2 shows a left and right path in an arrow
configuration with branching, and Figure 5.3 shows the corresponding left
and right arrow configurations and their duals.

We define a Brownian web with drift α in the same way as the standard
Brownian web, except that the coalescing Brownian motions now have drift
α. If W is a standard Brownian web, then we can construct a Brownian web
with drift α by settingW ′ := {π′ : π ∈ W} with π′ := {(x+αt, t) : (x, t) ∈ π}.

Theorem 5.3 (Scaling limit of left and right paths) Let εn be positive
constants, tending to zero, let U l

n,U r
n be the collections of left and right paths
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Figure 5.3: A left arrow configuration (blue) and a right arrow configuration
(red), together with their dual arrow configurations.

in arrow configurations ωn satisfying (5.4), and U l∗
n ,U r∗

n be the associated
dual left and right paths. Then

P
[
θεn(U

l

n,U
l∗
n ) ∈ ·

]
=⇒
n→∞

P
[
(W l, Ŵ l) ∈ ·

]
,

P
[
θεn(U

r

n,U
r∗
n ) ∈ ·

]
=⇒
n→∞

P
[
(Wr, Ŵr) ∈ ·

]
,

where ⇒ denotes weak convergence of probability laws on the space K(Π↑)×
K(Π↓), and (W l, Ŵ l) and (Wr, Ŵr) are double Brownian webs with drift −1
and +1, respectively.

Proof The proof of Theorem 3.18 carries over with only a very minor change:
when we prove convergence of finite dimensional distributions as in Proposi-
tion 3.3, the limit is a system of coalescing Brownian motions with drift −1
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or +1, respectively. Indeed, letting Ln
z and Rn

z denote the unique left and
right paths in Un starting from a point z ∈ Z2

even, we observe that

E
[
Ln
z (t+ 1)− Ln

z (t)
]
= rn − ln − bn ∼ −εn,

E
[
Rn

z (t+ 1)− Ln
z (t)

]
= rn − ln + bn ∼ +εn

as n → ∞, which is easily seen to imply that Ln
z and Rn

z converge after
diffusive rescaling to Brownian motions with drift −1 and +1, respectively.

Theorem 5.3 does not tell us anything about the limit of the joint law of

U l

n and U r

n. It turns out that in the limit, the interacting between left and
right paths is a form of sticky reflection. In view of this, in the next section,
we will study sticky reflection. This will then be used to prove a result about

the scaling limit of the joint law of U l

n and U r

n, which in the end will be used
to prove Theorem 5.1, first under the more restrictive assumptions (5.4), and
then generally.

5.3 Sticky reflection

In this section, we study sticky reflection. This is similar to Skorohod reflec-
tion (Lemma 4.9), but a bit more complicated. Recall the definition of the
function spaces C, C0, C+

0 , and Cpos in Section 4.2. We also define C1
0 ⊂ C+

0 by

C1
0 :=

{
f ∈ C0 : 0 ≤ f(t)− f(s) ≤ t− s ∀0 ≤ s ≤ t

}
.

Let g(0) ∈ [0,∞), f ∈ C0, and h ∈ C+
0 be given. By definition, a solution to

the sticky reflection equation1

dg(t) = df(Tt) + dh(St) (t ≥ 0) (5.5)

is a triple (g, S, T ) of functions g ∈ Cpos and S, T ∈ C1
0 such that

(i) g(t) = g(0) + f(Tt) + h(St) (t ≥ 0),

(ii)

∫ ∞

0

1{g(t)>0}dh(St) = 0,

(iii) St + Tt = t (t ≥ 0).

1This is my terminology. I do not know if this precise definition has been invented
before, although there is an extensive literature on diffusion processes with sticky reflection.
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If we replace the condition g ∈ Cpos by the weaker condition g ∈ C, then we
say that (g, S, T ) is a signed solution to the sticky reflection equation (5.5).
Our first result says that sticky reflection equations have solutions, and that
under mild conditions, such solutions are unique. Note that if h is strictly
increasing, then the set H defined below is empty and hence the condition
H ∩M = ∅ is trivially fulfilled.

t

gt

t

St

Tt

Figure 5.4: Sticky reflected Brownian motion: the solution (g, S, T ) to the
sticky reflection equation (5.5) in the case that f is a Brownian path and
h(t) := t (t ≥ 0) is the identity function.

Proposition 5.4 (Sticky reflection) For each g(0) ∈ [0,∞), f ∈ C0, and
h ∈ C+

0 , there exists a solution (g, S, T ) to the sticky reflection equation (5.5).
Let f̃(t) := g(0) + f(t) (t ≥ 0) and set

H :=
{
r ≥ 0 : ∃s < t s.t. h(s) = r = h(t)

}
,

M :=
{
r ≥ 0 : ∃s < t s.t. ms(f̃) = −r = mt(f̃)

}
,
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where mt(f̃) is defined in (4.6). Then solutions to the sticky reflection equa-
tion (5.5) are unique if and only if H ∩M = ∅.

Proof (sketch) Let f̃(t) := g(0)+f(t) (t ≥ 0). We claim that (g, S, T ) with
g ∈ Cpos and S, T ∈ C1

0 solves the sticky reflection equation (5.5) if and only
if

(i)’ g(t) = f̃(Tt)−mTt(f̃) (t ≥ 0),

(ii)’ h(St) = −mTt(f̃) (t ≥ 0),

(iii) St + Tt = t (t ≥ 0),

To prove this, assume that (g, S, T ) solves the sticky reflection equation (5.5).
Set F (t) := f(Tt) and ψ(t) := h(St) (t ≥ 0). Conditions (i) and (ii) of the
definition of a solution to the sticky reflection equation then say that (g, ψ)
solves the Skorohod reflection equation

dg(t) = dF (t) + dψ(t) (t ≥ 0). (5.6)

Applying Lemma 4.9 to (5.6), we see that any solution (g, S, T ) to the sticky
reflection equation (5.5) satisfies (i)’. Combining (i) and (i)’, we see that
moreover (ii)’ holds. Assume, conversely, that (g, S, T ) with g ∈ Cpos and
S, T ∈ C1

0 satisfy conditions (i)’, (ii)’, and (iii). Set F (t) := f(Tt) and
ψ(t) := h(St) (t ≥ 0). Then (ii)’ implies ψ(t) = −mTt(f̃) (t ≥ 0) and
therefore (i)’ and Lemma 4.9 imply that (g, ψ) solves the Skorohod reflection
equation (5.6), which implies that (g, S, T ) satisfies conditions (i) and (ii) of
the definition of a solution to the sticky reflection equation.

We see immediately from (i)’, (ii)’, and (iii) that if S ∈ C1
0 satisfies

h(St) +mt−St(f̃) = 0 (t ≥ 0), (5.7)

then setting

Tt := t− St and g(t) := f̃(Tt)−mTt(f̃) (t ≥ 0)

yields a solution (g, S, T ) to the sticky reflection equation (5.5), and each
solution is of this form. This motivates us to define

S−
t := inf

{
s ∈ [0, t] : h(s) +mt−s(f̃) = 0

}
,

S+
t := sup

{
s ∈ [0, t] : h(s) +mt−s(f̃) = 0

}
.

We claim that

(a) S−, S+ ∈ C1
0 .
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(b) A function S ∈ C1
0 satisfies (5.7) if and only if S−

t ≤ S ≤ S+
t (t ≥ 0).

From this, it is not hard to see that solutions to the sticky reflection equation
(5.5) always exist (since we can take S = S− or = S+), and that they are
unique if and only if S−

t = S+
t for all t ≥ 0, which is easily seen to be

equivalent to the condition H ∩M = ∅.

Exercise 5.5 Prove the claims (a) and (b) in the proof of Proposition 5.4.

Our next result says that under suitable conditions, the solution (g, S, T )
of a sticky reflection equation of the form (5.5) depends continuously on the
initial state g(0) and the driving processes f and h. In what follows, we will
see that in applications of this proposition, it will be important that we allow
the approximating solutions to be only signed solutions, i.e., the gn may take
negative values.

Proposition 5.6 (Continuous parameter dependence) Assume that
fn, f ∈ C0 and hn, h ∈ C+

0 satisfy fn → f and hn → h locally uniformly. For
each n, let (gn, S

n, T n) be a signed solution to the sticky reflection equation

dgn(t) = dfn(T
n
t ) + dhn(S

n
t ) (t ≥ 0).

Assume that

gn(0) −→
n→∞

g(0) and lim inf
n→∞

gn(t) ≥ 0 (t ≥ 0).

Assume moreover that the sticky reflection equation

dg(t) = df(Tt) + dh(St) (t ≥ 0)

has a unique solution (g, S, T ) with initial state g(0). Then one has

gn → g, Sn → S, and T n → T

locally uniformly.

The proof of Proposition 5.6 depends on two lemmas. We first state the
lemmas, then show how they imply Proposition 5.6, and finally prove the
lemmas.

Lemma 5.7 (Precompactness of solutions) Let A ⊂ [0,∞) × C0 × C+
0 .

Define B ⊂ C × C1
0 × C1

0 to be the set of all triples (g, S, T ) that are a signed
solution of a sticky reflection equation of the form

dg(t) = df(Tt) + dh(St) (t ≥ 0)

with (g(0), f, h) ∈ A. If A is a precompact subset of [0,∞) × C2 (equipped
with the product topology), then B is a precompact subset of C3.
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Lemma 5.8 (Limits of solutions) Assume that fn, f ∈ C0 and hn, h ∈ C+
0

satisfy fn → f and hn → h locally uniformly. For each n, let (gn, S
n, T n) be

a signed solution to the sticky reflection equation

dgn(t) = dfn(T
n
t ) + dhn(S

n
t ) (t ≥ 0),

and assume that gn → g, Sn → S, and T n → T locally uniformly for some
g, S, T ∈ C. Then (g, S, T ) is a signed solution to the sticky reflection equation

dg(t) = df(Tt) + dh(St) (t ≥ 0).

Proof of Proposition 5.6 By Lemma 2.2, our assumptions imply that the
set {

(gn(0), fn, hn) : n ∈ N
}

is a precompact subset of [0,∞)× C2. By Lemma 5.7, this implies that the
set {

(gn, S
n, T n) : n ∈ N

}
is a precompact subset of C3. Lemma 5.8 implies that each subsequential
limit of the sequence (gn, S

n, T n)n∈N is a signed solution to the limiting sticky
reflection equation

dg(t) = df(Tt) + dh(St) (t ≥ 0).

Our condition lim infn→∞ gn(t) ≥ 0 (t ≥ 0) implies that g ∈ Cpos, so our
signed solution is in fact a true, nonnegative solution. By assumption, the
limiting sticky reflection equation has a unique solution (g, S, T ). Therefore,
we can apply Lemma 2.2 to conclude that (gn, S

n, T n) → (g, S, T ).

Recall from (2.16) that for each T < ∞, the modulus of continuity of a
function f ∈ C[0,∞)(R) is given by

mK,δ(f) = sup
{∣∣f(s)− f(t)

∣∣ : 0 ≤ s ≤ t ≤ K, t− s ≤ δ
}
,

and that a set D ⊂ C[0,∞)(R) is equicontinuous if

lim
δ→0

sup
f∈D

mK,δ(f) = 0 (K <∞).

By the Arzela-Ascoli theorem (see Theorem 2.30 and Lemma 2.27), a subset
D ⊂ C[0,∞)(R) is precompact if and only if

(a) D is equicontinuous,

(b) For each K < ∞, there exists a C < ∞ such that |f(t)| ≤ C for all
t ∈ [0, K].
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Proof of Lemma 5.7 It suffices to show that each of the sets

{S : (g, S, T ) ∈ B}, {T : (g, S, T ) ∈ B}, and {g : (g, S, T ) ∈ B}

is equicontinuous and satisfies the compact containment condition (b) above.
For each (g, S, T ) ∈ B, since S, T ∈ C1

0 it is clear that {S : (g, S, T ) ∈
B} and {T : (g, S, T ) ∈ B} are equicontinuous and satisfy the compact
containment condition (b).

Using the fact that S, T ∈ C1
0 , we see that if 0 ≤ s ≤ t ≤ K satisfy

t − s ≤ δ, then 0 ≤ Ss ≤ St ≤ K and St − Ss ≤ δ, and likewise with S
replaced by T . By the definition of a signed solution, each (g, S, T ) ∈ B
solves an equation of the form

g(t) = g(0) + f(Tt) + h(St) (t ≥ 0), (5.8)

for some (g(0), f, h) ∈ A. Using (5.8) and our previous observations about
S and T , we see that

mK,δ(g) ≤ mK,δ(f) +mK,δ(h) (K <∞, δ > 0). (5.9)

In view of this, the equicontinuity of {g : (g, S, T ) ∈ B} follows from the
equicontinuity of {f : (x, f, g) ∈ A} and {h : (x, f, g) ∈ A}, which is a result
of the Arzela-Ascoli theorem and our assumption that A is precompact.
Using (5.8) once more, we can estimate∣∣g(t)∣∣ ≤ ∣∣g(0)∣∣+ sup

s∈[0,t]

∣∣f(s)∣∣+ ∣∣h(t)∣∣ (t ≥ 0).

The precompactness of A implies that {x : (x, f, h) ∈ A} is bounded. By the
Arzela-Ascoli theorem, the precompactness of A also implies that the sets
{f : (x, f, h) ∈ A} and {h : (x, f, h) ∈ A} satisfy the compact containment
condition (b) above. Using this and our estimate, we see that {g : (g, S, T ) ∈
B} satisfies the compact containment condition (b).

Proof of Lemma 5.8 Since Sn, T n ∈ C1
0 for each n, taking the limit, we see

that S, T ∈ C1
0 . Since

gn(t) = gn(0) + fn(T
n(t)) + hn(S

n(t)) (t ≥ 0)

for all n, taking the limit, we see that (g, S, T ) satisfies condition (i) of the
definition of a signed solution to the sticky reflection equation. Similarly,
since Sn(t)+T n(t) = t (t ≥ 0) for all n, taking the limit, we see that condi-
tion (iii) is satisfied. It remains to prove that (g, S, T ) satisfies condition (ii).
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For each ε > 0, we can find a continuous function ρε : [0,∞) → [0, 1] such
that ρε(0) = 0 and ρε(x) = 1 for all t ≥ ε. Then∫ t

0

ρε(gn(s))dhn(S
n
s ) ≤

∫ ∞

0

1{gn(s)>0}dhn(S
n
s ) = 0

for all t ∈ [0,∞), ε > 0, and n. Using Lemma 5.9 below, it follows that∫ t

0

1{g(s)≥ε}dh(Ss) ≤
∫ t

0

ρε(g(s))dh(Ss) = lim
n→∞

∫ t

0

ρε(gn(s))dhn(S
n
s ) = 0

for all t ∈ [0,∞) and ε > 0. Letting first ε ↓ 0 and then t ↑ ∞, using
dominated convergence and monotone convergence, we see that g and S
satisfy condition (ii) of the definition of a solution to the sticky reflection
equation.

Lemma 5.9 (Convergence of integrals) Let t > 0, let Fn, Gn, F,G ∈
C[0,t](R) satisfy Fn → F and Gn → G uniformly, and assume that Fn, F are
nondecreasing. Then∫ t

0

Gn(s) dFn(s) −→
n→∞

∫ t

0

G(s) dF (s).

Proof Let µn = dFn and µ = dF , i.e., µ is the unique finite measure on [0, t]
such that µ([0, s]) = F (s) (s ∈ [0, t]), and similarly Fn is the “distribution
function” of µn. It is well-known that a sequence of finite measures µn on
[0, t] converge to a limit µ if and only if their distribution functions satisfy
Fn(t) → F (t) for each continuity point t of F . In particular, our condition
that Fn → F uniformly implies that µn ⇒ µ. It follows that∫ t

0

G(s) dFn(s) −→
n→∞

∫ t

0

G(s) dF (s).

Since ∫ t

0

G(s) dFn(s)− ∥G−Gn∥∞Fn(t) ≤
∫ t

0

Gn(s) dFn(s),∫ t

0

Gn(s) dFn(s) ≤
∫ t

0

G(s) dFn(s) + ∥G−Gn∥∞Fn(t),

we see that ∫ t

0

G(s) dF (s) ≤ lim inf
n→∞

∫ t

0

G(s) dFn(s),

lim sup
n→∞

∫ t

0

G(s) dFn(s) ≤
∫ t

0

G(s) dF (s).
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5.4 Sticky reflected random walk

In the next section, we will show that pairs of random walks, consisting of one
left path and one right path in arrow configurations satisfying (5.4), converge
in the diffusive scaling limit to pairs of drifted Brownian motions with a form
of sticky reflection. In the present section, we give a simpler application of
Propositions 5.4 and 5.6. This will not be needed in what follows, but serves
as a useful illustration of the main ideas and a warm-up for the next section.

Fix positive constants εn, tending to zero, and for each n, let (Xn
k )k≥0 be

a Markov chain on {−1, 0, 1, 2, . . .} with transition kernel Pn given by

Pn(−1, 0) := εn, Pn(−1,−1) := 1− εn,

Pn(k, k − 1) = P (k, k + 1) = 1
2

(k ≥ 0).

We extend Xn to all real times t ≥ 0 by linear interpolation and define a
diffusively rescaled process X(n) by

X(n)(ε2nt) := εnX
n(t) (t ≥ 0).

We will prove the following theorem. Note that (5.10) is a special case of
(5.5) where the function h from (5.5) is the identity function h(t) = t (t ≥ 0).

Theorem 5.10 (Scaling limit of sticky reflected random walk) As-

sume that X
(n)
0 ≥ 0 is deterministic and X

(n)
0 → x0 as n → ∞. Let

(Xt, St, Tt)t≥0 be the a.s. unique solution with initial condition X0 = x0 of
the sticky reflection equation

dXt = dBTt + dSt (t ≥ 0), (5.10)

where (Bt)t≥0 is a standard Brownian motion. Then one has

P
[(
X(n)(t)

)
t≥0

∈ ·
]
=⇒
n→∞

P
[(
Xt

)
t≥0

∈ ·
]
,

where ⇒ denotes weak convergence of probability measures on C[0,∞)(R),
equipped with the topology of locally uniform convergence.

Our proof strategy will be to relate Xn to a solution of a sticky reflection
equation driven by processes F and Hn that have as diffusive scaling limits
Brownian motion and the identity function h(t) = t (t ≥ 0). Theorem 5.10
will then follow as an application of Propositions 5.4 and 5.6.

Let (ωi)i≥1 be i.i.d. uniformly distributed on {−1,+1} and let (Fk)k≥0 be
the random walk defined by

Fk :=
k∑

i=1

ωi (k ∈ N).
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Fix positive constants εn, tending to zero, and for each n, let (Hn
k )k≥0 be a

Markov chain with initial state Hn
0 := 0 and transition kernel Qn given by

Qn(k, k + 1) := εn and Qn(k, k) := 1− εn (k ∈ N).

We inductively define a process (Xn
k , S

n
k , T

n
k )k≥0 with Sn

0 = 0 = T n
0 by

Xn
k+1 := Xn

k +
(
F (T n

k+1)− F (T n
k )
)
+
(
Hn(Sn

k+1)−Hn(Sn
k )
)

Sn
k+1 := Sn

k + 1{Xn
k =−1} and T n

k+1 := T n
k + 1{Xn

k ≥0}

(k ≥ 0). These definitions are illustrated in Figure 5.5. It is not hard to see
that (Xn

k )k≥0 is the Markov chain with transition kernel Pn defined above.

t

F (t)

• • • • •

t

Hn(t)

• • • •
•

t

Xn(t)

• • • • •• • • • •• • • • •

Figure 5.5: A sticky reflected random walk Xn constructed from a random
walk F and a reflection process Hn.

We interpolate the processes F,Hn and Xn, Sn, T n linearly between inte-
ger times. Then it is easy to see that

(i) Xn(t) = Xn(0) + F (T n
t ) +Hn(Sn

t ) (t ≥ 0),

(ii)

∫ ∞

0

1{Xn(t)>0}dH
n(Sn

t ) = 0,

(iii) Sn
t + T n

t = t (t ≥ 0),

i.e., (Xn, Sn, T n) is a signed solution to the sticky reflection equation

dXn(t) = dF (T n
t ) + dHn(Sn

t ) (t ≥ 0).
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We define rescaled processes X(n), S(n), T (n), F (n), and H(n) by

X(n)(ε2nt) := εnX
n(t), F (n)(ε2nt) := εnF

n(t), H(n)(ε2nt) := εnH
n(t),

S
(n)

ε2nt
:= ε2nS

n
t , T

(n)

ε2nt
:= ε2nT

n
t .

(t ≥ 0). Note that we rescale the processes diffusively: time is rescaled by
ε2n and space is rescaled by εn. Here X

(n), F (n), and H(n) are functions from
time to space, but S(n), T (n) are functions that map times into times (hence
the at first sight different scaling). It is straightforward to check that the
rescaled processes (X(n), S(n), T (n)) is a signed solution to the sticky reflection
equation

dX(n)(t) = dF (n)(T
(n)
t ) + dH(n)(S

(n)
t ) (t ≥ 0).

Proof of Theorem 5.10 It follows from Donsker’s invariance principle that

P
[(
F (n)(t)

)
t≥0

∈ ·
]
=⇒
n→∞

P
[(
Bt

)
t≥0

∈ ·
]
,

where ⇒ denotes weak convergence of probability measures on C[0,∞)(R),
equipped with the topology of locally uniform convergence, and (Bt)t≥0 is a
standard Brownian motion. Using the weak law of large numbers, it is not
hard to show that moreover

P
[

sup
t∈[0,K]

∣∣H(n)(t)− t
∣∣ ≥ δ

]
−→
n→∞

0
(
K <∞, δ > 0).

In other words, the process (H(n)(t))t≥0 converges to the identity function
in probability with respect to the topology of locally uniform convergence.
Equivalently, this says that the law of (H(n)(t))t≥0 converges weakly to the
delta-measure on the identity function It := t (t ≥ 0).

By Skorohod’s representation theorem, we can couple our random vari-
ables such that(

F (n)(t)
)
t≥0

−→
n→∞

(
Bt

)
t≥0

and
(
H(n)(t)

)
t≥0

−→
n→∞

(
It
)
t≥0

a.s.

Using moreover that X
(n)
0 → x0, we can apply Proposition 5.6 to conclude

that almost surely

X(n) → B, S(n) → S, and T (n) → T

locally uniformly, where (X,S, T ) is the unique solution of (5.10). Since
almost sure convergence implies convergence in law, the claim of the theorem
follows.
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5.5 The interaction of left and right paths

In this section, we return to the left and right paths introduced in Section 5.2.
Our aim is to describe the joint law of one left and one right path. We fix a
sequence εn of positive constants, tending to zero, and let ωn be a sequence of
arrow configurations satisfying (5.4). We let U l

n and U r
n denote the collections

of left and right open paths in ωn, and for each z ∈ Z2
even, we let Ln

z and Rn
z

denote the unique elements of U l
n(z) and U r

n(z), respectively. We fix two
sequences of even integers xln and xrn with xln ≤ xrn for each n such that

εnx
l
n −→

n→∞
xl and εnx

r
n −→

n→∞
xr (5.11)

for some xl, xr ∈ R. We write

Ln(t) :=Ln
(xl,0)(t), Rn(t) :=Rn

(xr,0)(t),

L(n)(ε2nt) := εnL
n(t), R(n)(ε2nt) := εnR

n(t).

}
(t ≥ 0). (5.12)

Our aim is to determine the limit as n→ ∞ of the joint law of the diffusively
rescaled left and right paths L(n) and R(n).

To this aim, we define processes (Sn
k )k≥0 and (T n

k )k≥0 by

Sn
k :=

k−1∑
i=0

1{Ln
i =Rn

i } and T n
k :=

k−1∑
i=0

1{Ln
i <Rn

i } (k ≥ 0),

and we inductively define processes (V n
k , Ṽ

n
k , W̃

n
k ,W

n
k )k≥0 with initial states

V n
0 = Ṽ n

0 = W̃ n
0 = W n

0 = 0 by

V n(T n
k+1) :=V n(T n

k ) + 1{Ln
k<Rn

k}
(
Ln
k+1 − Ln

k

)
,

Ṽ n(Sn
k+1) := Ṽ n(Sn

k ) + 1{Ln
k=Rn

k}
(
Ln
k+1 − Ln

k

)
,

W̃ n(Sn
k+1) := W̃ n(Sn

k ) + 1{Ln
k=Rn

k}
(
Rn

k+1 −Rn
k

)
,

W n(T n
k+1) :=W n(T n

k ) + 1{Ln
k<Rn

k}
(
Rn

k+1 −Rn
k

)
,

 (k ≥ 0).

These definitions are illustrated in Figure 5.6. Note that our definitions are
consistent in the sense that in the first line we get V n(T n

k+1) := V n(T n
k ) if

T n
k+1 = T n

k , and likewise in the other three lines. We observe that

(V n
k )k≥0, (Ṽ n

k , W̃
n
k )k≥0, and (W n

k )k≥0 are independent.

Recall from (5.1) that ln, rn, bn are the probabilities that at a point z ∈ Z2
even

there starts only left arrow, only a right arrow, or both types of arrows,
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••

•

• •

•
•

•

•

•

•

•

•

•

•

W n

V n

W̃ nṼ n

Figure 5.6: Decomposition of a left path and a right path (middle picture)
into four random walks V (n), Ṽ (n), W̃ (n) and W (n). Here V (n) and Ṽ (n) have
a drift to the left while W̃ (n) and W (n) have a drift to the right. The random
walks Ṽ (n) and W̃ (n) are highly correlated, but V (n) andW (n) are independent
of each other and of the pair (Ṽ (n), W̃ (n)).

respectively. We observe that (V n
k )k≥0 and (Ṽ n

k )k≥0 are random walks with
transition kernel

P l
n(x, x− 1) = ln + bn and P l

n(x, x+ 1) = rn,

while (W̃ n
k )k≥0 and (W n

k )k≥0 are random walks with transition kernel

P r
n(x, x− 1) = ln and P l

n(x, x+ 1) = rn + bn.

We interpolate the processes V n, Ṽ n, W̃ n,W n and Ln, Rn, Sn, T n linearly be-
tween integer times. Then it is easy to see that

(i) Ln(t) = Ln(0) + V n(T n
t ) + Ṽ n(Sn

t ) (t ≥ 0),

(ii) Rn(t) = Rn(0) +W n(T n
t ) + W̃ n(Sn

t ) (t ≥ 0),
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(iii)

∫ ∞

0

1{Ln(t)+1<Rn(t)}dS
n
t = 0,

(iv) Sn
t + T n

t = t (t ≥ 0).

We define rescaled processes V n,W n and Sn, T n by

V (n)(ε2nt) := εnV
n(t), W (n)(ε2nt) := εnW

n(t),

S
(n)

ε2nt
:= ε2nS

n
t , T

(n)

ε2nt
:= ε2nT

n
t .

(t ≥ 0), and we similarly define Ṽ (n), W̃ (n) in terms of Ṽ n, W̃ n. The rescaled
processes satisfy conditions similar to (i)–(iv) above, except that in (iii) the
indicator of the set {t ≥ 0 : Ln(t) + 1 < Rn(t)} should of course be replaced
by the indicator of {t ≥ 0 : L(n)(t)+εn < R(n)(t)}. The following proposition
follows easily from (5.4) and Donsker’s invariance principle, so we omit the
proof.

Proposition 5.11 (Convergence of the driving noise) Let Bl, Bs, and
Br be three independent Brownian motions. Then one has

P
[(
V (n)(t), Ṽ (n)(t), W̃ (n)(t),W (n)(t)

)
t≥0

·
]

=⇒
n→∞

P
[(
Bl

t − t, Bs
t − t, Bs

t + t, Br
t + t

)
t≥0

]
,

where ⇒ denotes weak convergence of probability measures on C[0,∞)(R4),
equipped with the topology of locally uniform convergence.

Our calculations and observations so far motivate the following definition.
Let l(0), r(0) ∈ R with l(0) ≤ r(0) be given, together with v, ṽ, w̃, w ∈ C0
which satisfy w̃− ṽ ∈ C+

0 . By definition, a solution to the left-right equation

dl(t)=dv(Tt) + dṽ(St),

dr(t)=dw(Tt) + dw̃(St),

}
(t ≥ 0) (5.13)

is a quadruple (l, r, S, T ) where l, r ∈ C and S, T ∈ C1
0 satisfy l ≤ r and

(i) l(t) = l(0) + v(Tt) + ṽ(St) (t ≥ 0),

(ii) r(t) = r(0) + w(Tt) + w̃(St) (t ≥ 0),

(iii)

∫ ∞

0

1{l(t)<r(t)}dh(St) = 0 with h := w̃ − ṽ,

(iv) St + Tt = t (t ≥ 0).
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In analogy with our earlier terminology for sticky reflection equations, if we
drop the condition that l ≤ r, then we say that (l, r, S, T ) is a signed solution
to the left-right equation (5.13).

Proposition 5.12 (Left-right equation) Assume that l(0), r(0) ∈ R and
v, ṽ, w̃, w ∈ C0 satisfy l(0) ≤ r(0) and w̃ − ṽ ∈ C+

0 . Then the left-right
equation (5.13) has a solution (l, r, S, T ). If w̃− ṽ is strictly increasing, then
this solution is unique.

Proof Let
f := w − v and h := w̃ − ṽ.

We observe that if (g, S, T ) solves the sticky reflection equation

dg(t) = df(Tt) + dh(St) (t ≥ 0) (5.14)

with initial state g(0) = r(0)− l(0), then setting

l(t) := l(0) + v(Tt) + ṽ(St),

r(t) := r(0) + w(Tt) + w̃(St)

}
(t ≥ 0)

yields a solution to the left-right equation (5.13). In view of this, existence
of solutions to the sticky reflection equation follows from Proposition 5.4.

We observe that if (l, r, S, T ) solves the left-right equation (5.13), then
setting g := r − l yields a solution to the sticky reflection equation (5.14).
Proposition 5.4 tells us that solutions to the latter are unique if w̃−ṽ is strictly
increasing. In particular, in this case, S and T are uniquely determined, and
hence, by conditions (i) and (ii) of the definition of a solution to left-right
equation, so are l and r.

In view of Proposition 5.11, we are interested in solutions (L,R, S, T ) to
the left-right equation (5.13)

dL(t)=dV (Tt) + dṼ (St),

dR(t)=dW (Tt) + dW̃ (St),

}
(t ≥ 0), (5.15)

where
V (t) := Bl

t − t, Ṽ (t) := Bs
t − t,

W (t) := Br
t + t, W̃ (t) := Bs

t + t,

}
(t ≥ 0),

and Bl, Bs, Br are three independent Brownian motions. Using the fact that
St + Tt = t, we can write

d(Bl
Tt
− Tt) + d(Bs

St
− St) = dBl

Tt
− dTt + dBs

St
− dSt,= dBl

Tt
+ dBs

St
− dt,

which motivates us to rewrite (5.15) in the simpler form (5.16) below. Below
is the main result of this section.
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Theorem 5.13 (Scaling limit of a left and right path) Let ωn be a
sequence of arrow configurations satisfying (5.4). Assume (5.11) and let
(L(n)(t))t≥0 and (R(n)(t))t≥0 be defined as in (5.12). Let Bl, Bs, Br be three
independent Brownian motions and let (L,R, S, T ) be the a.s. unique solution
to the left-right equation

dL(t)=dBl
Tt
+ dBs

St
− dt,

dR(t)=dBr
Tt
+ dBs

St
− dt,

}
(t ≥ 0). (5.16)

Then one has

P
[(
L(n)(t), R(n)(t)

)
t≥0

·
]
=⇒
n→∞

P
[(
L(t), R(t)

)
t≥0

]
,

where ⇒ denotes weak convergence of probability measures on C[0,∞)(R2),
equipped with the topology of locally uniform convergence.

Proof (sketch) The proof is almost identical to the proof of Theorem 5.10,
so we only sketch the main line of the argument. Lemmas 5.7 and 5.8, that
were formulated for signed solutions to sticky reflection equations, generalise
in a straightforward way to signed solutions to left-right equations, and hence
so does Proposition 5.6. If we slightly change our definition of Ln(t) in (5.12)
by putting Ln(t) := Ln

(xl,0)
(t)+1 instead of := Ln

(xl,0)
(t) (t ≥ 0), then for each

n we have that (L(n), R(n), S(n), S(n)) is a signed solution to the left-right
equation

dL(n)(t)=dV (n)(T
(n)
t ) + dṼ (n)(S

(n)
t ),

dR(n)(t)=dW (n)(T
(n)
t ) + dW̃ (n)(S

(n)
t ),

}
(t ≥ 0).

By Proposition 5.11 and Skorohod’s representation theorem, we can couple
our random variables such that almost surely(

V (n)(t)
)
t≥0

−→
n→∞

(
Bl

t − t
)
t≥0
,

(
Ṽ (n)(t)

)
t≥0

−→
n→∞

(
Bs

t − t
)
t≥0
,(

W (n)(t)
)
t≥0

−→
n→∞

(
Br

t + t
)
t≥0
,

(
W̃ (n)(t)

)
t≥0

−→
n→∞

(
Bs

t + t
)
t≥0
,

where → denotes locally uniform convergence. Using the analogon of Propo-
sition 5.6 for left-right equations, it follows that for this coupling almost
surely (

L(n)(t)
)
t≥0

−→
n→∞

(
L(t)

)
t≥0

and
(
R(n)(t)

)
t≥0

−→
n→∞

(
R(t)

)
t≥0
.
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Of course, for this last statement it does not matter whether we have defined
Lt(t) := Ln

(xl,0)
(t) + 1 or := Ln

(xl,0)
(t) (t ≥ 0). Since almost sure convergence

implies weak convergence in law, this completes the proof of the theorem.

Remark 1 Our proof of Theorem 5.13 is an adaptation of the proof of
[SS08, Prop. 5.2]. Our description of the joint law of a left and right path is
based on the left-right equation (5.13). Alternatively, it is shown in [SS08]
that subject to the condition that L(t) ≤ R(t) for all t ≥ 0, the following
stochastic differential equation (SDE) has a unique weak solution, that also
describes joint law of a left and right path:

dL(t)= 1{L(t)<R(t)}dB̃
l(t) + 1{L(t)=R(t)}dB̃

s(t)− dt,

dR(t)= 1{L(t)<R(t)}dB̃
r(t) + 1{L(t)=R(t)}dB̃

s(t) + dt.

Here B̃l, B̃r, B̃s are three independent Brownian motions. Yet another useful
characterisation of the joint law of a left and right path, which is formulated
in terms of the drift, quadratic variation, and cross-variation of L and R, can
be found in [SS19, Prop. 3.2].

Remark 2 Our understanding of sticky reflection is not as good as for Sko-
rohod reflection. Recall that in Section 4.3, we described the conditional law
of a forward path in the Brownian web given a path in the dual web in terms
of Skorohod reflection. Similarly, for two forward paths in the Brownian web,
which are just coalescing Brownian motions, we have a (very easy) descrip-
tion of the conditional law of one path given the other one, which allowed
us to give an easy inductive description of any finite number of coalescing
Brownian motions. By contrast, even though we have a good description of
their joint law, it does not seem easy to give a description of the conditional
law of a right forward path given a left forward path.

Exercise 5.14 (Positive Lebesgue time) Let (L,R, S, T ) be a solution of
the left-right equation (5.15) started in an initial state such that L(0) = R(0).
Prove that

P
[ ∫ ∞

0

1{L(t)=R(t)}dt > 0
]
> 0.

Exercise 5.15 (Right-left pair) Let ωn be a sequence of arrow configura-
tions satisfying (5.4), and let (ωl,n

z )z∈Z2
even

and (ωr,n
z )z∈Z2

even
be the collections

of {−1,+1}-valued random variables defined in Section 5.2. For each n,
define paths (xnk , y

n
k )k≥0 starting in xn0 = 0 = yn0 by the inductive formulas

xnk+1 :=

{
xnk + ωl,n

(xn
k ,k)

if xnk = ynk ,

xnk + ωr,n
(xn

k ,k)
if xnk < ynk ,
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and

ynk+1 :=

{
ynk + ωr,n

(ynk ,k)
if xnk = ynk ,

ynk + ωl,n
(ynk ,k)

if xnk < ynk .

Note that this says that when there is a choice, xn takes the left arrow if
xn and yn are at the same position, but the right arrow otherwise, and the
other way round for the path yn. As a consequence, (xnk)k≥0 on its own is
not a Markov chain and neither is (ynk )k≥0. Nevertheless, the joint process
(xnk , y

n
k )k≥0 is a Markov chain. Describe the diffusive scaling limit of this

Markov chain by means of a left-right equation.

5.6 The left-right Brownian web

Let εn be positive constants, tending to zero, let ωn be a sequence of arrow
configurations satisfying (5.4), and let U l

n and U r
n be the collections of left

and right paths in ωn, respectively. In Theorem 5.3, we have shown that the

diffusivelt rescaled collection of paths θεn(U
l

n) converges in law to a Brownian
web W l with drift −1, and likewise θεn(U

r

n) converges in law to a Brownian
web Wr with drift +1. In this section, we will show that also the joint law

of θεn(U
l

n,U
r

n) converges, and characterise the joint law of the limit object
(W l,Wr). We will call this limit object a left-right Brownian web, and we
will call W l and Wr the associated left Brownian web and right Brownian
web, respectively.

Recall that Π = Π(R) denotes the space of all paths, which may have
finite starting and final times, and Π↑ is the subspace of upward paths, which
have infinite final times. Let A ⊂ Π↑ be a collection of upward paths, let
A ⊂ R(R) be a closed set, and let int(A) denote its interior. Then we define
the restriction of A to A as

A
∣∣
A
:=

{
π ∈ Π : π ⊂ int(A), ∃π′ ∈ A s.t. π ⊂ π′

}
,

where the overbar means that we take the closure in the topology on Π. It
is easy to see that if A is compact, then so is A

∣∣
A
. In particular, if W is a

Brownian web, then W
∣∣
A
is a random variable taking values in the Polish

space K(Π). Below is a conjecture that is so far unproven.

Conjecture 5.16 (Left-right Brownian web) There exists a random
variable (W l,Wr) with values in K(Π↑)×K(Π↑), whose law is uniquely char-
acterised by the following properties.

(i) W l is distributed as a Brownian web with drift −1 and Wr is distributed
as a Brownian web with drift +1.
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(ii) For each z ∈ R2, the joint law of a.s. unique paths πl
z ∈ W l(z) and

πr
z ∈ Wr(z) is described by the left-right equation (5.16).

(iii) If A1, . . . , An ⊂ R2 are disjoint closed sets, then the random variables
(W l

∣∣
A1
,Wr

∣∣
A1
), . . . , (W l

∣∣
An
,Wr

∣∣
An
) are independent.

The difficult part of Conjecture 5.16 is the claim that properties (i)–(iii)
uniquely characterise the joint law of (W l,Wr). If Conjecture 5.16 were
proved, then by combining Theorems 5.3 and 5.13, it would be possible to
give a very short proof of the following result.

Theorem 5.17 (Convergence to the left-right Brownian web) Let
ωn be a sequence of arrow configurations satisfying (5.4), and let U l

n and U r
n

be the collections of left and right paths in ωn, respectively. There exists a
random variable (W l,Wr) with values in K(Π↑) × K(Π↑), called a left-right
Brownian web, such that

P
[
θεn(U

l

n,U
r

n) ∈ ·
]
=⇒
n→∞

P
[
(W l,Wr) ∈ ·

]
,

where ⇒ denotes weak convergence of probability laws on the space K(Π↑)×
K(Π↑).

Theorem 5.17 has been proved in [SS08]. In the remainder of this sec-
tion, we will sketch its proof. In the absence of Conjecture 5.16, we will
need another characterisation of the limit object, the left-right Brownian
web (W l,Wr). The characterisation will be a bit more complicated than
Conjecture 5.16, but nevertheless very similar in spirit. Since W l and Wr

are Brownian webs, for each deterministic z ∈ R2, there almost surely exist
unique paths πl

z and π
r
z such that πl

z ∈ W l(z) and πr
z ∈ Wr(z). In view of the

characterisation of the Brownian web (Theorem 3.7), in order to characterise
the joint law of W l and Wr, it suffices to describe the joint law of

πq1
z1
, . . . , πqm

zm (5.17)

for any deterministic finite collection of points z1, . . . , zm ∈ R2 and sequence
q1, . . . , qm with qi ∈ {l, r} for all 1 ≤ i ≤ m. Without loss of generality, we
can assume that the time coordinates of zi = (xi, ti) (1 ≤ i ≤ m) are ordered
as t1 ≤ · · · ≤ tm. Then it suffices to describe during each of the time intervals
[t1, t2], . . . , [tn−1, tm] and [tm,∞) the joint evolution (which is Markovian) of
the paths whose starting time lies before the initial time of the interval. In
view of this, we can without loss of generality assume that t1 = . . . = tm = 0.

We assume now that t1 = . . . = tm = 0. Without loss of generality, we
also assume that x1 ≤ · · · ≤ xm. We can also assume that xi < xi+1 whenever
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qi = qi+1, since paths of the same type (left or right) coalesce as soon as they
meet. We can then group left and right paths that immediately follow after
each other (in this order), leaving the remaining paths as singletons. For
example, if at time zero we have a collection of left and right paths that
ordered from left to right, looks like this LRLLRLRRRLR, then we group
them as follows:

{LR}{L}{LR}{LR}{R}{R}{LR}.

Let τ1 denote the first time when a path from one group meets a path from
another group. It may be that multiple paths meet at such a time. However,
it is not hard to see that with probability one, at the time τ1, there exist two
consecutive groups so that all paths that meet at time τ1 belong to these two
groups.

If at the the time τ1, two left paths meet, then they coalesce, so the total
number of left paths that we have to follow decreases by one. Likewise, if two
right paths meet, they also coalesce. We are now in a similar situation as at
time zero and can again group the remaining paths into singletons and pairs
consisting of one left path and one right path (in this order). We then let τ2
denote the first time when a path of these newly created groups meets a path
of another group. Inductively, we define τ3, τ4, . . . in the same fashion. Then
during each of the random time intervals [0, τ1], [τ1, τ2], . . ., we can specify
the joint law of our paths by saying that the groups evolve independently in
such a way that:

� each group consisting of a single left path evolves as a Brownian motion
with drift −1,

� each group consisting of a single right path evolves as a Brownian mo-
tion with drift +1,

� each group consisting of a left and a right path evolves as a solution to
the left-right equation (5.16).

Note that at each of the times τ1, τ2, . . ., either two left paths coalesce, or
two right paths coalesce, or a right and left path change their order, in the
sense that the right path was on the left of the left path before, but has to
stay on the right after. This means that there are only finitely many times
τ1, . . . , τN , and we can specify the evolution of the left and right paths on
each of the intervals [0, τ1], . . . , [τN−1, τN ] and [τN ,∞) according to the rules
above.

Filling in the technical details is a bit cumbersome, especially since we
are working with stopping times, but the description above gives the main
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idea. Using this idea, one can give a rigorous definition of a collection of left-
right coalescing Brownian motions. We cite the following result from [SS08,
Prop. 5.2]. (This reference is, admittedly, also a bit sketchy on the technical
details.)

Proposition 5.18 (Convergence of finite dimensional distributions)
Let εn be positive constants, tending to zero and let ωn be a sequence of arrow
configurations satisfying (5.4). Fix z1, . . . , zm ∈ R2 and zni ∈ Z2

even such that
θεn(z

n
i ) → zi as n → ∞ (1 ≤ i ≤ m). Fix q1, . . . , qm with qi ∈ {l, r} and

depending on whether qi = l or = r, let πqi,n
i denote the unique left or right

path in ωn starting at zni . Then

P
[
θεk(π

q1,n
1 , . . . , πqm,n

m ) ∈ ·
]
=⇒
k→∞

P
[
(πq1

z1
, . . . , πqm

zm ) ∈ ·
]
,

where ⇒ denotes weak convergence of probability measures on (Π↑)m, and
(πq1

z1
, . . . , πqm

zm ) is a collection of left-right coalescing Brownian motions start-
ing from z1, . . . , zm.

It is clear that left and right random paths in an arrow configuration
are consistent in the sense of Kolmogorov’s extension theorem, and hence by
Proposition 5.18 the same must be true for left-right coalescing Brownian
motions. In view of this, if D ⊂ R2 is a deterministic countable dense
set, then we can construct a collection (πl

z, π
r
z)z∈D of left-right coalescing

Brownian motions started from D. By Theorem 3.7, setting

W l := {πl
z : z ∈ D} and Wr := {πl

z : z ∈ D}

then defines two Brownian webs W l and Wr with drift −1 and +1, respec-
tively. By definition, we call (W l,Wr) the left-right Brownian web. We
let Ŵ l, Ŵr denote the dual Brownian webs associated with W l,Wr. Theo-
rem 5.17 is implied by the following theorem, that gives a somewhat more
complete picture.

Theorem 5.19 (Convergence to the left-right Brownian web) Let
εn be positive constants tending to zero and let ωn be a sequence of arrow
configurations satisfying (5.4). Let U l

n and U r
n be the collections of left and

right paths in ωn, respectively, and let U l∗
n and U r∗

n be the collections of dual
left and right paths. Then one has

P
[
θεn(U

l

n,U
r

n,U
l∗
n ,U

r∗
n ) ∈ ·

]
=⇒
n→∞

P
[
(W l,Wr, Ŵ l, Ŵr) ∈ ·

]
,

where ⇒ denotes weak convergence of probability laws on the space K(Π↑)2×
K(Π↓)2, (W l,Wr) is a left-right Brownian web, and Ŵ l and Ŵr are the
associated dual webs.
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Proof Convergence of (U l

n,U
l∗
n ) to (W l, Ŵ l) and of (U r

n,U
r∗
n ) to (Wr, Ŵr)

follows from Theorem 3.18. Using Lemma 3.14, it follows that the laws of

the random variables θεn(U
l

n,U
r

n,U
l∗
n ,U

r∗
n ) are tight, so by going to a subse-

quence, we may assume that they converge in law to some random variable
(V l,Vr, V̂ l, V̂r). In view of Lemma 2.2, it suffices to show that (V l,Vr, V̂ l, V̂r)
is equal in law to (W l,Wr, Ŵ l, Ŵr). Since a web is a.s. uniquely determined
by its dual, it suffices to show that (V l,Vr) is equal in law to (W l,Wr). By
Theorem 3.18, V l is a Brownian web with drift −1 and Vr is a Brownian web
with drift +1. Therefore, by Theorem 3.7, we know that at each determinis-
tic z ∈ R2, the sets V l(z) and Vr(z) almost surely contain a single path. To
show that (V l,Vr) is equal in law to (W l,Wr), by Theorem 3.7, it suffices
to show that (V l,Vr) has the right finite dimensional distributions, i.e., we
must show that the left and right paths started from finitely many points
are distributed as left-right coalescing Brownian motions. This follows from
Proposition 5.18, so the proof is complete.

Recall that −π := {(−x,−t) : (x, t) ∈ π} is our notation for a path π,
rotated over 180 degrees, and that −W := {−π : π ∈ W}. It is not hard
to see that −Ŵ l is equally distributed with W l (both are Brownian webs
with drift −1) and −Ŵr is equally distributed with Wr. In fact, a stronger
statement holds.

Lemma 5.20 (Dual left-right Brownian web) Let (W l,Wr) be a left-
right Brownian web and let Ŵ l and Ŵr be the dual Brownian webs associated
with W l and Wr. Then (−Ŵ l,−Ŵr) is equally distributed with (W l,Wr).

Proof It is straightforward to check that (−U l∗
n ,−U r∗

n ) is equally distributed
with (U l

n,U r
n), so the claim follows from finite approximation, using Theo-

rem 5.19).

5.7 The hopping and wedge constructions

We continue to assume that εn are positive constants tending to zero and
that ωn is a sequence of arrow configurations satisfying (5.4). Ultimately, we
are not interested in left and right paths only, but in the scaling limit of the
set Un of all open paths in the arrow configuration ωn. In this section, we
describe a random compact set of paths N that we will call the Brownian
net and that will turn out to be the scaling limit of the sets Un. We will
obtain N as a function of a left-right Brownian web (W l,Wr). In fact, we
will describe two different ways to construct N from (W l,Wr). The fact that
both constructions yield the same object will be important when we prove
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the convergence in law of the collection θεn(Un) of rescaled discrete open
paths to the Brownian net N .

The two constructions we will use are called the hopping construction and
the wedge construction of the Brownian net. They will yield two sets of paths
N− and N+ that will later be shown to be equal, similar to the statement of
Theorem 3.15. In fact, the wedge construction, which yields N+, is extremely
similar to the definition of W+ in Theorem 3.15. We start with the hopping
construction, however, which is a bit more complicated than the construction
of W− in Theorem 3.15, since it requires a new concept: hopping.

Let (W l,Wr) be a left-right Brownian web and let πl
1, π

r
2, π

l
3, . . . be a finite

sequence of paths that are alternatively taken from W l and Wr, such that

σπl
1
< σπr

2
< σπl

3
< · · ·

and
πr
2(σπr

2
) < πl

1(σπr
2
), πr

2(σπl
3
) < πl

3(σπl
3
), . . .

i.e., the second path, which is a right path, is started on the left of the first
path, which is a left path, and then the third path, which is a left path, is
started on the right of the second path and so on; see Figure 5.7.

πl
1

πr
2

πl
3

πl
1

πr
2

πl
3

π

Figure 5.7: A path π constructed by hopping between left and right paths
πl
1, π

r
2, π

l
3.

Recall that

τ(π1, π2) := inf{t > σπ1 ∨ σπ2 : π1(t) = π2(t)} (π1, π2 ∈ Π↑)

denotes the first meeting time of two upward paths π1, π2. Let us assume
that

τ(πl
1, π

r
2) < σπl

3
, τ(πr

2, π
l
3) < σπr

4
, . . .
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i.e., we start the third path only after the first meeting time of the first two
paths and so on. Then we can define a path π with starting time σπ := σπl

1

by

π(t) :=


πl
1(t)

(
σπl

1
≤ t ≤ τ(πl

1, π
r
2)
)
,

πr
2(t)

(
τ(πl

1, π
r
2) ≤ t ≤ τ(πr

2, π
l
3)
)
,

πl
3(t)

(
τ(πr

2, π
l
3) ≤ t ≤ τ(πl

3, π
r
4)
)
,

and so on, i.e., we start by following the path πl
1, then “hop” onto the path

πr
2 at the first time when πl

1 meets πr
2, and so on, until we arrive at the last

path in our finite sequence, which we follow till time +∞. We fix a countable
dense set D ⊂ R2 and let

N− := the closure of
{
π : π is obtained by hopping

between paths in (πl
z)z∈D and (πr

z)z∈D
}
.

This completes the description of the hopping construction of the Brownian
net. We make one simple observation.

Lemma 5.21 (Compactness of the Brownian net) Almost surely, N−
is a compact subset of Π↑.

Proof Let us write N− = N ′
−, where N ′

− is the set of paths that can be
constructed by hopping between paths in (πl

z)z∈D and (πr
z)z∈D. We need to

show that N ′
− is almost surely precompact. We apply Proposition 2.32. We

need to show that

P
[ ∣∣π(u)− π(t)

∣∣ ≥ ε for some π ∈ N ′
− and σπ ≤ t ≤ u

s.t. (π(t), t) ∈ [−T, T ]2, u− t ≤ δ
]
−→
δ→0

0 ∀T <∞, ε > 0.
(5.18)

Let W l := {πl
z : z ∈ D} and Wr := {πr

z : z ∈ D} be the left and right Brown-
ian webs constructed from our left and right paths. Paths in N ′

− cannot cross
paths in W l from right to left and they cannot cross paths in Wr from left
to right. Therefore, letting πl−

z and πr+
z as in Lemma 4.6 denote the minimal

left and maximal right path starting at a point z, we have

πl−
(π(t),t)(u) ≤ π(u) ≤ πr+

(π(t),t)(u)

for all π ∈ N ′
− and σπ ≤ t ≤ u. In view of this, the fact that N ′

− satisfies
(5.18) follows from the fact that W l and W2 satisfy (5.18), which in turns
follows from their almost sure compactness and Proposition 2.32.

We next describe the wedge construction. Let (W l,Wr) be a left-right
Brownian web and let Ŵ l, Ŵr be the associated dual webs. Recall from
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Section 3.5 thatW (π̂1, π̂2) denotes the wedge defined by two downward paths
π̂1 and π̂2. In the same section, we also defined what it means for a forward
path π to enter a wedge W (π̂1, π̂2). We again fix a countable dense set
D ⊂ R2 and define

N+ :=
{
π ∈ Π↑ : π does not enter wedges

of the form W (π̂r
z1
, π̂l

z2
) with z1, z2 ∈ D

}
.

This construction is known as the wedge construction of the Brownian net.
See Figure 5.8 for an illustration. Note that here the left boundary of the
wedge is formed by a dual right path and the right boundary is a dual left
path. Because of the drift, these paths may fail to meet so the wedge may
be infinite in size. In particular, the fact that paths do not enter wedges of
this form implies that paths in N+ do not cross dual left paths from right to
left, or dual right paths from left to right.

π̂r

π̂l

π

Figure 5.8: Illustration of the wedge construction of the Brownian net. Paths
π ∈ N+ cannot enter wedges W (π̂r, π̂l) defined by a dual right and left path.

The following theorem, first proved in [SS08, Lemmas 4.5 and 4.7], is
similar to Theorem 3.15 (and in fact historically predates it). We call the
compact set N := N− = N+ from the following theorem the Brownian net.

Theorem 5.22 (Characterisation of the Brownian net) Let D be a
countable dense subset of R2 and let N− and N+ be defined in terms of a
left-right Brownian web (W l,Wr) and its dual as above. Then N− = N+.

Proof (partial) Here we only prove the inclusion N+ ⊂ N−. The proof of
the other inclusion will be combined with the proof of Theorem 5.23 below.
The argument is similar to the proof of Theorem 3.15. We fix π ∈ N+,



140 CHAPTER 5. THE BROWNIAN NET

t1

t2

t3

t4
z4− z4+

z3− z3+

π

Figure 5.9: Construction showing that each path π that does not enter wedges
of the dual left-right Brownian web can be approximated by hopping between
paths in the forward left-right Brownian web. The structure of dual paths
that capture the forward paths is reminiscent of a fish trap (Figure 5.10).

σπ < t1 < · · · < tm, and ε > 0. We claim that we can construct a path πhop

by hopping finitely often between paths in (πl
z)z∈D and (πr

z)z∈D, such that
σπ < σπhop < t1 and |πhop(ti)−π(ti)| ≤ ε for all i = 1, . . . ,m. To see this, for
each i = 1, . . . ,m, we choose zi± = (xi±, t

i
±) ∈ D such that ti± > ti and

π(ti)− ε < π̂r
z−(ti) < π(ti) < π̂l

z+
(ti) < π(ti) + ε.

See Figure 5.9. Since π does not enter the wedge W (π̂r
zi−
, π̂l

zi+
), the meeting

time of π̂r
zi−

and π̂l
zi+

must satisfy

τ(π̂r
zi−
, π̂l

zi+
) ≤ σπ,

and we have π̂r
zi−
(t) ≤ π(t) ≤ π̂l

zi+
(t) for all t ∈ [σπ, ti]. We can now choose

z = (x, s) ∈ D such that σπ < s < t1 and

sup
1≤i≤m

π̂r
zi−
(t1) < πl

z(t1) < inf
1≤i≤m

π̂l
zi+
(t1).

The forward left path πl
z cannot cross any of the left downward paths π̂l

zi+
, but

it can cross the right downward paths π̂r
zi−
. Just before it does so, however,

we can hop onto a cleverly chosen forward right path and continue until it
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H

Figure 5.10: A fish trap. Picture reused from:
https://commons.wikimedia.org/wiki/File:Stellnetzfischerei (Reusen).jpg.

threatens to cross one of the left downward paths π̂l
zi+
. Just before it does,

we can again hop onto a left path, and so on.

We claim that in this way, we can construct a hopping path that after
a finite number of steps arrives at the last time tm. Indeed, since the dual
left paths on the right of π cannot meet the dual right paths on the left of π
(since otherwise π would enter a wedge created by two of these paths), there
is some positive δ such that the distance between the closest dual left path
on the right of π and the closest dual right path on the left of π is at least
δ at any time between the time when we started our hopping path and the
last time tm. We can construct a hopping path so that the position where we
hop from a left to a right path is always less than δ/3 from the closest dual
right path on the left, and similarly, the position where we hop from a right
to a left path is always less than δ/3 from the closest dual left path to the
right. The times when we hop are increasing, so either we reach tm in a finite
number of steps, or the times when we hop increase to a limit that is ≤ tm.
But then our hopping path comes infinitely often in the neighbourhood of
two points that lie at least a distance δ/3 apart. This clearly violates the
equicontinuity of the left and right webs.

Let us write N− = N ′
−, where N ′

− is the set of paths that can be con-
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structed by hopping between paths in (πl
z)z∈D and (πr

z)z∈D. Since our hopping
construction terminates after a finite number of steps, we have shown that
for each π ∈ N+, ε > 0, and t1 < · · · < tn, there exists a path π′ ∈ N ′

− such
that |π(t)−π′(t)| ≤ ε. Using the fact that N− is compact (Lemma 5.21), we
can now repeat the arguments at the end of the proof of Theorem 3.15 to
show that N+ ⊂ N ′

−.

5.8 Convergence to the Brownian net

We are finally ready to state and prove the main result of this section.

Theorem 5.23 (Convergence to the Brownian net) Let εn be posi-
tive constants tending to zero, let ωn be a sequence of arrow configurations
satisfying (5.4), and let Un be the set of all open upward paths in ωn. Then

P
[
θεn(Un) ∈ ·

]
=⇒
n→∞

P
[
N ∈ ·

]
,

where N := N− = N+ is defined as in Theorem 5.22.

Proof This is very similar to the proof of Theorem 3.18. We start by showing
that the laws {

P
[
θεn(Un) ∈ ·

]
: n ∈ N

}
are tight. We apply Proposition 2.33. For all π ∈ Un, we can estimate

πl
(π(s),s)(t)− π(s) ≤ π(t)− π(s) ≤ πr

(π(s),s)(t)− π(s),

where πl
(π(s),s) and πr

(π(s),s) denote the unique element of U l(π(s), s) and

U r(π(s), s), respectively. In view of this, the tightness of the laws of θεn(Un)

follows easily from the tightness of the laws of θεn(U
l

n) and θεn(U
r

n) (Propo-
sition 3.16).

With tightness proved, in view of Prohorov’s theorem (Theorem 2.12) and
Lemma 2.2, to prove the theorem, it suffices to prove that if a subsequence
of the θεn(Un) converges in law to a limit N , then N is a Brownian net. We
assume therefore, from now on, that we are given a subsequence such that
the θεn(Un) converges in law to a limit N . By Skorohod’s representation
theorem, we can couple our random variables such that this convergence is
almost sure:

θεn(Un) −→
n→∞

N . (5.19)

Similar to what we did in the proof of Theorem 3.18, we can extend this to
include also the almost sure convergence of a number of other objects, that
we already know converge in law.
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We fix a deterministic countable dense set D ⊂ R2. For each z ∈ D, we
choose zn ∈ Z2

even and zn ∈ Z2
odd such that θεn(zn) → z and θεn(z

n) → z. We

let π
(n) l
n and π

(n) r
n denote the diffusively rescaled left and right paths started

from zn and we let π̂
(n) l
n and π̂

(n) r
n denote the diffusively rescaled dual left

and right paths started from zn. Then, for a suitable coupling, we have

π(n) q
z −→

n→∞
πq
z a.s. and τ(π(n) q1

z1
, π(n) q2

z2
) −→
n→∞

τ(πq1
z1
, πq2

z2
) a.s.

for all z, z1, z2 ∈ D and q, q1, q2 ∈ {l, r}, and likewise for downward paths,
where (

πl
z, π

r
z, π̂

l
z, π̂

r
z

)
z∈D

are the forward and dual left and right paths started from D in a left-right
Brownian web. With all this set up, we will show that the limit in (5.19)
satisfies

N− ⊂ N ⊂ N+, (5.20)

where N− and N+ are defined in terms of the forward and dual left and right
paths started from D. In particular, this then proves that N− ⊂ N+, which
was the missing part of the proof of Theorem 5.22. Since the inclusion N+ ⊂
N− has already been proved with the fish trap argument from Section 5.7,
this then concludes the proofs of both Theorem 5.22 and 5.23.

It therefore remains to prove (5.20). We start by proving the inclusion
N− ⊂ N . Since N is closed, it suffices to prove N ′

− ⊂ N where N ′
− is the set

of paths that can be constructed by hopping between paths in (πl
z)z∈D and

(πr
z)z∈D. The statement now follows from the fact that τ(π

(n) l1
z1 , π

(n) r2
z2 ) −→

n→∞
τ(πl

z1
, πr

z2
) for each z1, z2 ∈ D, and the fact that in an arrow configuration,

any path constructed by hopping between left and right paths is an open
upward path.

The inclusion N ⊂ N+ follows on the other hand from the fact that

τ(π̂
(n) l1
z1 , π̂

(n) r2
z2 ) −→

n→∞
τ(π̂l

z1
, π̂r

z2
) for each z1, z2 ∈ D, the fact that in an arrow

configuration, open paths cannot enter wedges, and Lemma 3.12.

Exercise 5.24 Show that almost surely, there exist no π ∈ N , π̂r ∈ Ŵr

and π̂l ∈ Ŵ l such that π enters the wedge W (π̂r, π̂l). Note that we do not
assume that the starting points of π̂r and π̂l lie in some fixed, deterministic,
countable dense set. Hint: Lemma 4.7.

5.9 The Brownian net with killing

We conclude this chapter with a very crude sketch of the proof of Theo-
rem 5.1.
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Proof of Theorem 5.1 (crude idea) We first consider the special case
that α = 0, β = 1, and dn = 0 for all n. In this case, Theorem 5.23 tells
us that the set θεn(Vn) ∩Π↑ converges in law to the Brownian net N . Since
dn = 0, each open path in an arrow configuration ωn can be extended to an
upward path, so

Vn =
{
π ∈ Π : ∃π′ ∈ Vn ∩ Π↑ s.t. π ⊂ π′}.

Using this, Theorem 5.23 is easily seen to imply (5.3), where the limit is

N∗ :=
{
π ∈ Π : ∃π′ ∈ N s.t. π ⊂ π′}.

It is not hard to generalise this to arbitrary α ∈ R and β > 0. We just need
to generalise our earlier definition of a left-right Brownian web in such a way
that the left Brownian web W l has drift α − β and the right Brownian web
Wr has drift α + β, and all arguments go through in a trivial way. We can
even allow for the case β = 0, where now the limit is the Brownian web.
Indeed, if β = 0, then Theorem 5.17 (convergence to the left-right Brownian
web) remains true, where now the left and right Brownian webs are a.s. equal.
This can be seen by adapting Theorem 5.13 (scaling limit of a left and right
path), where now one does not need the left-right equation but simply uses
that L(n)(t) ≤ R(n)(t) while E[R(n)(t) − L(n)(t)] → 0 as n → ∞, for each
t ≥ 0.

In view of this, the real challenge is to prove Theorem 5.1 when the death
probability dn may be positive. Clearly, in this case we can no longer work
with half-infinite paths. Nevertheless, in each arrow configuration ωn, at each
z ∈ Z2

even, there start a unique maximal left path πn l
z and right path πn r

z ,
which are defined by the fact that at branching points, they always choose the
left or right arrow, respectively, and they only stop once they reach a death
point, i.e., a point with no outgoing arrows. It is easy to check that under
the conditions (5.2), diffusively rescaled left (resp. right) paths converge to
Brownian motions with drift α−β (resp. α+β) and an exponential life time
with parameter β (i.e., with mean β−1).

In view of this, one can still prove an analogon of Theorem 5.17 (con-
vergence to the left-right Brownian web). Using the hopping construction,
one can also still prove a lower bound N− on the scaling limit of the set of
all open paths. The most difficult part of the proof is to get a matching
upper bound. We can naturally couple our arrow configurations to arrow
configurations that have no deaths. These then give rise to a limiting left-
right Brownian web that can be used to define wedges. Naturally, even with
deaths, open paths cannot enter these wedges. To get a good upper bound,
one needs to add one more condition that takes into account the deaths. It
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turns out that the right condition is that paths cannot pass through points
where other paths have died. Proving this requires a better understanding of
the Brownian net (such as density calculations and the concept of meshes).
We cite [NRS15] for those who want to know more.
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Chapter 6

Properties of the Brownian net

6.1 The continuum biased voter model

We recall that in (4.1) we constructed collections of random maps (Xs,t)s≤t

and (Ys,t)s≤t that could be interpreted as scaling limits of the stochastic
flows associated with a voter model and its associated dual system of coa-
lescing random walks, constructed from their graphical representations. In
the present section, we study the analogue objects for the scaling limits of
biased voter models and their associated systems of branching and coalescing
random walks. We start with a useful lemma, that is a direct consequence
of the hopping and wedge constructions of the Brownian net. This lemma is
illustrated in Figure 6.1.

Lemma 6.1 (Connections in the Brownian net) Let N be a standard
Brownian net. Then almost surely, for all a, b, s, t ∈ R with a ≤ b and s < t,
if some π ∈ N (R× {s}) satisfies π(t) ∈ [a, b], then

τ
(
π̂r−
(a,t), π̂

l+
(b,t)

)
≤ s and π̂r−

(a,t) ≤ π ≤ π̂l+
(b,t) on [s, t]. (6.1)

Conversely, almost surely, for all a, b, s, t ∈ R with a ≤ b and s < t, if there
exist π̂r ∈ Ŵr(a, t) and π̂l ∈ Ŵ l(b, t) such that π̂r < π̂l on (s, t), then for
each x ∈ [π̂r(s), π̂l(s)], there exists a path π ∈ N (x, s) such that π̂r ≤ π ≤ π̂l

on [s, t].

Proof By the wedge characterisation of the Brownian net, if π ∈ N (R ×
{s}) satisfies π(t) ∈ [a, b], then by the fact that π does not enter wedges
(Exercise 5.24), for each ε > 0, paths π̂r ∈ Ŵr(a− ε, t) and π̂l ∈ Ŵ l(b+ ε, t)
must satisfy

τ
(
π̂r, π̂l

)
≤ s and π̂r ≤ π ≤ π̂l on [s, t].

147



148 CHAPTER 6. PROPERTIES OF THE BROWNIAN NET

t

0

a b

π̂r−
(a,t) π̂l+

(b,t)

τa,b

t

0

a b

π̂r−
(a,t) π̂l+

(b,t)

τa,b

Figure 6.1: Illustration of Lemma 6.1. If τa,b > 0, then no path in N starting
at time 0 can pass through [a, b] at time t. On the other hand, if τa,b ≤ 0,
then at any point (x, s) with π̂r−

(a,t)(0) ≤ x ≤ π̂l+
(b,t)(0) there starts a path

π ∈ N with π(t) ∈ [a, b].

Letting ε → 0, we see that π̂r−
(a,t) ≤ π ≤ π̂l+

(b,t) on [s, t]. Using Lemma 4.7, we

moreover see that τ
(
π̂r−
(a,t), π̂

l+
(b,t)

)
≤ s, proving (6.1).

Conversely, if for some a, b, s, t ∈ R with a ≤ b and s < t, there exist
π̂r ∈ Ŵr(a, t) and π̂l ∈ Ŵ l(b, t) such that π̂r < π̂l on [s, t], then by the fish-
trap argument in the proof of Theorem 5.22, for each x ∈ [π̂r(s), π̂l(s)], we
can construct a path π ∈ N (x, s) such that π̂r ≤ π ≤ π̂l on [s, t]. Using the
compactness of N , we can relax the condition that π̂r < π̂l on [s, t] to the
weaker condition π̂r < π̂l on (s, t).

The following lemma is similar to Lemma 3.8. We leave its proof as an
exercise to the reader.

Lemma 6.2 (Trivial paths) Let N be a Brownian net. Then Π↑
triv ⊂ N

a.s. and each π ∈ N\Π↑
triv satisfies π(t) ∈ R for all σπ ≤ t <∞.

Exercise 6.3 Prove Lemma 6.2.

It is easy to see that a Brownian net N almost surely uniquely determines
its associated left-right Brownian web (W l,Wr), and hence also their assoc-
tiated dual Brownian webs Ŵ l and Ŵr. In Lemma 5.20, we have seen that
(−Ŵ l,−Ŵr) is equally distributed with (W l,Wr). It follows that we can con-
struct a random collection of downward paths N̂ associated with (Ŵ l, Ŵr),
so that the triple (Ŵ l, Ŵr, N̂ ) is equally distributed with (−W l,−Wr,−N ).
We call N̂ the dual Brownian net associated with N .
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In analogy with the definitions in (4.1), we define

Xs,t(A) :=
{
x ∈ R : ∃π̂ ∈ N̂ (x, t) s.t. π̂(s) ∈ A

}
,

Ys,t(A) :=
{
π(t) : π ∈ N (A× {s})

}
,

X̂t,s(A) :=
{
x ∈ R : ∃π ∈ N (x, s) s.t. π(t) ∈ A

}
,

Ŷt,s(A) :=
{
π̂(s) : π̂ ∈ N̂ (A× {t})

}
.

(6.2)

We can think of the maps (Xs,t)s≤t as a continuum analogue of the stochastic
flow (Xs,t)s≤t defined in Section 1.1. Let us fix closed sets A,B ⊂ R and
define, in analogy with (1.5),

At := X0,t(A) and Bt := Y0,t(B) (t ≥ 0). (6.3)

Then we can think of the process (At)t≥0 as of some sort of continuum version
of the biased voter model and similarly, we can think of (Bt)t≥0 as a contin-
uum version of branching and coalescing random walks. We call (At)t≥0 the
continuum biased voter model and (Bt)t≥0 the branching-coalescing point set.

Informally, we can think of the branching-coalescing point set as branch-
ing and coalescing Brownian motions. This informal description is a bit too
simplistic, however, since we cannot simply construct the process by letting
coalescing Brownian motions branch with a finite rate. Indeed, such a de-
scription would not make sense, since whenever the branching would create
two Brownian motions on the same positions, the two would coalesce imme-
diately. We should think of the branching-coalescing point set as coalescing
Brownian motions which in addition branch with “infinite” rate. However,
since most of the particles created due to the branching disappear immedi-
ately due to the coalescence, on macroscopis scales, we see only finitely many
successful branchings.

Lemma 6.4 (Basic properties) One has Xs,t(A) ∈ K(R) for each A ∈
K(R) and s ≤ t. Moreover,

Xs,t(A ∪B) = Xs,t(A) ∪ Xs,t(B)
(
A,B ∈ K(R), s ≤ t

)
. (6.4)

Analogue statements hold with Xs,t replaced by Ys,t. For each A,B ∈ K(R)
and s, t ∈ R with s ≤ t, one has

1{Xs,t(A) ∩B ̸= ∅} = 1{A ∩ Ŷt,s(B) ̸= ∅}. (6.5)

Proof This follows from the same proofs as Lemmas 4.1 and 4.2.

Lemma 6.1 implies in particular that (compare Lemma 4.27)

Xs,u

(
[x, y]

)
=

{ [
πl−
(x,s)(t), π

r+
(y,s)(t)

]
if u ≤ τ

(
πl−
(x,s), π

r+
(y,s)

)
,

∅ if u > τ
(
πl−
(x,s), π

r+
(y,s)

)
.

(6.6)
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Note that as a consequence, the continuum biased voter model (At)t≥0 defined
in (6.3), started in an initial state of the form A0 = [x, y], has left- but not
right-continuous sample paths. When we combine (6.6) with (6.4), we see
that the continuum biased voter model, started from a finite union of compact
real intervals, has a rather simple description. At each time, it consists of
a finite union of compact real intervals, whose boundaries evolve as drifted
Brownian motions.

It is sometimes useful to view the continuum biased voter model and
the branching-coalescing point set as taking values in the space of all closed
subsets of the real line, instead of the space of all compact subsets of the
extended real line. We observe that

K′ :=
{
A ∈ K+(R) : {−∞,∞} ⊂ A}

is a closed subset of K+(R), and hence compact, by the compactness of the
latter. We let Cl(R) denote the set of all closed subsets of the real line. We
observe that the map A 7→ A∩R is a bijection from K′ to Cl(R), which allows
us to identify these two spaces. We equip Cl(R) with the topology that comes
from its identification with K′, making it into a compact metrisable space.
It follows from Lemma 6.2 that A0 ∈ K′ implies At ∈ K′ for all t ≥ 0 and
similarly for (Bt)t≥0, so we can view these processes as processes with state
space Cl(R) instead of K(R).

As a consequence of (6.5), the continuum biased voter model and the
branching-coalescing point set started in deterministic initial states satisfy a
duality relation of the form

P
[
A0 ∩Bt ̸= ∅

]
= P

[
At ∩B0 ̸= ∅

] (
A0, B0 ∈ Cl(R)

)
. (6.7)

One can prove that knowing this expression for all A0 that are finite unions
of compact intervals uniquely determines the law of Bt, viewed as a random
variable with values in the space Cl(R). Thus, using duality, we can uniquely
characterise the transition probabilities of the branching-coalescing point set
in terms of the simpler continuum biased voter model.

It is possible to show that the operators (Xs,t)s≤t and (Ys,t)s≤t have the
stochastic flow property, similar to what we proved in the unbiased case
(Lemma 4.23), and using this one can also show that the continuum bi-
ased voter model (At)t≥0 and the branching-coalescing point set (Bt)t≥0 are
Markov processes, similar to our earlier Proposition 4.24. For brevity, we
skip the details.

For the branching-coalescing point set, more is known. It has been proved
in [SS08, Thm 1.11] that the branching-coalescing point set is a Feller process
with continuous sample paths. Abstract Hille-Yosida theory tells us that each
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Feller process is uniquely characterised by its generator, so in principle it
should be possible to give a description of the branching-coalescing point set
in terms of its generator. It is an open problem to give an explicit description
of this generator. Perhaps the duality relation (6.7) is a good starting point
to get an idea what sort of functions the domain of the generator should
contain.

6.2 The branching-coalescing point set

The following proposition is similar to Proposition 4.3, but its proof is a bit
more involved.

Proposition 6.5 (Density of the branching-coalescing point set) The
branching-coalescing point set satisfies

E
[∣∣Y0,t(R) ∩ [a, b]

∣∣] = (b− a) ·
( e−t

√
πt

+ 2Φ(
√
2t)

)
(6.8)

(a, b ∈ R, a < b, t > 0), where Φ(x) := 1√
2π

∫ x

−∞ e−y2/2dy is the distribution
function of the normal distribution.

Let

Ψ(t) :=
e−t

√
πt

+ 2Φ(
√
2t) (t ≥ 0) (6.9)

denote the function on the right-hand side of (6.8). We observe that

Ψ(t) ∼ 1√
πt

as t→ 0 and Ψ(t) −→
t→∞

2.

This shows that for small times, the density of the branching-coalescing point
set is asymptotically the same as for the coalescing point set, but for large
times, it is quite different since the density does not go to zero but tends to
a positive limit.

Proof of Proposition 6.5 For ε, t > 0, set

Fε(t) := P
[
τ
(
π̂r
(0,t), π̂

l
(ε,t)

)
> 0

]
.

Then Lemma 6.1 tells us that

P
[
Y0,t(R) ∩ [0, ε] ̸= ∅

]
= 1− Fε(t) (ε, t > 0),

and the claim of the proposition will follow from the argument used in the
proof of Proposition 4.3, provided we show that

lim
ε→0

ε−1
(
1− Fε(t)

)
= Ψ(t) (t > 0), (6.10)
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0

−x

y

−2x− y

tτ

Figure 6.2: The reflection principle: P[τ < t, Bt > y] = P[Bt < −2x− y].

where Ψ is the function defined in (6.9). The difference of a right and left
path is a Brownian motion with drift 2 and twice the quadratic variation of
a standard Brownian motion. Therefore, we can express the probability we
are interested in in terms of a standard Brownian motion (Bt)t≥0 as

Fε(t)=P
[

inf
0≤s≤t

(√
2Bs + 2s

)
≤ −ε

]
=P

[
inf

0≤s≤t

(
Bs +

√
2s
)
≤ −ε/

√
2
]

(ε, t > 0).

In line with notation introduced in (4.6), let us set

B′
t := Bt +

√
2t, mt(B) := inf

0≤s≤t
Bs, and mt(B

′) := inf
0≤s≤t

B′
s (t ≥ 0).

Using the reflection principle (see Figure 6.2), we see that

P
[
−mt(B) ≥ x, Bt ≥ y

]
= P

[
Bt ≥ 2x+ y

]
(x ≥ 0, y ≥ −x, t ≥ 0).

Differentiating the normal distribution, we see that the joint density of the
law of (−mt(B), Bt) on the set {(x, y) ∈ R2 : x ≥ 0, y ≥ −x} is given by

1√
2πt

∂2

∂x∂y

∫ ∞

2x+y

e−
1
2
z2/tdz =

1√
2πt

∂

∂x
e−

1
2
(2x+ y)2t−1

=
1√
2πt

2(2x+ y)t−1e−
1
2
(2x+ y)2t−1

=: Ht(x, y).
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By Girsanov’s formula, the law of (B′
s)0≤s≤t has a density with respect to the

law of (Bs)0≤s≤t, as follows:

P
[
(B′

s)0≤s≤t ∈ df
]
= e

√
2ft − t P

[
(Bs)0≤s≤t ∈ df

] (
f ∈ C[0,t](R)

)
.

As a consequence, we obtain that

P
[
−mt(B

′)) ∈ dx, B′
t ∈ dy

]
= e

√
2y − tHt(x, y) dx dy

=:H ′
t(x, y) dx dy.

This allows us to express the probability we are interested in as

Fε(t) = P
[
−mt(B

′) ≥ ε/
√
2
]
=

∫ ∞

ε/
√
2

dx

∫ ∞

−x

dy H ′
t(x, y)

=

∫ ∞

−ε/
√
2

dy

∫ ∞

ε/
√
2

dxH ′
t(x, y)︸ ︷︷ ︸

=: I

+

∫ −ε/
√
2

−∞
dy

∫ ∞

−y

dxH ′
t(x, y)︸ ︷︷ ︸

=: II

.

We calculate

I=
e−t

√
2πt

∫ ∞

−ε/
√
2

dy e
√
2y

∫ ∞

ε/
√
2

dx 2(2x+ y)t−1e−
1
2
(2x+ y)2t−1

=
e−t

√
2πt

∫ ∞

−ε/
√
2

dy e
√
2ye−

1
2
(
√
2ε+ y)2t−1

= e−2ε
∫ ∞

−ε/
√
2

dy
1√
2πt

e−
1
2
(y +

√
2ε−

√
2 t)2t−1

= e−2εP
[√
tN −

√
2ε+

√
2 t ≥ −ε/

√
2
]

= e−2εP
[
N ≥ ε√

2t
−

√
2t
]
= e−2εΦ

(√
2t− ε√

2t

)
,

where N denotes a standard normally distributed random variable and in
the second step we have used that

−t+
√
2y − 1

2
(
√
2ε+ y)2t−1 = −1

2
t−1

[
(y +

√
2ε)2 + 2t2 −

√
2 ty

]
= −1

2
t−1

[
(y +

√
2ε)2 + 2t2 −

√
2 t(y +

√
2ε) + 2εt

]
= −1

2
t−1

[
(y +

√
2ε−

√
2 t)2 + 2εt

]
= −2ε− 1

2
(y +

√
2ε−

√
2 t)2t−1.



154 CHAPTER 6. PROPERTIES OF THE BROWNIAN NET

In a similar way, we calculate

II=
e−t

√
2πt

∫ −ε/
√
2

−∞
dy e

√
2y

∫ ∞

−y

dx 2(2x+ y)t−1e−
1
2
(2x+ y)2t−1

=
e−t

√
2πt

∫ −ε/
√
2

−∞
dy e

√
2ye−

1
2
(−2y + y)2t−1

=

∫ −ε/
√
2

−∞
dy

1√
2πt

e−
1
2
(y −

√
2 t)2t−1

=P
[√
tN +

√
2 t ≤ −ε/

√
2
]
= Φ

(
−
√
2t− ε√

2t

)
.

Putting everything together, we find that

Fε(t) = e−2εΦ
(√

2t− ε√
2t

)
+ Φ

(
−
√
2t− ε√

2t

)
.

It follows that

∂
∂ε
Fε(t)=−2e−2εΦ

(√
2t− ε√

2t

)
− e−2ε 1√

2t
Φ′
(√

2t− ε√
2t

)
− 1√

2t
Φ′
(
−
√
2t− ε√

2t

)
,

and

Ψ(t) = − ∂
∂ε
Fε(t)

∣∣
ε=0

=2Φ
(√

2t
)
+

1√
2t
Φ′(√2t

)
+

1√
2t
Φ′(−√

2t
)

=2Φ
(√

2t
)
+

2√
2t

1√
2π
e−t,

which agrees with (6.9).

Although Proposition 6.5 shows that the branching-coalescing point set
comes down from infinity, in is not true that Y0,t(R) is a locally finite point
set for all t > 0. Indeed, it has been shown in [SSS09, Prop 3.14] that there
exists a dense set of random times at which Y0,t(R) does not contain any
isolated points. Similarly, the set of times t when |Y0,t({0})| = ∞ is dense in
[0,∞). This is a consequence of the “infinite” branching rate, which makes
the number of particles explode immediately. To prove these results, one
first needs to show that the set of times when a sticky reflected Brownian
motion is at the origin is nowhere dense, which is quite easy to do. The
consequence is that for the branching-coalescing point set started with a
single particle, within each time interval of positive length, one can find a
shorter time interval during which there are at least two particles. By the
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same principle, within such a shorter interval, one can find an even shorter
time interval during which one of these particles has split and hence there
are at least three particles, and so on, ad infinitum.

We conclude this section with two useful consequences of Proposition 6.5.
Before we do so, we state the following lemma, that is similar to Lemma 4.18.

Lemma 6.6 (Independent increments) Let N be a Brownian net and
let −∞ < t0 ≤ · · · ≤ tn <∞. Then the restricted Brownian nets

N
∣∣
[t0,t1]

, . . . ,N
∣∣
[tn−1,tn]

are independent.

Proof Same as the proof of Lemma 4.18, except that instead of Theorem 3.18
we now need to use (or rather slightly generalise) Theorem 5.23.

We recall from Section 4.4 that a path π ∈ Π↑ enters a point z = (x, u) ∈
R2 if σπ < u and π(u) = x. We denote the set of Brownian net paths entering
z by

Nin(z) :=
{
π ∈ N : π enters z

}
.

Similar notation applies to the dual Brownian net N̂ .

Lemma 6.7 (Forward and dual paths) Let N be a Brownian net and let
N̂ its associated dual Brownian net. Then for each deterministic t ∈ R, there
almost surely do not exist x ∈ R such that Nin(x, t) ̸= ∅ and N̂in(x, t) ̸= ∅.
Moreover, for each π ∈ N and π̂ ∈ N̂ , the set{

t ∈ [σπ, τπ̂] : π(t) = π̂(t) ∈ R
}

has Lebesgue measure zero.

Proof We write Ys,t(R) := {π(t) : π ∈ N (R× {s})} = Ys,t(R) ∩ R and use

similar notation for Ŷu,t. By Proposition 6.5, for each deterministic s < t < u,

the sets Ys,t(R) and Ŷu,t(R) are locally finite. By Lemma 6.6, they are also
independent. Using also that their laws are translation invariant, it follows
that Ys,t(R) ∩ Ŷu,t(R) = ∅ a.s. In particular, this holds for all s, u ∈ Q with
s < t < u, proving the first claim.

To prove also the second claim, fix deterministic a, b, s, u ∈ R with a < b
and s < u, and let C be the random subset of [s, u] defined by

C :=
{
t ∈ [s, u] : ∃π ∈ N (R×{s}), π̂ ∈ N̂ (R×{u}) s.t. π(t) = π̂(t) ∈ [a, b]

}
.
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Using the fact that N and N̂ are compact, it is easy to see that C is closed,
so it is certainly measurable. By Fubini and what we have just proved

E
[ ∫ u

s

1C(t) dt
]
=

∫ u

s

P[t ∈ C] dt = 0.

Now if π ∈ N and π̂ ∈ N̂ are arbitrary, then by what we have just proved,
for each a, b, s, u ∈ Q such that s ≤ σπ ≤ τπ̂ ≤ u, the set{

t ∈ [s, u] : π(t) = π̂(t) ∈ [a, b]
}

has Lebesgue measure zero. Letting s ↓ σπ, u ↑ τπ̂, a → −∞, and b → ∞,
the claim follows.

Lemma 6.8 (Bounding left and right paths) Let N be a Brownian
net and let (W l,Wr) be its associated left-right Brownian web. Let t ∈ R be
deterministic. Then almost surely, for each x ∈ R and for each π ∈ Nin(x, t),
there exist an s ∈ R with σπ ≤ s < t, as well as πl ∈ W l

in(x, t) and πr ∈
Wr

in(x, t) with σπl ∨ σπr ≤ s, such that πl ≤ π ≤ πr on [s,∞).

Proof Let S < t be deterministic, let π ∈ N satisfy σπ ≤ S, and let
b := π(t). By Proposition 6.5, the set YS,t ⊂ R is locally finite, so there
exists an a ∈ YS,t with a < b such that (a, b) ∩ YS,t = ∅. By Lemma 6.1, for
each ε > 0, we have

τ
(
π̂r−
(a+ε,t), π̂

l+
(b−ε,t)

)
> S.

Taking the limit, we conclude that

τ
(
π̂r+
(a,t), π̂

l−
(b,t)

)
≥ S.

Let D ⊂ R2 be a deterministic countable dense set. By the remark below
Lemma 4.7, if some πl ∈ W l and πr ∈ Wr meet in a point (x, S), then there
must be skeletal paths π̃l ∈ W l(D) and π̃r ∈ Wr(D) that also meet in (x, S).
Therefore, since S is deterministic and since left and right paths started from
deterministic points do not meet at deterministic times, we conclude that

τ := τ
(
π̂r+
(a,t), π̂

l−
(b,t)

)
> S.

By Lemma 6.7, there exists a time s ∈ R with τ < s < t and x ∈ R such
that π̂l−

(b,t)(s) < x < π(s). Now any πl ∈ W l(x, s) must satisfy π̂l−
(b,t) ≤ πl on

[s, t] and πl ≤ π on [s,∞). It follows that πl ∈ W l
in(x, t). By symmetry, we

see that there must also exist an s′ < t and πr ∈ Wr
in(x, t) such that π ≤ πr

on [s′,∞). Since S < t is arbitrary, the claim of the lemma follows.
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6.3 The backbone

The fact that the density Ψ(t) tends to a positive limit as t → ∞ suggests
that the branching-coalescing point set should have an invariant law, and
also, that the Brownian net should contain bi-infinite paths (contrary to the
Brownian web, see Lemma 4.4). The following proposition confirms this.
Note that according to our notation, N (∗,−∞) is the set of all paths π ∈ N
with starting point (∗,−∞), i.e., N (∗,−∞) = N ∩ Π↕. The set of paths
N (∗,−∞) is called the backbone of the Brownian net. See Figure 6.3 for an
illustration.

Proposition 6.9 (Backbone of the Brownian net) The set

{π(0) : π ∈ N (∗,−∞)} ∩ R

is a Poisson point process with intensity 2. Moreover, N (∗,−∞) is equal in
law to −N (∗,−∞).

Remark This proposition shows that the law of a Poisson point process
with intensity 2 is an invariant law for the branching-coalescing point set.
Moreover, since N (∗,−∞) is equal in law to −N (∗,−∞), this invariant law
is reversible.

Figure 6.3: The backbone of the Brownian net.

We will first prove an analogue of Proposition 6.9 for the set of open paths
in an arrow configuration, and then prove the statement about the Brownian
net by finite approximation.
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Proposition 6.10 (Backbone of an arrow configuration) Let U be the
set of open upward paths in an arrow configuration ω = (ωz)z∈Z2

even
with

P
[
ωz = {−1}

]
= l, P

[
ωz = {+1}

]
= r,

P
[
ωz = {−1,+1}

]
= b, P

[
ωz = ∅

]
= 0,

where l + r + b = 1 and b > 0. Set

Xt := {π(t) : π ∈ U(∗,−∞)} (t ∈ Z). (6.11)

Then for each t ∈ Zeven (resp. t ∈ Zodd) the events {x ∈ Xt}x∈Zeven (resp.
{x ∈ Xt}x∈Zodd

) are independent with

P[x ∈ Xt] =
b

(b+ l)(b+ r)

(
(x, t) ∈ Z2

even

)
. (6.12)

Moreover, U(∗,−∞) is equal in law to −U(∗,−∞).

Proof We will write ωt := (ω(x,t))x∈Zeven if t is even and := (ω(x,t))x∈Zodd
if t

is odd. Fix s ∈ Zeven and p ∈ [0, 1]. Let X ′
s be a random subset of Zeven such

that the events {x ∈ X ′
s}x∈Zeven are independent and have probability p, and

X ′
s is independent of ωs. Let X

′
s+1 be the random subset of Zodd defined by

X ′
s+1 :=

{
x− 1 : x ∈ X ′

s, −1 ∈ ω(x,0)

}
∪
{
x+ 1 : x ∈ X ′

s, +1 ∈ ω(x,0)

}
.

We will show that it is possible to choose p such that the events

Ax,y := {x ∈ X ′
s and y − x ∈ ω(x,s)}
with x ∈ Zeven, y ∈ Zodd, |x− y| = 1

(6.13)

are all independent. Clearly, Ax,y is independent of Ax′,y′ if x ̸= x′, so it
suffices to choose p such that Ax,x−1 is independent of Ax,x+1 for each x. We
calculate

P(Ax,x−1) = p(b+ l), P(Ax,x+1) = p(b+ r), and P(Ax,x−1∩Ax,x+1) = pb,

so we need

p2(b+ l)(b+ r) = pb,

which is trivially satisfied for p = 0 and less trivially for

p =
b

(b+ l)(b+ r)
. (6.14)
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From now on, we fix p as in (6.14). We also fix s ∈ Zeven and let X ′
s be

a random subset of Zeven such that the events {x ∈ X ′
s}x∈Zeven are i.i.d. with

probability p and independent of (ωt)t≥s. For each t ∈ Z with t ≥ s define

X ′
t =

{
π(t) : π ∈ U(X ′

s × {s})
}

(t ≥ s).

By our earlier remarks, for each t ∈ Zeven with t ≥ s, we have that the events
{x ∈ X ′

t}x∈Zeven are i.i.d. with probability p and independent of (ωu)u≥t. It
follows that the joint laws of (X ′

t)t≥s and (ωt)t≥s for different values of s
are consistent, so by Kolmogorov’s extension theorem we can couple ω to a
stationary process (X ′

t)t∈Z such that

(i) For each s ∈ Zeven, the events {x ∈ X ′
s}x∈Zeven are i.i.d. with probability

p and independent of (ωt)t≥s.

(ii) X ′
t =

{
π(t) : π ∈ U(X ′

s × {s})
}
for each t ∈ Z with t ≥ s.

Recall from Section 3.1 that each arrow configuration ω defines a random
directed graph (Z2

even, E⃗) by

E⃗ :=
{(
x, t), (x+ ω(x,t), t+ 1)

)
: (x, t) ∈ Z2

even

}
.

We let E⃗ ′ be the subset of arrows defined by

E⃗ ′ :=
{(
x, t), (y, t+ 1)

)
∈ E⃗ : x ∈ X ′

t

}
,

and we let U ′ be the subset of U consisting of all open upward paths π such
that π(t) ∈ X ′

t for all t ∈ I(π) ∩ Z. Equivalently, this says that U ′ is the set
of all upward paths π such that(

(π(t), t), (π(t+ 1), t+ 1)
)
∈ E⃗ ′ (t ∈ I(π) ∩ Z),

with linear interpolation between integer times. It follows from the indepen-
dence of the events in (6.13) that if we rotate the oriented graph (Z2

even, E⃗
′)

over 180 degrees and reverse the direction of all arrows, then the new graph
obtained in this way is equal in law to the original one. We call this the
rotational symmetry of E⃗ ′.

Using this, we see immediately that each (x, t) ∈ Z2
even with x ∈ X ′

t is
not only the starting point of a forward open path, but also the endpoint of
an open path with starting time −∞. As a consequence, for each t ∈ Z, we
have X ′

t ⊂ Xt, where Xt is defined in (6.11). We claim that this is in fact an
equality.

It suffices to prove this for t = 0. We start by noting that for each
y ∈ Zeven, we can find x, z ∈ X0 with x < y < z. The right open path starting
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from (x, 0) and the left open path starting from (z, 0) a.s. meet eventually,

say in the point (y′, t). These are paths in the oriented graph (Z2
even, E⃗

′), so
using rotational symmetry, we see that similarly, for each y ∈ Zeven, there a.s.
exists a point (y′,−t) ∈ Z2

even at which there start paths in the oriented graph

(Z2
even, E⃗

′) that pass at time zero on the left and right of y, respectively.
We now prove that X0 ⊂ X ′

0. Let y ∈ X0. By our previous argument,
there a.s. exists a point (y′,−t) ∈ Z2

even such that y′ ∈ X ′
−t and such that

there exist open paths that start at (y′,−t) and that pass at time zero on
the left and right of y, respectively. By the definition of X0, there also exists
an open path π ∈ U(∗,−∞) with y = π(0). Since this open path must cross
the two open paths starting from (y′,−t), there must also exist an open path
from (y′,−t) to (y, 0), proving that y ∈ X ′

0.
From the fact that Xt = X ′

t and our construction of the latter, we see
that for each t ∈ Zeven (resp. t ∈ Zodd) the events {x ∈ Xt}x∈Zeven (resp.
{x ∈ Xt}x∈Zodd

) are independent with probabilities given in (6.12). The fact
that U(∗,−∞) is equal in law to −U(∗,−∞) follows from the rotational

symmetry of E⃗ ′.

Proof of Proposition 6.9 Let εn be positive constants tending to zero, let
ωn be a sequence of arrow configurations satisfying (5.4), and let Un be the
set of all open upward paths in ωn. Then Theorem 5.23 tells us that

P
[
θεn(Un) ∈ ·

]
=⇒
n→∞

P
[
N ∈ ·

]
,

where N is the Brownian net. Since Un(∗,−∞) is a closed subset of Un, it
is compact. In view of Lemma 2.17, the tightness of the laws P

[
θεn(Un) ∈ ·

]
means that for each η > 0, there exists a compact set C ⊂ Π↑ such that
infn P[θεn(Un) ⊂ C] ≥ 1 − η. Since Un(∗,−∞) ⊂ Un, it immediatey follows
that the laws P

[
θεn(Un(∗,−∞)) ∈ ·

]
are also tight. Thus, by going to a

subsequence, we can assume that

P
[
θεn(Un,Un(∗,−∞)) ∈ ·

]
=⇒
n→∞

P
[
(N ,N ′) ∈ ·

]
,

where N is a Brownian net and N ′ is a random compact subset of Π↑.
Since limits of bi-infinite paths are bi-infinite we have N ′ ⊂ Π↕, and since
Un(∗,−∞) ⊂ Un for all n we have N ′ ⊂ N . Proposition 6.10 tells us that for
each t ∈ Zeven, the set Xt in (6.11) is an i.i.d. subset of Zeven with intensity

pn :=
bn

(bn + ln)(bn + rn)
∼ εn

(1
2
+ εn)2

∼ 4εn.

Taking the scaling limit, using (5.4), we see that{
π(t) : π ∈ N ′} ∩ R
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is a Poisson point set with intensity 2. (Note that the limiting intensity
is 2 and not 4 since Xt is an i.i.d. subset of Zeven not Z.) The fact that
N ′ is equal in distribution with −N ′ follows from the rotational symmetry
of Un(∗,−∞). Therefore, to complete the proof, it suffices to prove that
N ′ = N (∗,−∞). The inclusion N ′ ⊂ N (∗,−∞) is clear since N ′ ⊂ Π↕ and
N ′ ⊂ N . The opposite inclusion can be proved in almost exactly the same
way as the inclusion Xt ⊂ X ′

t in the proof of Proposition 6.10, so we omit
the details and only sketch the main line of the argument.

First, one needs to prove that if a path π ∈ N crosses a path π′ ∈ N ′, then
the path constructed by first following π′ and then hopping onto π at their
first meeting time is also a path in N ′. The approximating backbones clearly
have this property and since crossing of the limiting paths means that also all
except finitely many of the approximating paths must cross, this property is
preserved in the limit. (Compare Exercise 6.11 below.) Next, similar to what
we did in the proof of Proposition 6.10, one can use rotational symmetry to
show that each path π ∈ N (∗,−∞)\Π↑

triv must cross a path in N ′ at some
time s and hence, by our earlier remark, there must exist a path π′ ∈ N ′

such that π(t) = π′(t) for all t ≥ s. It is then not hard to see that the
crossing time s can be chosen arbitrarily small, so taking the limit, using the
compactness of N ′, one obtains that π ∈ N ′.

Exercise 6.11 (Hopping in the net) Let N be a Brownian net and let
π, π′ ∈ N satisfy π(s) < π′(s) and π′(u) < π(u) for some σπ ∨ σπ′ ≤ s < u.
Define τ := inf{t > σπ ∨ σπ′ : π(t) = π′(t)} and let π′′ be the path defined by
σπ′′ := σπ, π

′′(t) := π(t) for σπ ≤ t ≤ τ , and π′′(t) := π′(t) for t ≥ τ . Show
that π′′ ∈ N . Hint: use finite approximation.

6.4 Law of a forward and dual path

In Section 5.5, we described the scaling limit of the joint law of a left and
right path in an arrow configuration, which was then used in Section 5.6
to describe the law of the left-right Brownian web. This approach closely
follows the original introduction of the left-right Brownian web in [SS08]. In
the present section, we will described the scaling limit of the joint law of a
forward left and dual right path in an arrow configuration. Since a Brownian
web is almost surely uniquely determined by its dual, this approach can be
used to give an alternative characterisation of the left-right Brownian web
which, as we will see, has certain advantages over the characterisation given
in Section 5.6.

Let εn be positive constants tending to zero and let ωn be a sequence of
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arrow configurations satisfying (5.4). As in Section 5.2, we let ωl,n and ωr,n

denote the left and right arrow configurations associated with ωn and we let
ω̂l,n and ω̂r,n denote the corresponding dual arrow configurations. We denote
the set of open upward paths in ωl,n and ωr,n by U l

n and U r
n and we denote

the set of open downward paths in ω̂l,n and ω̂r,n by U l∗
n and U r∗

n .
We now proceed very similarly to what we did in the proof of Theo-

rem 4.16. We fix (yn, un) ∈ Z2
odd and let R̂n be the unique element of

U r∗(yn, un). We also fix (xn, sn) ∈ Z2
even and let (Xn

k )k≥sn+1 be i.i.d. {−1,+1}-
valued random variables, independent of R̂n, such that P[Xn

k = −1] = ln+bn
and P[Xn

k = +1] = ln. We let Ln be the random walk that is defined for
integer times by

Ln(t) := xn +
t∑

k=sn+1

Xn
k (t ≥ sn),

and then for general t ≥ sn by linear interpolation. We can then define
a reflected random walk L′

n = (L′
n(t))t≥sn started at L′

n(sn) = xn first for
integer times by

L′
n(t+ 1) :=

{
L′
n(t) + ωl,n

(L′
n(t),t)

if t < un and R̂n(t+ 1) = L′
n(t),

L′
n(t) +Xn

t+1 otherwise,
(6.15)

and then for general t ≥ sn by linear interpolation. Then it is easy to see
that the conditional law of L′

n given R̂n is precisely the conditional law of
the the unique element of U l(xn, sn) given R̂n.

We write L′
n(t) = Ln(t) + Ψn(t), where Ψn is a reflection function. We

now distinguish two cases. If xn < R̂n(sn), then we observe that precisely
as in the proof of Theorem 4.16, L′

n is the path Ln reflected to the left off
(R̂n(t) − 1)t≤un in the sense of Lemma 4.14. In the opposite case, when

R̂n(sn) < xn, the evolution of L′
n is initially equal to the evolution of the the

path Ln reflected to the right off (R̂n(t)+1)t≤un in the sense of Lemma 4.13,
but L′

n starts to behave differently after the random time

τn := inf
{
t ≥ sn : t < un, R̂n(t+ 1) = L′

n(t),

ωn
(L′

n(t),t)
= {−1,+1}, Xn

t+1 = −1
}
,

because when (L′
n(t), t) is a branching point and R̂n(t+1) = L′

n(t), the path
L′
n can cross R̂n. After crossing, L

′
n starts to evolve as the path Ln reflected

to the left off (R̂n(t)− 1)t≤un in the sense of Lemma 4.14. See Figure 6.4 for
an illustration.
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t

Ln(t)

R̂n(t)

L′
n(t)

t

Ψn(t)

Figure 6.4: A forward left path reflected to the right off a dual right path
R̂n. The reflected path is L′

n(t) = Ln(t)+Ψn(t), where Ln is an independent
random walk and Ψn is a reflection term. The steps where reflection takes
place are indicated with a greater line thickness.

We observe that for all times t ≤ τn, we have that Ψn(t) is twice the
number of times t′ ∈ {sn, . . . , t−1} when R̂n(t

′+1) = L′
n(t

′) and Xn
t′+1 = −1,

i.e., the number of time when L′
n has attempted to cross R̂n. Each attempt is

succesful with probability bn, so the maximal height that Ψn will reach before
it starts to decrease again is a random variable of the form Hn = 2(Gn − 1),
where Gn is geometrically disctributed with success probability bn. In the
diffusive scaling limit, we have bn ∼ εn while we rescale Ψn by a factor εn,
which means the maximal height the reflection term Ψ in the scaling limit
will reach is exponentially distributed with mean 2.

Recall the reflection map Φ defined in (4.14), that takes as its input a pair
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(π, π̂) ∈ Π↑×Π↓ and produces as its output a pair (π′, ψ) where π′ is the path
π reflected off π̂, and ψ is a reflection function. Our previous considerations
motivate us to define a modified map Φ′ of the form

Π↑ × Π↓ × [0,∞) ∋ (π, π̂, T )
Φ′
7−→ (π′′, ψ−, ψ+) ∈ Π↑ × C(R)2, (6.16)

with the following description: we first calculate (π′, ψ) := Φ(π, π̂), where Φ
is the reflection map defined in (4.14). Let S be the random time defined by

S :=

{
inf{t ≥ σπ : ψ(t) = T} if σπ < τπ̂ and π̂(σπ) < π(σπ),

0 otherwise,
(6.17)

with the convention that inf ∅ := ∞. In the case when S < ∞, we define a
modified forward path π̃ by

σπ̃ := S and π̃(t) := π(t) + π̂(S)− π(S) (t ≥ S),

and we set (π∗, ψ∗) := Φ(π̃, π̂), where Φ is the reflection map in (4.14). We
then define the map Φ′ by setting(

π′′(t), ψ−(t), ψ+(t)
)
:=

{ (
π′(t), 0, ψ(t)

)
(t ≤ S),(

π∗(t), ψ∗(t), ψ(S)
)

(S ≤ t).

Note that here the precise way we have defined the reflection map in (4.14)
when the forward path starts on the position of the dual path becomes im-
portant. In Section 4.3, we used the convention that in such a case, the
reflected path is reflected to the left off the dual path, which is what we need
here. Note also that as a result of our definitions

π′′(t) = π(t) + ψ+(t)− ψ−(t) (t ≥ σπ), (6.18)

so that the difference ψ+ − ψ− of the two reflection functions corresponds
to the reflection function Ψn that we introduced earlier in the context of
reflected left paths in arrow configurations. In the light of our previous
considerations, the following theorem should not come as a surprise.

Theorem 6.12 (Law of forward left and dual right path) Assume that
(W l,Wr, Ŵ l, Ŵr) is a left-right Brownian web together with its associated
dual Brownian webs. Let (x, s), (y, u) ∈ R2, and let πl, π̂r be the almost surely
unique paths such that πl ∈ W l(x, s) and π̂r ∈ Ŵr(y, u). Let B = (Bt)t≥0 be
a standard Brownian motion, independent of π̂, and let T be an exponentially
distributed random variable with mean 2, independent of π̂ and B. Let L =
(Lt)t≥s be defined by Ls+t := x + Bt − t (t ≥ 0) and let (π′, ψ−, ψ+) :=
Φ′(L, π̂, T ), where Φ′ is the map in (6.16). Then (π, π̂) is equal in law to
(π′, π̂).
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The proof of Theorem 6.12 uses finite approximation and is very similar
to the proof of Theorem 4.16. We will use the following lemma, that plays the
same role as Lemma 4.15. Recall that we equipped the space C(R) with the
topology of uniform convergence. By definition, a point of continuity of Φ′ is a
triple (π, π̂, T ) ∈ Π↑×Π↓×[0,∞) with the property that if (πn, π̂n, Tn) ∈ Π↑×
Π↓× [0,∞) converge to (π, π̂, T ), then Φ′(πn, π̂n, Tn) converges to Φ′(π, π̂, T )
(in the topology on Π↑ × C(R)2).

Lemma 6.13 (Almost sure points of continuity) Let π ∈ Π↑ and
π̂ ∈ Π↓ be deterministic paths that satisfy either σπ ≥ τπ̂ or σπ < τπ̂ and
π̂(σπ) ̸= π(σπ), and let T be a [0,∞)-valued random variable with an atom-
less distribution. Then (π, π̂, T ) is almost surely a point of continuity of Φ′.

Proof Let (π, π̂, T ) ∈ Π↑ × Π↓ × [0,∞) be deterministic and assume that
(πn, π̂n, Tn) ∈ Π↑ × Π↓ × [0,∞) converge to (π, π̂, T ). Assume also that
either σπ ≥ τπ̂ or σπ < τπ̂ and π̂(σπ) ̸= π(σπ). Then Lemma 4.15 tells us
that Φ(πn, π̂n) → Φ(π, π̂). Let us write (π′

n, ψn) := Φ(πn, π̂n) and (π′, ψ) :=
Φ(π, π̂), and let us define Sn and S in terms of ψn and Tn, respectively ψ and
T , as in (6.17). Provided that Sn → S, we can then again apply Lemma 4.15
as well as the remark below it to conclude that Φ′(πn, π̂n, Tn) converges to
Φ′(π, π̂, T ).

What is complicating matters is that according to our definition, S does
not depend continuously on ψ and T . Indeed, if ψn → ψ (uniformly on R) and
Tn → T , then Sn may fail to converge to S precisely when inf{t ≥ σπ : ψ(t) =
T} differs from sup{t ≥ σπ : ψ(t) = T}, i.e., when the nondecreasing function
ψ has a plateau precisely at the level T . However, each nondecreasing real
function can have only countably many plateaus, so if T is random with an
atomless distribution, then this problem almost surely does not occur.

Proof of Theorem 6.12 Most of the work has already been done. We use
finite approxiation. We fix (xn, sn) ∈ Z2

even and (yn, un) ∈ Z2
odd such that

θεn(xn, sn) −→
n→∞

(x, s) and θεn(yn, un) −→
n→∞

(y, u).

If u ≤ s, then we can choose un ≤ sn and the statement of the theorem
follows easily from Theorem 5.19, so we assume from now on that s < u. We
then choose also sn < un for all n.

We let ωn be arrow configurations satisfying (5.4) and let R̂n be the
unique element of U r∗(yn, un). We let Ln be an independent drifted random
walk started from (xn, sn) as before, and we define a reflected path L′

n as in
(6.15). Then the conditional law of L′

n given R̂n is precisely the conditional
law of the the unique element of U l(xn, sn) given R̂n.
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For our present purposes, it will be convenient to construct L′
n in a slightly

different way. We define a shifted random walk L̃n by L̃n(t) := Ln(t) + 1
(t ≥ sn) if Ln(sn) < R̂n(sn) and L̃n(t) := Ln(t)−1 (t ≥ sn) if R̂n(sn) < Ln(sn)
and let Gn be a geometrically distributed random variable, independent of
everything else, such that

P[Gn = k] = (1− εn)
k−1εn (k ≥ 1).

We then set (
L̃′
n,Ψ

−
n ,Ψ

+
n ) := Φ′(L̃n, R̂n, 2Gn), (6.19)

where Φ′ is the map in (6.16). Let

Sn := inf
{
t ≥ sn : Ψ+(t) = 2Gn

}
.

Then it is not hard to check (see Figure 6.4) that the reflected random walk
L′
n above is equal in law to the path defined at integer times t ≥ sn by

L′
n(t) :=

{
L̃′
n(t) + 1 (sn ≤ t ≤ Sn − 1),

L̃′
n(t)− 1 (Sn ≤ t),

and then by linear interpolation for all t ≥ sn. We denote diffusively rescaled
paths and functions by

(R̂(n), L̃(n), L̃
′
(n), L

′
(n),Ψ

−
(n),Ψ

+
(n)) := θεn(R̂n, L̃n, L̃

′
n, L

′
n,Ψ

−
n ,Ψ

+
n ).

It is easy to see that as a consequence of (6.19), we have(
L̃′
(n),Ψ

−
(n),Ψ

+
(n)) := Φ′(L̃(n), R̂(n), 2εnGn).

Theorem 5.19 tells us that (L′
(n), R̂(n)) converges in law to (π, π̂), the forward

and dual path from Theorem 6.12. Since L′
n and L̃′

n differ at most by one, the
last statement remains true if we replace L′

(n) by L̃
′
(n). On the other hand, the

triple (L̃(n), R̂(n), 2εnGn) converges in law to (L, π̂, T ), where π̂ is the same
as before, L is an independent Brownian motion with drift −1, started from
(x, s), and T is an independent exponentially distributed random variable
with mean 2. Using Skorohod’s representation theorem, we can couple our
random variables such that the convergence is almost sure. The claim of the
theorem then follows from Lemma 6.13.

Remark Since a Brownian web is almost surely uniquely determined by its
dual, instead of characterising the law of a left-right Brownian web using
the joint law of a left forward path and a right forward path as we did in
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Section 5.6, one could also try characterisation based on the joint law of a left
forward path and a right dual path. This approach has the advantage that
we also have a good understanding of the conditional law of a left forward
path given a right dual path. As we mentioned in Section 5.5, we are lacking
a good description of the conditional law of a left forward path given a right
forward path.

6.5 Relevant separation points

Let N be a Brownian net and let (W l,Wr) be its associated left-right Brow-
nian web. We say that a left path πl and a right path πr separate in a point
z = (x, t) if πl ∈ W l

in(z), π
r ∈ Wr

in(z), and there exists a U > t such that
πl(u) < πr(u) for all u ∈ (t, U). A separation point of the Brownian net N is
any point z ∈ R2 for which there exist left and right paths that separate in
z. Separation points of the dual Brownian net N̂ are defined analogously.

Separation points can be viewed as the continuous analogue of branching
points in an arrow configuration, in the sense that at a separation point (x, t),
a path in the Brownian net with starting time S < t can choose whether to
turn left or right. Such a choice may or may not have a big influence on
how the path in the Brownian net continues. If the left and right path that
separate at (x, t) meet again very soon after t, then whether one turns left
or right at (x, t) does not make a big difference. This is the idea behind the
following definition.

Let S, U ∈ R satisfy S < U . By definition, an (S, U)-relevant separation
point of the Brownian net N is a point z = (x, t) ∈ R2 with S < t < U such
that:

(i) there exist πl ∈ W l
in(z) and π

r ∈ Wr
in(z) such that πl < πr on (t, U),

(ii) there exists a path π ∈ N (R× {S}) such that π(t) = x.

Clearly, each separation point is (S, U)-relevant for some S and U , since for
the path π in point (ii) we can take either of the paths πl and πr.

By the remark below Lemma 4.7, if D ⊂ R2 is a countable dense set,
then for each separation point z, there exists skeletal paths πl ∈ W l(D) and
πr ∈ Wr(D) that separate in z. Since two skeletal paths separate in at most
countably many points, it follows that the set of all separation points of a
Brownian net is a.s. countable. In fact, a much stronger statement holds.
Recall that a set R ⊂ R2 is called locally finite if R ∩K is a finite set for all
compact K ⊂ R2.
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Proposition 6.14 (Set of relevant separation points) For each S, U ∈
R with S < U , the set of (S, U)-relevant separation points of the Brownian
net is a locally finite subset of R2.

The proof of Proposition 6.14 needs some preparations. We start with a
simple observation.

Lemma 6.15 (Deterministic times) For each deterministic t ∈ R, the set
R×{t} almost surely does not contain any separation points of the Brownian
net.

Proof Let z = (x, t) ∈ R2 and assume that πl ∈ W l
in(z) and πr ∈ Wr

in(z)
satisfy πl < πr on (t, U) for some U > t. Then by Lemma 6.1 applied to the
dual Brownian net N̂ , there exists a π̂ ∈ N̂ (R × {U}) such that π̂(t) = x.
Thus W l

in(z) ̸= ∅ and N̂in(z) ̸= ∅, which by Lemma 6.7 a.s. does not occur if
t is deterministic.

We now start preparing for the proof of Proposition 6.14 in earnest. The
proof will be based on a density argument, that uses a sort of “approximate
relevant separation points. Fix deterministic S, U ∈ R with S < U , and let
(YS,t)t≥S and (ŶU,t)t≤U be defined by

YS,t :=
{
π(t) : π ∈ N , σπ = S

}
(t ≥ S),

ŶU,t :=
{
π̂(t) : π̂ ∈ N̂ , τπ̂ = U

}
(t ≤ U).

Let s, u ∈ R be deterministic times such that S < s < u < U . By Lemma 6.8,
almost surely, for each v ∈ YS,s there exist π

l ∈ W l
in(v, s) and π

r ∈ Wr
in(v, s).

Using notation first introduced in Exercise 4.30, we let

πl↑
(v,s) and πr↑

(v,s)

denote the unique paths in W l(v, s) and Wr(v, s) that are continuations
of each path in W l

in(v, s) or in Wr
in(v, s), respectively. Similarly, for each

y ∈ ŶU,u, we let

π̂l↓
(y,u) and π̂r↓

(y,u)

denote the unique paths in Ŵ l(y, u) and Ŵr(y, u) that are continuations of
each path in Ŵ l

in(y, u) or in Ŵr
in(y, u), respectively. We claim that almost

surely, for all v ∈ YS,s and y ∈ ŶU,u, the following statements are equivalent:

(i) πl↑
(v,s) < y < πr↑

(v,s) and (ii) π̂r↓
(y,u) < v < π̂l↓

(y,u).

By the symmetry between the forward and dual Brownian net, it suffices to
prove the implication (i)⇒(ii), and by the symmetry between left and right
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it suffices to prove that y < πr↑
(v,s) implies π̂r↓

(y,u) < v. But this follows from the

fact that forward and dual right paths do not cross, and (by Theorem 4.17),
points with both an incoming forward and dual right path do not occur at
deterministic times.

The considerations above motivate us to define, for each deterministic
S, U ∈ R and s, u ∈ R with S < s < u < U ,

QS,U(s, u) :=
{
(v, y) : v ∈ YS,s, y ∈ ŶU,u, π

l↑
(v,s) < y < πr↑

(v,s)

}
,

=
{
(v, y) : v ∈ YS,s, y ∈ ŶU,u, π̂

r↓
(y,u) < v < π̂l↓

(y,u)

}
.

When s and u are close together, we can view elements of QS,U(s, u) as
“approximate (S, U)-relevant separation points”. This idea will be made
more precise in the proof of Proposition 6.14. We first prove the following
lemma.

Lemma 6.16 (Approximate separation points) Let S, U ∈ R and s, u ∈
R satisfy S < s < u < U , and let a, b ∈ R satisfy a < b. Then

E
[∣∣{(v, y) ∈ QS,U(s, u) : v ∈ [a, b]}

∣∣]
= 2(u− s)(b− a)Ψ(s− S)Ψ(U − u).

(6.20)

where Ψ(t) denotes the density of the branching-coalescing point set, defined
in (6.9), and we use the convention Ψ(∞) := 2.

Proof By Lemma 6.6, the sets YS,s and ŶU,u are independent of each other
and of the restriction of N to the time interval [s, u]. By Propositions 6.5
and 6.9,

E
[∣∣YS,s ∩ [a, b]

∣∣] = (b− a)Ψ(s− S).

Now if we condition on YS,s, then under the conditional law, for each v ∈
YS,s, the sets W l(v, s) and Wr(v, s) almost surely contain unique paths πl

(v,s)

and πr
(v,s), and these are distributed as the solution to left-right equation

(5.16) started from (v, v). In particular, individually, they are just Brownian
motions with drift −1 and +1, so

E
[
πr
(v,s)(u)− πl

(v,s)(u)
∣∣YS,s] = 2(u− s).

Finally, if we condition both on YS,s and the restriction of N to the time
interval [a, b], then for each v ∈ YS,s, under the conditional law, the random

variable
∣∣ŶU,u ∩ [πl

(v,s)(u), π
r
(v,s)(u)]

∣∣ has expectation(
πr
(v,s)(u)− πl

(v,s)(u)
)
Ψ(U − u).
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Putting everything together, we arrive at (6.20).

Proof of Proposition 6.14 We will prove the claim under the additional
assumption that S, U ∈ R. The more general claim then follows since for
S ′ ≤ S < U ≤ U ′ we have that {(x, t) ∈ RS′,U ′ : S < t < U} is a subset of
RS,U . For each n ≥ 1, we choose S = sn0 < · · · < snn = U in such a way that

sup
{
|sni+1 − sni | : 0 ≤ i ≤ n− 1

}
−→
n→∞

0, (6.21)

and we define

Rn
S,U :=

{
(v, y, i) : 0 ≤ i ≤ n− 1, (v, y) ∈ QS,U(s

n
i , s

n
i+1)

}
.

We define a relation ∼ between RS,U and Rn
S,U as follows. By definition,

elements (x, t) ∈ RS,U and (v, y, i) ∈ Rn
S,U satisfy (x, t) ∼ (v, y, i) if sni <

t < sni+1 and there exist π ∈ N (R × {S}) and π̂ ∈ N̂ (R × {U}) such that
π(sni ) = v, π(t) = x = π̂(t), and y = π̂(sni+1). We claim that for each n,

∀(x, t) ∈ RS,U ∃(v, y, i) ∈ Rn
S,U s.t. (x, t) ∼ (v, y, i). (6.22)

To prove this, fix z = (x, t) ∈ RS,U and choose πl, πr, and π are as in
points (i) and (ii) of the definition of an (S, U)-relevant separation point.
By Lemma 6.1 applied to the dual Brownian net N̂ , there exists a dual path
π̂ ∈ N̂ with τπ̂ = U such that πl ≤ π̂ ≤ πr on [t, U ]. We fix such a dual
path π̂. By Lemma 6.15, at deterministic times there a.s. are no separation
points. Therefore, for each n, there is a unique 0 ≤ i ≤ n − 1 such that
sni < t < sni+1. Set s := sni and u := sni+1. We claim that setting v := π(s)
and y := π̂(u), we have that (v, y) ∈ QS,U(s, u) and hence (v, y, i) ∈ Rn

S,U .

Clearly v ∈ YS,s and y ∈ ŶU,u, so it remains to prove that

πl↑
(v,s)(u) < y < πr↑

(v,s)(s).

To see this, we observe that πl↑
(v,s) ≤ π on [s,∞) and hence πl↑

(v,s)(t) ≤ π(t) =

πl(t). Since left paths cannot cross each other and coalesce if they meet at any
time after their starting times (Lemma 4.5), using the fact that πl ∈ W l

in(x, t),
we see that πl↑

(v,s)(u) ≤ πl(u). We already saw that πl(u) ≤ π̂(u) = y, and
since u is deterministic, this inequality must be strict by Lemma 6.7. This
proves that πl↑

(v,s)(u) < y. A similar argument applies to πr↑
(v,s). This completes

the proof that (v, y) ∈ QS,U(s
n
i , s

n
i+1). The fact that (x, t) ∼ (v, y, i) is

immediate from the definition of (v, y, i), so (6.22) is proved.
Fix a, b, s, u ∈ R with a < b and S < s < u < U . Let O denote the open

set
O := (a, b)× (s, u).
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We claim that∣∣RS,U ∩O
∣∣ ≤ lim inf

n→∞

∣∣{(v, y, i) ∈ Rn
S,U : (v, sni ) ∈ O

}∣∣, (6.23)

where we allow for the case that both sides of the inequality are infinite. To
see this, let ∆ be any finite subset of RS,U ∩O. By (6.22), for each (x, t) ∈ ∆
and for each n, we can choose (vn, yn, in) ∈ Rn

S,U such that (x, t) ∼ (vn, yn, in).
Recall that the latter implies that sni < t < sni+1 and there exists a π ∈ N
with π(sni ) = vn and π(t) = x. Using (6.21) and the equicontinuity of N , this
implies that (vn, in) → (x, t) as n → ∞. Since the set O is open, it follows
that (vn, in) ∈ O for all n large enough. Thus,

lim inf
n→∞

∣∣{(v, y, i) ∈ Rn
S,U : (v, sni ) ∈ O

}∣∣ ≥ |∆|

for each finite subset ∆ of RS,U ∩O, which implies (6.23).

By Fatou’s lemma, (6.23) implies that

E
[
|RS,U ∩O|

]
≤ lim inf

n→∞
E
[∣∣{(v, y, i) ∈ Rn

S,U : (v, sni ) ∈ O
}∣∣].

Using Lemma 6.16 and Riemann sum approximation of the integral, we see
that

lim
n→∞

E
[∣∣{(v, y, i) ∈ Rn

S,U : (v, sni ) ∈ O
}∣∣] = 2(b− a)

∫ u

s

Ψ(t− S)Ψ(U − t)dt.

This proves

E
[∣∣RS,U ∩

(
(a, b)× (s, u)

)∣∣] ≤ 2(b− a)

∫ u

s

Ψ(t− S)Ψ(U − t)dt (6.24)

for all a < b and S < s < u < U . By monotone convergence, we can relax
the conditions S < s < u < U to S ≤ s < u ≤ U . We observe that by (6.9)
we have that Ψ(t) ∼ ct−1/2 as t→ 0 for some c > 0, so∫ U

S

Ψ(t− S)Ψ(U − t)dt <∞.

Inserting this into our previous formula, we see that RS,U is a locally finite
subset of R2, as claimed.

The following theorem says that the inequality in (6.24) is in fact an
equality.
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Theorem 6.17 (Density of relevant separation points) Assume that
S, s, u, U ∈ R and a, b ∈ R satisfy S ≤ s < u ≤ U and a < b. Let N be
a Brownian net and let RS,U be its set of (S, U)-relevant separation points.
Then

E
[∣∣RS,U ∩

(
[a, b]× [s, u]

)∣∣] = 2(b− a)

∫ u

s

Ψ(t− S)Ψ(U − t)dt, (6.25)

where Ψ(t) denotes the density of the branching-coalescing point set, defined
in (6.9), and Ψ(∞) := 2.

Proof (crude sketch) The first step of the proof is to show that

∀(v, y, i) ∈ Rn
S,U ∃(x, t) ∈ RS,U s.t. (x, t) ∼ (v, y, i). (6.26)

Note that formulas (6.22) and (6.26) together say that the relation ∼ is a
correspondence between RS,U and Rn

S,U in the sense defined in Section 2.5.
To prove (6.26), fix deterministic S < s < u < U and let (v, y) ∈

QS,U(s, u). By the definition of QS,U(s, u), there exist π ∈ N (R× {S}) and
π̂ ∈ N̂ (R× {U}) such that π(s) = v, π̂(u) = y, and πl↑

(v,s)(u) < y < πr↑
(v,s)(u).

Since s is deterministic, Lemma 6.8 tells us that there exist πr ∈ Wr
in(v, s)

such that πl ≤ π ≤ πr on [s,∞). Since s is deterministic, Theorem 4.17
now tells us that (v, s) is of type (1, 1) both in W l and Wr, so we must have
πl−
(v,s) = πl and πr+

(v,s) = πr on [s,∞). Since u is deterministic, Lemma 6.7 tells

us that πl(u) ̸= π̂(u) ̸= πr(u) a.s., so we must have πl(u) < π̂(u) < πr(u).
By Lemma 6.1, the existence of the path π̂ implies that πl < πr on [u, U).
Together with the fact that πl(s) = πr(s), this allows us to define t ∈ (s, u)
by

t := sup
{
t′ ∈ (s, U) : πl(t′) = πr(t′)

}
.

Since πl ≤ π ≤ πr on [s,∞) and πl < πr on (t, U), we see that z :=
(
π(t), t

)
is an (S, U)-relevant separation point. Applying this to s = sni and u = sni+1,
we obtain (6.26).

With formula (6.26) proved, we know that the relation ∼ is a corre-
spondence between RS,U and Rn

S,U . The remainder of the proof is rather
technical, so we only sketch the details. Let O := (a, b) × (s, u) and let
Rn

S,U(O) := {(v, y, i) ∈ Rn
S,U : (v, sni ) ∈ O}. The main idea is to show that for

large enough n the relation ∼ is a bijection between RS,U ∩O and Rn
S,U(O).

Since ∼ is a correspondence, for each (x, t) ∈ RS,U , we can choose
(vn, yn, in) ∈ Rn

S,U such that (x, t) ∼ (vn, yn, in). Using the equicontinuity
of the Brownian net, one can show that this implies that (vn, s

n
i ) → (x, t).

Using this and the fact that O is open and RS,U is locally finite, it is not hard
to show that for large enough n, the relation ∼ is a correspondence between
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RS,U ∩O and Rn
S,U(O), and each element of Rn

S,U(O) corresponds to at most
one element of RS,U ∩O.

To see that conversely, for large enough n, each element of RS,U ∩ O
corresponds to at most one element of Rn

S,U(O), one can use that the sets
QS,U(s, u) are unlikely to contain two points (v, y) and (v′, y′) for which v
and v′ lie very close to each other. In the proof of [SSS09, Prop. 2.9], this is
done by showing that one can change the definition of QS,U(s, u) so that it
does not contain such points without changing the density in (6.20) by much.
This part of the proof is a bit technical.

After showing that for large enough n the relation ∼ is a bijection between
RS,U ∩O and Rn

S,U(O), one obtains in particular that∣∣RS,U ∩O
∣∣ ≥ lim sup

n→∞

∣∣Rn
S,U(O)

∣∣.
The idea is now to take expectations on both sides and apply Lemma 6.16
to obtain a matching upper bound for (6.24). To justify interchanging the
limit superior and the expectation, one still needs to do some technical work.
Since we will never actually use Theorem 6.17 but be satisfied with the weaker
Proposition 6.14, we refer to [SSS09, Prop. 2.9] for the details.

6.6 Structure of separation points

We recall from Section 4.4 that points z ∈ R2 are distinguished into dif-
ferent types according to the local structure of the Brownian web at these
points. For a left-right Brownian web (W l,Wr), one can wonder what com-
binations of types in W l and Wr are possible. This question has completely
been answered in [SSS09]. The main result of that paper is summarised in
Figure 6.5.

In this section, we will only be interested in separation points. The fol-
lowing proposition identifies their position in the table Figure 6.5. Indeed,
they are precisely the points that are these are of type (1, 2)l in W l and of
type (1, 2)r in Wr.

Proposition 6.18 (Structure of separation points) Let N be a Brown-
ian net, let (W l,Wr) be its associated left-right Brownian web, let (Ŵ l, Ŵr) be
their associated dual Brownian webs, and let N̂ be the associated dual Brow-
nian net. Then almost surely, for all (x, t) ∈ R2, the following statements
are equivalent.

(i) (x, t) is a separation point of the Brownian net N ,
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(0, 1) (1, 1) (0, 2) (1, 2)l (1, 2)r (2, 1) (0, 3)
(0, 1) X X X X
(1, 1) X X X
(0, 2) X X X
(1, 2)l X X
(1, 2)r X X X X
(2, 1) X
(0, 3) X

W l

Wr

Figure 6.5: Possible combinations of types of points in W l and Wr.

(ii) (x, t) is a separation point of the dual Brownian net N̂ ,

(iii) (x, t) is of type (1, 2)l in W l and of type (1, 2)r in Wr.

(iv) There exist πr ∈ Wr and π̂l ∈ Ŵ l with σπr < t < τπ̂l such that πr ≤ π̂l

on [σπr , t] and π̂l ≤ πr on [t, τπ̂l ].

Proof We start by proving the implication (iv)⇒(i). Let (x, t) be as in
point (iv). Choose S, U ∈ Q such that σπr < S < t < Uτπ̂l ]. By Proposi-
tion 6.14, for each S, U ∈ Q, the set of (S, U)-relevant separation points is
locally finite, so there must exist an s ∈ (S, t) such that the set {(π(s′), s′) :
s < s′ < t} contains no (S, U)-relevant separation points.

Choose u ∈ (s, t)∩Q. By Lemma 6.8, there exists a path πl
n ∈ W l

in(π
r(u), u)

such that πl ≤ πr on [u,∞). Let

τ := sup
{
t′ ∈ [u, U ] : πl(t) = πr(t)

}
.

Since left paths and dual left paths do not cross, we must have πl ≤ π̂l.
By Lemma 6.7, at deterministic times, there are no points with both and
incoming forward and dual path, so we must have πl(U) < π̂l(U). It follows
that πl < πr on (t, U ], since otherwise they would create a wedge that is
entered by π̂l. This shows that τ ≤ t. On the other hand, we cannot have
τ < t since that would contradict our assumption that {(π(s′), s′) : s < s′ <
t} contains no (S, U)-relevant separation points. We conclude that πl and πr

separate in (x, t).
We next prove the implication (i)⇒(iii). Assume that z = (x, t) is a sep-

aration point of the Brownian net N . Then, by the definition of a separation
point, there exist πl ∈ W l

in(z) and πr ∈ Wr
in(z) such that πl < πr on (s, U ]
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for some U > s. There must exist S ∈ Q satisfying σπl < S < s. By Propo-
sition 6.14, for each such S, the set of (S, U)-relevant separation points is lo-
cally finite, so there must exist a u > s such that the set {(π(t), t) : s < t < u}
contains no (S, U)-relevant separation points.

Choose tn ∈ Q ∩ (t, u) with tn → t. By Lemma 6.8, for each n, there
exists a path πr

n ∈ Wr
in(π

l(tn), tn) such that πl ≤ πr
n on [tn,∞). For each n,

there must be some time un ∈ [u, U ] such that πl(un) = πr
n(un), for if that

would not be the case, then setting

τ := sup
{
t ∈ [s, u) : πl(t) = πr

n(t)
}
,

we would have that (π(τ), τ) is an (S, U)-relevant separation point with
s < τ < u, which contradicts our choice of u. Letting n → ∞, using
the compactness of Wr to select a convergent subsequence, we see that there
must exist a path π̃r ∈ Wr

in(z) such that πl ≤ π̃r on [s,∞) and πl(t) = π̃r(t)
for some t ∈ [u, U ]. In particular, this implies that π̃r < πr on (s, u], since
otherwise π̃r would by Lemma 4.5 have to coalesce with πr which would
contradict the fact that πl < πr on (s, U ].

This shows that Wr(z) contains apart from the path πr ∈ Wr
in(z) another

path π̃r that lies on the left of πr. By Theorem 4.17, it follows that z is of
type (1, 2)r in Wr. By symmetry, the same argument shows that z is of type
(1, 2)l in W l. By Lemma 4.20 and the fact that forward paths in a Brownian
web cannot cross dual paths, it follows that z is of type (1, 2)l in Ŵ l and of
type (1, 2)r in Ŵr.

We next prove the implication (iii)⇒(iv). Assume that z = (x, t) is of
type (1, 2)l in W l and of type (1, 2)r in Wr. Let πr ∈ Wr

in(z) and π̂
l ∈ Ŵ l

in(z).
Since right forward paths cannot cross left dual paths from right to left, one
of the following three statements must be true.

I There exists a u ∈ (t, τπ̂l ] such that πr ≤ π̂l on [σπr , u].

II There exists a s ∈ [σπr , t) such that π̂l ≤ πr on [s, τπ̂l ].

III πr ≤ π̂l on [σπr , t] and π̂l ≤ πr on [t, τπ̂l ].

We will rule out I and II, which leaves III as the only remaining possibility.
By Lemma 6.7, forward and dual paths in the Brownian net spend zero
Lebesgue time together, so if I holds, then there must exist a dense set
of times t′ ∈ [σπr , u] such that πr(t′) < π̂l(t′). This allows us to choose
(x′, t′) ∈ R2 with t < t′ < u and πr(t′) < x < π̂l(t′). Let π̂r ∈ Ŵr(x′, t′).
Then π̂r is contained between πr(t′) and π̂l(t′) and hence must pass through
(x, t). However, this implies that (x, t) is of type (1, 2)l in Wr, contradicting
our assumption.
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To also rule out II, we use arguments similar to those we have already
seen. Since dual right paths cannot cross forward left paths from left to
right, using the compactness of Ŵr, we see that there must exist a path
π̂r
1 ∈ Ŵr(x, t) such that π̂r

1 ≤ πl on [σπl , t]. Similarly, there must exist a path
π̂r
2 ∈ Ŵr(x, t) such that πl ≤ π̂r

2 on [σπr , t]. Now if II holds, then using the
local finiteness of relevant separation points, we see that there must exist a
third path π̂r

3 ∈ Ŵr(x, t) that does not separate from the path π̂l ∈ Ŵ l
in(x, t)

on some interval [s, t] of positive length. By Theorem 4.17, the existence
of such a third path contradicts the existence of an incoming right path at
(x, t).

We have now proved (iv)⇒(i)⇒(iii)⇒(iv), showing that all these condi-
tions are equivalent. By Theorem 4.17, condition (iii) is equivalent to (x, t)
being of type (1, 2)l in Ŵ l and of type (1, 2)r in Ŵr, which by what we have
already proved is equivalent to (ii).
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Générale. 2iéme éd. Actualités Scientifiques et Industrielles 1045.
Hermann & Cie, Paris, 1958.

[Cho69] G. Choquet. Lectures on Analysis. Volume I. Integration and
Topological Vector Spaces. Benjamin, London, 1969.

[Dud02] R.M. Dudley. Real Analysis and Probability. Reprint of the 1989
edition. Camebridge University Press, Camebridge, 2002.

[EFS17] A. Etheridge, N. Freeman, and D. Straulino. The Brownian net
and selection in the spatial Λ-Fleming-Viot process. Electron. J.
Probab. 22. (2017), Paper No. 39, 1–36.

177



178 BIBLIOGRAPHY

[EK86] S.N. Ethier and T.G. Kurtz. Markov Processes; Characterization
and Convergence. John Wiley & Sons, New York, 1986.

[Eng89] R. Engelking. General Topology. Heldermann, Berlin, 1989.

[Eva97] S.N. Evans. Coalescing Markov labelled partitions and a contin-
uous sites genetics model with infinitely many types. Ann. Inst.
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