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Chapter 1

One-dimensional voter models

1.1 The voter model

Let A be a countable set and let {0,1}* be the space of all configurations
x = (x(i));ez of zeros and ones on A. We will be interested in continuous-
time Markov processes (X;);>o with state space {0,1}*. We call X,(i) the
type of the site i € A at time ¢ > 0. Let (II;);ea an i.i.d. collection of rate one
Poisson subsets of R and let p be a probability kernel on A. The voter model
on A with kernel p is the continuous-time Markov process (X;);>o taking
values in {0,1}* with the following informal description:

Each site ¢ adapts at each time ¢ € II; the type of a random
neighbour, chosen according to the probability law p(i, -).

More formally, such a process can be constructed as follows. For each,j € A,
we define a voter model map votj; : {0,1}* — {0,1}* by the formula:

{x@) if k=1,

vot ;(z)(k) == (1.1)

xz(k)  otherwise.

The effect of this map is that the site ¢ adapts the type of the site j. We set
g .= {votji : 1,7 € A} and define a measure p on G x R by

p({vot;i} x [s,t]) == p(i,5)(t — s) (1,7 €A, s,teR, s<t). (1.2

We let w be a Poisson point set of G x R with intensity measure p, i.e., w
is a random subset of G x R such that the number of elements of w N A is
Poisson distributed with mean p(A) for each measurable A C G x R such
that p(A) < oo, and if Ay,..., A, are disjoint, then the random variables
wNA,...,wNA, are independent. Note that elements of w are of the form

5



6 CHAPTER 1. ONE-DIMENSIONAL VOTER MODELS

(m,t) with m € G and t € R. We can now apply [Swa22, Thm 4.19] to
conclude that almost surely, for each x € {0,1}* and s € R, there exists a
unique function [s,00) 3 t — X; € {0,1}* such that t — X;(i) is piecewise
constant and right continuous for each ¢ € A, and

m(X,—)  if (m,t) € w for some m € G,
Xs=x and X, = (1.3)

P otherwise,

where X;_ () := lim,; X,.(7) ( € A) denotes the state at the site i just before
time ¢, and X;— = (X;_(7))iea. Since the Lebesgue measure on R is atomless,
it almost surely never happens that two elements of w have the same time
coordinate, so this equation is well-defined. By [Swa22, Thm 4.19] it almost
surely has a unique solution for each z € {0,1}* and s € R simultaneously,
so we can define random maps (X, ;)s<¢ from {0, 1}* into itself by

Xst(z) :== Xy where (X¢)i>s solves (1.3). (1.4)

These random maps form a stochastic flow, which means that
Xs,s =1 and Xt,u o Xs,t = Xs,u (5 <t< U)a

where 1 denotes the identity map. If X, is a random variable with values in
{0,1}*, independent of w, then by [Swa22, Thm 4.19], setting

X, = Xou(Xo)  (t>0) (1.5)

defines a Markov process (X;);>o with values in {0, 1}*. We will call this the
voter model with kernel p. Let

Pz, -) ==P[Xou(z) € -] (z € {0,1}*, t > 0) (1.6)

denote its transition kernels. We equip {0, 1}* with the product topology
and we equip the space M ({0, 1}*) of probability measures on {0, 1}* with
the topology of weak convergence. Then {0,1}* is compact by Tychonov’s
theorem and consequently M, ({0,1}*) is compact by Prohorov’s theorem.
We let C({0,1}*) denote the space of all continuous functions f : {0, 1}* —
R, equipped with the supremumnorm. We associate a probability kernel K
on {0, 1}* with the linear operator K : C({0,1}*) — C({0,1}*) defined by

Kf(z) = / K (. dz) f(y).

Now [Swa22, Thm 4.19] tells us that
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(i) the map (x,t) — Py(z, -) from {0,1}* x [0, 00) to M1 ({0,1}*) is con-
tinous,

(11) PozlaHdPSPtIPSth (S,tZO),

where 1 denotes the identity map from C({0, 1}*) into itself and P,P; denotes
the composition of P, and P, viewed as linear operators. The conditions
(i) and (ii) say that the transition kernels (P,);>o form a Feller semigroup.
General theory tells us that each Feller semigroup is uniquely characterised
by its generator, which is the linear operator G : D(G) — C({0, 1}*) defined
by

Gf(z):=limt " (Pf — f), (1.7)

t—0

where by definition, the domain D(G) of G is the set of all functions f €
C({0,1}*) for which the limit in (1.7) exists with respect to the supremum-
norm. By [Swa22, Thm 4.30], the generator of the voter model is given

by

Gf@) = 30 {f(vorul@) — £(x)}) (e (01}, (18)

i,JEA

which is defined first for functions f that depend on finitely many coordinates,
and then for more general functions by taking the closure of the operator
whose domain are the functions depending on finitely many coordinates. We
refer to [Swa22, Section 4.4] for details.

What is important for us is that the evolution equation (|1.3) makes our
informal description of the voter model at the beginning of this section rig-
orous. More precisely, let (I;);ca as before be an i.i.d. collection of rate one
Poisson subsets of R. Conditional on (II;);eca, independently for each (i,t)
with ¢ € II;, we can choose a random j € A according to the probability
law p(i, - ). Then one can check that the collection of all pairs (votj;,t) with
t € II; and j random as just described, forms a Poisson point process on
G x R with intensity p as in . Thus, our formal construction of the voter
model coincides completely with the informal description given before.

1.2 One-dimensional voter models

We will exclusively be interested in the case that A = Z, the one-dimensional
integer lattice. In pictures, we draw space Z horizontally, we draw time R
vertically, and for each element (votj;,t) of the Poisson set w we draw an
arrow from the space-time point (7,¢) to the space-time point (i,t¢). We will
later need to distinguish several types of arrows that represent different sort
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of maps. For reasons that will become more clear later, we will represent the
voter map by an arrow with a black rectangle at its tip: ——mm

With this convention, a piece of the Poisson set w could look like this:

time
] iy
< .
——>m-
-
— ——>m-
[ DR
L —
space

In this example, the kernel p is the nearest-neighbour kernel

Loif -] =
p<z,j>:={2 i-gl=1 (1.9)

0 otherwise,

which has the effect that arrows only join sites at distance one from each
other. Starting from an initial state Xy € {0,1}%, we can find the solution

(X¢)t>0 of the evolution equation (1.3) by applying the right maps at the
right times:

-_—— -
—
—
—
—
-_——
—

—>

0 1 1 0 0 0 0 0 0 1
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This construction is called the graphical representation of the voter model.
More abstractly, we also refer to the Poisson set w as the graphical repre-
sentation of the voter model. It is quite easy to simulate a voter model on a
computer. In the following picture, a space-time point (i, ) is white or black
depending on whether X,;(i) = 0 or = 1. The initial state X{ is chosen such
that X(i) =1 for all ¢ <0 and Xg(i) = 0 for i > 0.

It is easy to see that the boundary between the ones and zeros evolves
like a continuous-time random walk that jumps with Poisson rate % one step
to the left and with Poisson rate % one step to the right. Therefore, by
Donsker’s invariance principle, if we rescale space by a factor €, time by a
factor €2, and send € — 0, then the boundary between the ones and zeros
should converge to a standard Brownian motion, as can already be seen a bit
from the following larger picture.




10 CHAPTER 1. ONE-DIMENSIONAL VOTER MODELS

Things get a bit more complicated when we allow for more general initial
states. In the following picture, the random variables (Xq(7));ez are i.i.d. and
uniformly distributed on {0, 1}. We have used periodic boundary conditions,
i.e., we have replaced Z by Z/N for some large value of N (in this picture,
N = 300).

In this picture, the boundaries between zeros and ones evolve like anni-
hilating random walks, which in the limit should converge to annihilating
Brownian motions. A slight complication is that in the limit, these annihi-
lating Brownian motions start from every point in space, which raises the
question whether the process is well-defined. The simulations suggest this is
the case, and the process “comes down from infinity”, in the sense that at
each positive time, the density of boundaries is already finite. We can also
define voter models with more than two types. In the following picture, each
site in the lattice originally has a different colour. The boundaries between
these colours now evolve like coalescing random walks, or in the limit, as
coalescing Brownian motions.
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In all these simulations, we used the nearest-neighbour kernel. If instead
we use the range two kernel

p(i,j) = {

then the picture gets more messy:

if 1 <|]i—j| <2,

I,

e}

otherwise,

Nevertheless, the simulations suggest that on a sufficiently large scale, the
limit should be the same as before, namely annihilating Brownian motions
starting from each point in space. We will see that this is indeed true. In
fact, it has been proved that the limit is universal, as long as the kernel p
has mean zero and a finite (3 4 €)-th moment.

1.3 Dual coalescing random walks

We have already seen that there is a close relation between one-dimensional
voter models and systems of annihilating or coalescing random walks, because
the latter describe the boundaries between intervals in which all sites have
the same type. In the present section, we will see that voter models are
related to coalescing random walks in yet another way, that is not restricted
to one dimension. If we want to know the state of a site ¢ at a time ¢, then
the obvious thing to do is to look back in the graphical representation how
this site got its type:
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time
] L.
< Bl <—
—
—>
—>

<

—>
—
—>
> —)T <« T(—
space

This means that starting from the space-time point (i,t), we walk till
the last time when the tip of an arrow indicates that the site ¢ copied the
type of another site j. From that time on, we follow the site j back in time
till the last time it changed its type and so on. Paths started from different
space-time points coalesce as soon as they meet:

time
] L.
Bl <— Bl <—
—
—>
—>

l<—

—>
—
|
> —)T = T(—
space

In this way, the graphical representation of the voter model can be used
to construct a system of coalescing random walks, where each individual path
is a continuous-time random walk that jumps with Poisson rate p(i, j) from
a site ¢ to another site j.

It will be useful to view this system of coalescing random walkers as an
interacting particle system in its own right. To this aim, we turn the graphical
representation of the voter model upside down and reverse the direction of
all arrows. We interpret an arrow from (7,t) to (j,t) of the form wm—s as
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saying that at this time, the coalescing random walk map should be applied,
which is defined as

0 ithk=1
ras)() = { y)Vyl)  itk=j (1.10)
y(k) otherwise.

Here, we interpret sites of type 1 as occupied and sites of type 0 as empty.
Then the map rw;; has the effect that if there is a particle at ¢, then this
particle moves to 7, coalescing with any particle that may already be present
on that site. We obtain a graphical representation w for a Markov process
(V)10 with values in {0,1}% by setting

W= {(rwij,t) : (Votji7—t) € w}, (1.11)

which corresponds to reversing time and replacing voter model maps by co-
alescing random walk maps. In a picture, the construction looks like this:

time
0 0 1 0 0 0 1 0 0 0

«——mm
«——mm
- ——mm
—|
«——mm -
_.—> -_—>
|
T T
0 1 1 1 1 1 1 1 0 0

This construction is well-defined by exactly the same theorems that we
cited in case of the voter model. One can check that w is a Poisson set and
that the generator H of the Markov process (Y;):>o is given by

Hf(y):=> pi, ){f(rwi() — F)}  (ve{0,1}").

ijeA

Here is a simulation of the process started form the fully occupied initial
state:
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-

p
R : t e

1.4 Adding branching and deaths

We can make our processes more interesting, but also more complicated, by
adding two additional maps. We define a branching map bra;; and death
map dth; by

bray () (k) = { wi)velg) k=7 (1.12)

x(k) otherwise,
and
dtn () (k) = 1 e (1.13)
th;(x = .
x(k)  otherwise,

with 2,7 € Z. In graphical representations, we represent the application of

the branching map bra;; at a time ¢ by a normal arrow —— from (4,t) to
(7,t), and we represent the application of the death map dth; at some time ¢

by a “blocking symbol” mm . A graphical representation that contains voter
model maps, branching maps, ad death maps then could look like this:
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time X

l€—|
- |
] | €
> -
(—
T T |
0 0 0 0 0 1 0 1 0 0

This is a good point to explain the reason why we have depicted voter
model maps, coalescing random walk maps, branching maps, and death maps
as we did. By definition, an open path in a graphical representation is a
piecewise constant, right-continuous function = : [s, u] — Z such that:

(i) If 4(t) # v(t—), then there is an arrow from (y(t—),t) to (y(t),t).
(i) If v(t) = v(t—), then there is no blocking symbol at (y(¢),t).

We call (y(s),s) the starting point of the path v and (y(¢),t) its endpoint.
We also say that « is an open path from (y(s),s) to (y(t),t). With these
conventions, one can check that for a voter model (X;);>o with additional
branching and deaths

Xi(j)=1 <« there is an open path from a point

S . . (1.14)
(,0) with Xo(i) =1 to (4,1),
and a similar statement holds for systems of coalescing random walks (Y;):>o
with additional branching and deaths. Given a graphical representation w
for a voter model with additional branching and deaths, we can construct
a graphical representation w for a system of coalescing random walks with
additional branching and deaths according to the recipe:

(i) If w contains an arrow from (i,t) to (j,t), then @ contains an arrow
from (j, —t) to (i, —t).

(ii) If w contains a blocking symbol at (i,t), then & contains a blocking
symbol at (i, —t).
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Even more briefly, this can be described as: reverse time, reverse the direc-
tion of all arrows, and keep the blocking symbols. This generalises out earlier
definition in . We can use the graphical representation w to construct
a stochastic flow (X, )s<y that describes how the Markov process X evolves
between two given times, and similarly we can use the graphical representa-
tion W to construct a stochastic flow (Y. )s<y that can be used to construct
the Markov process Y. We claim that these two stochastic flows are dual in
the sense that

Xsuw@)ANy#0 < xAY_,_s(y) #0, (1.15)

where 0 € {0, 1}% denotes the configuration that is constantly zero, and x Ay
denotes the pointwise minimum of two configurations x and y. Indeed,

Xsuw(@) ANy #£0 <
Ji,j € Zst. x(i) =1, y(j) =1, and there
exists an open path in w from (i, s) to (j,u)
=
Ji,j €Zst.x(i) =1, y(j) =1, and there
exists an open path in @ from (j, —u) to (i, —s)

& s ANY_,s(y) #0.

There is a slight complication: formula holds almost surely for given
(deterministic) times s < u, but it does not hold almost surely for all s < u
simultaneously, due to our convention that Markov processes and our open
paths are right-continuous. If we want to hold for all s < u simulta-
neously, then we have to modify our definitions of X ,, and Y, so that one
is right-continuous and the other is left-continuous.

Let us first look at the case that there are no deaths. We will be interested
in the interacting particle system with generator

Gf(x)=(1~e) 3 pli. ){f (vor;(x))  (x)}
+e Z é(i,j){f(braji(x)) — f(x)} (€ {0,1}Y), (1.16)

i,jEA

where p is the nearest-neighbour kernel defined in . In other words, this
is the interacting particle system where voter model maps votj; occur with
Poisson rate (1 —¢)p(i, j) and branching maps bra;; occur with Poisson rate
ep(i, 7). If we start in an initial state such that all sites i < 0 have type 1
and all sites ¢« > 0 have type zero, then it is easy to see that the boundary
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between the ones and zeros evolves like a continuous-time random walk that

jumps with Poisson rate (1 — 5)% one step to the left and with Poisson rate

% one step to the right. If we rescale all spatial distances by ¢ and time by
€2, then such a random walk converges to a Brownian motion with drift +1.
Similarly, if initially sites left of the origin have type 0 and right of the origin
type 1, then the limiting Brownian motion has drift —1. The inclusion of
even a little bit of branching gives the ones an advantage, so that starting
with a finite interval of ones, there is a positive probability that the ones

eventually take over the whole lattice:

The dual process, in the sense of (1.15]), is the process (Y;)i>o with gen-
erator

Gfly)=(1—¢) Z (i, 5){f (xwi; () — £ ()}
+e Z ]’O(i,j){f(braij(y)) —f(y)} (y € {0,1}Y). (1.17)

ijeA

In other words, this is the interacting particle system where coalescing ran-
dom walk maps rw;; occur with Poisson rate (1 — ¢)p(i,j) and branching
maps bra;; occur with Poisson rate ep(i, j). Here is a simulation of such a
process, started in the fully occupied initial state:
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One can check that product measure with intensity € is a reversible in-
variant law for this process. Moreover, if the process is started with finitely
many 1’s, then the position of the right-most one evolves like a continuous-
time random walk that jumps with Poisson rate (1 — 5)% one step to the left
and with Poisson rate % one step to the right. These observations suggest
that the process should have a diffusive scaling limit as we rescale all spatial
distances by ¢ and time by 2. The simulations suggest that just like co-
alescing Brownian motions, this limiting process comes down from infinity.
The limit process is not simply branching and coalescing Brownian motions,
however. Indeed, if we follow the right-most one, then this one branches to
the right with rate e, while we rescale time by a factor 2. This means that
in the rescaled process, the number of branchings per time unit is ¢! and
hence tends to infinity as ¢ — 0.

We next add deaths as well. We will be interested in voter models with
branching and deaths and generator of the form

Gf(x)=(1—2) Y pli.)){f(vot;i(z)) — f(z)}

4o 3 plis){f (bran(e)) - 1 (@)} (1.18)
+9e2 Z {f(dathi(z)) — f(z)} (z € {0,1}"),

where 6 > 0 is a fixed constant and we rescale space by € and time by 2 and
send ¢ — 0. In this case, the limit looks much more nontrivial than in the
case without deaths:
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For the dual process, the picture looked already complicated in the case
without deaths, and adding deaths does not complicate things much further:

Note that since deaths occur only with rate de2, and we rescale time by
a factor €2, for the rescale process the death rate is 6. So compared to the
picture with only branching and coalescing, we have just added deaths with
rate 4.

1.5 Outline

In the next chapters, we will develop a mathematical theory for diffusive
scaling limits of (biased) voter models and their dual systems (branching)
coalescing random walks. It turns out that mathematically, the collection of
all open paths in a graphical representation is a good object to work with.
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Our first aim will be to construct the Brownian web, which can informally be
described as an infinite collection of paths of coalescing Brownian motions,
starting from every point in space and time. In a second step, we will then
add branching, which yields the Brownian net. Adding also deaths yields the
Brownian net with killing.

The Brownian web arose from the work of Arratia [Arr79, [Arr81), was
further developed by Téth and Werner [TW9S], and then further by Fontes,
Isopi, Newman, and Ravishankar [FINRO4]. The Brownian net was invented
by Rongfeng Sun and myself in [SS08] and independently by Newman, Rav-
ishankar, and Schertzer in [NRS10]. The Brownian net with killing was
introduced by the same authors in [NRST5].

The Brownian web and net are believed to be universal scaling limits, that
occur in a wide range of problems. For the Brownian web, there are results
that show this is the limit even when the kernel is not nearest-neighbour
[NRSO5], but the analogue result for the Brownian net is at the moment still
open (though being investigated right now). Other models that have been
shown to be related to the Brownian web and net are self-repellent random
walks in one dimension [TW9§| and one-dimensional stochastic Potts models
at low temperatures [NRS17]. We conclude this chapter by showing, as an
illustration, a picture of such a Potts model.




Chapter 2

Topological prerequisites

2.1 Topological spaces

We are interested in diffusive scaling limits of systems of branching and
coalescing particles with small branching rate. In order to to be able to
formulate the convergence, in the present chapter, we introduce the right
spaces. In particular, we will need a space of paths, introduced in Section [2.7]
and the space of all compact sets of paths, equipped with the Hausdorff
metric, introduced in Section [2.5]

A topological space is a set X equipped with a collection O of subsets of
X that are called open sets, such that

(i) If (O,)4er is any collection of (possibly uncountably many) sets O, €
O, then | .+ O, € O.

(i) If O1,04 € O, then O; N O, € O.

(iif) 0, X € O.

Any such collection of sets is called a topology. It is fairly standard to also
assume the Hausdorff property

(iv) For each x1,29 € X, 11 # 29 301,05 € O 8.t. O, N Oy = 0, 1 € Oy,
To € 02.

A set V C X is a neighbourhood of a point x € X if x € O C V for some
O € O. We let V, denote the set of all neighbourhoods of x. A fundamental
system of neighbourhoods of x is a set V., C V, such that

VWey, V' eV st. VI CV.

21
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For example, the set of all O € O such that x € O is a fundamental system
of neighbourhoods of x. A sequence of points z, € X converges to a limit
x in a given topology O if for each V' € V, there is an n such that x,, € V
for all m > n. It suffices to check this condition for a fundamental system of
neighbourhoods V.. If the topology is Hausdorff, then limits are unique, i.e.,
r, — x and x, — 2’ implies v = 2’

If (X,0) is a topological space (with O the collection of open subsets of
X) and X’ C X is any subset of X', then X’ is also naturally equipped with
a topology given by the collection of open subsets O := {ONAX': O € O}.
This topology is called the induced topology from X. If x,,x € X', then
2, — 2 in the induced topology on X’ if and only if x,, — x in X.

A basis of a topology is a subset O C O such that each element of O
can be written as the union of (possibly uncountably many) elements of O'.
Equivalently, this says that

O0={0CcX:Vxe030 €0 st.z €0 CO}.

If O is a basis for O, then V., := {0 € O’ : x € O} is a fundamental system
of neighbourhoods of x. A topology is first countable if every x € X has
a countable fundamental system of neighbourhoods. A topology is second
countable if there exists a countable basis of the topology.

A set C' C X is called closed if its complement is open. Because of
property (i) in the definition of a topology, for each A C X, the union of all
open sets contained in A is itself an open set. We call this the interior of
A, denoted as int(A) := (J{O : O C A, O open}. Then clearly int(A) is the
largest open set contained in A. Similarly, by taking complements, for each
set A C X there exists a smallest closed set containing A. We call this the
closure of A, denoted as A := ({C : C D A, C closed}. If the topology is
first countable, then

A={re X : 3z, € X st. 1, — 1}, (2.1)

i.e., A is the set of all limits of sequences in A. A similar statement holds
for general topological spaces if we replace sequences by the more general
concept of a net, that we will not discuss here. Since a set is closed if and only
if it coincides with its closure, it follows from that in a first countable
topological space, knowing all convergent sequences and their limits uniquely
determines the closed sets and their complements, the open sets, and hence
the whole topology.

A topological space is called separable if there exists a countable set D C
X such that D is dense in X, where we say that a set D C X is dense if
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its closure is X, or equivalently, if every nonempty open subset of X has a
nonempty intersection with D.

A metric on a set X is a function d : X x X — [0, 00) such that for all
x,y,z2 € X,

(i) d(z,y) = d(y, ),
(i) d(z,2) < d(z,y) + d(y, 2),
(iii) d(x,y) = 0 implies = = y.

A metric space is a space with a metric defined on it. If d is a metric on X,
and B.(z) :={y € X : d(x,y) < €} denotes the open ball around z of radius
g, then

O:={0CX:Vze0 I >0st B(zx) CO}

defines a Hausdorff topology on X such that convergence z,, — z in this
topology is equivalent to d(x,,x) — 0. Note that the open balls form a
basis for this topology. Since open balls of radius 1/n around a point = form
a fundamental system of neighbourhoods, metric spaces are first countable.
We say that the metric d generates the topology O. If for a given topology
O there exists a metric d that generates O, then we say that the topological
space (X, 0) is metrisable. Such a metric, if it exist, can always be chosen
such that it is bounded. For example, if d is any metric on X, then d'(z,y) :=
d(x,y)A1is a bounded metric that generates the same topology. A metrisable
space is always first countable. It is second countable if and only if it is
separable.

A sequence z,, in a metric space (X,d) is a Cauchy sequence if for all
e > 0 there is an n such that d(zy,z;) < e for all k,I > n. A metric
space is complete if every Cauchy sequence converges. Every metric space
(X, d) has a completion, i.e., there exists a complete metric space (X, d) such
that X C X is dense and the metric on X is the induced metric from X,
ie., d(z,y) = d(z,y) for all z,y € X. Such a completion is unique up to
isometries.

A Polish space is a separable topological space (X, O) such that there
exists a metric d on X with the property that (X,d) is complete and d
generates O. Warning: there may be many different metrics on X that
generate the same topology. It may even happen that X is not complete
in some of these metrics, and complete in others (in which case X is still
Polish)ﬂ Example: R is separable and complete in the usual metric d(z,y) =

IThe use of the term “Polish space” has a long history and there is some variation in
its definition. While our use of the term is in line with most of the modern literature,
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|z — y|, and therefore R is a Polish space. But d'(x,y) := |arctan(x) —
arctan(y)| is another metric that generates the same topology, while (R, d’)
is not complete. Indeed, the completion of R w.r.t. the metric d’ is [—o0, o0].

2.2 Compactness

A subset K of a general topological space X (with collection of open sets
O) is called compact if every open cover has a finite subcover, i.e., if for
any collection (O, ),er of open subsets of X such that |, O, D K, there
exists a finite A C I' such that (J ., O, D K. Using this definition, it is
easy to see that the image of a compact set under a continuous function is
again compact. Compact subsets of Hausdorff topological spaces are closed.
A subset K of a metric space X is compact if and only if it is complete
and totally bounded, which means that for every ¢ > 0 there exists a finite
collection {B.(x1), ..., B:(x,)} of open balls such that

B.(z1)U---UB.(z,) D K.

From this, it is not hard to see that compact metrisable spaces are always
separable. If (z,),en is a sequence and m : N — N is a function such that
m(n) — oo as n — 00, then setting ), := Zp) (n € N) defines a new
sequence. Such a sequence is called a subsequence of the original sequence.
A cluster point of a sequence is a limit of a subsequence.

Theorem 2.1 (Bolzano-Weierstrass) Let X' be a metrisable space and
let K C X. Then K is compact if and only if every sequence in K has a
subsequence that converges to a limit in K.

The Bolzano-Weierstrass theorem also holds for second countable spaces.
(Note that metrisable spaces need in general not be second countable, and
conversely, not every second countable space is metrisable.) There is also a
version of the Bolzano-Weierstrass theorem that holds in general topological
spaces but in this case one has to replace sequences by the more general nets.
A set A is precompact if its closure is compact. In metrisable spaces, this
is equivalent to the statement that each sequence of points =, € A has a
convergent subsequence. Note that in this case we do not require that the
limit is an element of A. The following simple lemma is often useful.

Lemma 2.2 (Convergence and compactness) Let X' be a metrisable
space and let x,x, € X. Then x, — x if and only if the following two
conditions are satisfied.

some authors use “topologically Polish” for what we call “Polish” and reserve the latter
term for the more restricted setting of a complete and separable metric space.
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(i) The set {z, : n € N} is precompact.

(ii) For every subsequence Tp(m) such that xnam)y — ' for some 2’ € X,
m—00

one has ¥’ = x.

If (X, O) is a topological space, then a compactification of X is a compact
topological space X such that X is a dense subset of X and the topology
on X is the induced topology from X. If X’ is metrisable, then we say that
X is a metrisable compactification of X. It turns out that each separable
metrisable space X has a metrisable compactification [Cho69, Theorem 6.3].

A topological space X is called locally compact if for every x € X there
exists a compact neighbourhood of x. We cite the following proposition from
[Eng89, Thms 3.3.8 and 3.3.9].

Proposition 2.3 (Compactification of locally compact spaces) Let X
be a metrisable topological space. Then the following statements are equiva-
lent.

(i) X is locally compact and separable.

(ii) There exists a metrisable compactification X of X such that X is an
open subset of X.

(iii) For each metrisable compactification X of X, X is an open subset of X .

We note that if X satisfies the equivalent conditions of Proposition [2.3]
then it is possible to find a metrisable compactification X of X such that X'\ X
consists of just one point, usually denoted by co. In this case, X = X' U{oo}
is called the one-point compactification of X. The open sets of X' U {oo} are
all open sets of X plus all sets of the form {co} UO where X\O is a compact
subset of X.

A subset A C X of a topological space X is called a Gs-set if A is
a countable intersection of open sets (i.e., there exist O; € O such that
A =2, 0;. If X is metrisable, then every closed set A C X is a Gs-set,
since it is the intersection of the open sets {z € X : d(x,A) < 1/n}. The
following result can be found in [Bou58, §6 No. 1, Theorem. 1]. See also
[Oxt80, Thms 12.1 and 12.3].

Proposition 2.4 (Compactification of Polish spaces) Let X' be a metris-
able topological space. Then the following statements are equivalent.

(i) X is Polish.

(ii) There exists a metrisable compactification X of X such that X is a
Gs-subset of X.
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(iii) For each metrisable compactification X of X, X is a Gs-subset of X.

Moreover, a subset )Y C X of a Polish space X is Polish in the induced
topology if and only if YV is a Gs-subset of X.

We note that if X is a compactification of a Polish space X, equipped with
a concrete metric, then X is also the completion of X’ in this metric. Thus,
unless X is itself compact, it will never be complete in such a metric (even
though, by the definition of a Polish space, there exists metrics generating
the same topology with respect to which X is complete).

2.3 Weak convergence

Let X be a metrisable space. We let B(&X') denote Borel-o-field on X, i.e.,
the o-field generated by the open sets. We let C(X) denote the space of
all continuous functions f : X — R. We let B, (X) denote the space of all
bounded Borel-measurable real functions on & and we let Cp(&X') := C(X) N
By,(&X) denote the space of all bounded continuous real functions on X'. We
equip Cp(X) with the supremumnorm

[flloo := sup [f ()]
TEX

With this norm, C,(X) is a Banach space [Dud02, Theorem 2.4.9]. We let
M(X) denote the space of all finite measures on (X, B(&X')) and write M;(X)
for the subspace of all probability measures. We cite the following well-known
fact from [EK86, Theorems 3.1.7 and 3.3.1].

Proposition 2.5 (Weak convergence) Let X' be a separable metrisable
space. Then it is possible to equip My(X) with a metric dp such that

(i) (M1(X),dp) is a separable metric space,

(ii) dp(ptn, ) = 0 if and only if [ fdu, — [ fdu for all f € Ch(X).

If X is a Polish space, then dp can be chosen such that (M(X),dp) is
moreover complete.

In many applications, we are not interested in the precise choice of dp
(there are several canonical ways to define such a metric). Since a metrisable
topology is uniquely characterized by its convergent sequences, property (ii)
uniquely characterizes the topology generated by dp in terms of the topology
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on X. We call this topology the topology of weak convergence and denote
convergence in this topology as

o, = [

Proposition shows in particular that if X is a Polish space, then so is
M;(X), equipped with the topology of weak convergence.

One possible choice for a metric dp as in Proposition is the Prohorov
metric. For each subset A C X and ¢ > 0, we set

A ={zeX:d(x,A) <e} with d(z,A):=inf d(z,y).
yeA

If (X,d) is a metric space, then the Prohorov metric is the metric dp on
M (&) defined as

dp(p,v) == inf{e > 0: p(A) < v(A%) +e VA € B(X)}.

It follows from [EK86, Lemma 3.1.1] that dp is a metric. It is possible to
give an alternative characterisation of dp in terms of coupling. Let C'(u,v)
denote the space of all probability measures n on X x X whose first and

second marginals are given by p and v, respectively. We cite the following
lemma from [EK86, Thm 3.1.2].

Lemma 2.6 (Prohorov metric and coupling) Let (X,d) be a separable
metric space and let p,v € My(X). Then

dP(/IH V) = (2 2)

inf {¢ >0:3n€ Cu,v) s.t. n({(z,y) € X?: d(z,y) >e}) <e}.

In words, (2.2)) says that dp(u, ) is the infimum of all ¢ > 0 for which

it is possible to couple random variables X,Y with laws pu,v such that

Pld(X,Y) > ¢] < e. We cite the following lemmas from [EK86, Thms 3.1.7
and 3.3.1].

Lemma 2.7 (Properties of Prohorov metric) Let (X,d) be a separable
metric space and let dp be the Prohorov metric. Then (Mi(X),dp) is a
separable metric space. If (X, d) is complete, then so is (M1(X),dp).

Lemma 2.8 (Prohorov metric and weak convergence) Let (X,d) be
a separable metric space and let dp be the Prohorov metric. Then p,,u €
My (X) satisfy dp(pn, ) — 0 if and only if [ fdu, — [ fdu for all f €
Co(X).
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In particular, Lemmas [2.7] and [2.8| imply Proposition The following
well-known alternative characterisation of weak convergence [EK86, Theo-
rem 3.3.1] is sometimes useful.

Lemma 2.9 (Characterization with open and closed sets) Let p,
and p be probability measures on a metrisable space X. Then the following
statements are equivalent.

(i) s = p
(ii) limsup,,_,. pn(C) < p(C) for all closed C C X .
(ili) Uminf, e 1, (O) > u(O) for all open O C X.

Exercise 2.10 (Measures concentrated on a subset) Let X' be a Polish
space and let X' C X be a Gs-set, equipped with the induced topology. We nat-
urally identify My (X") with the subset of My(X) consisting of all i € M1 (X)
such that p(X') = 1. Show that the topology on My (X') coincides with the
induced topology from its embedding in My (X). (Hint: Lemmal2.9.) Use this
to conclude that Mq(X') is a Gs-subset of Mq(X). (Hint: Proposition[2.4)).

A very useful characterization of weak convergence in terms of coupling
is given by the next theorem [EK86, Cor 3.1.6 and Thm 3.1.8].

Theorem 2.11 (Skorohod representation) Let p, and p be probability
measures on a Polish space X. Then p, = u if and only if it is possible to
couple random variables X,, X with laws p,, i, respectively, in such a way
that X,, — X a.s.

The next result is known as Prohorov’s theorem (see, e.g., [EK86, Theo-
rem 3.2.2] or [Bil99, Theorems 5.1 and 5.2]).

Theorem 2.12 (Prohorov) Let X' be a Polish space. Let M1(X') be equipped
with the topology of weak convergence. Then a subset C C My (X) is precom-
pact if and only if C is tight, i.e.,

Ve > 03K C X compact, s.t. sup u(X\K) < e.
pnec

2.4 Locally uniform convergence

Let (X, d) be a metric space and let I C R be a closed interval. We let C;(X)
denote the space of all continuous functions f: I — X.
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Lemma 2.13 (Locally uniform convergence) For f,,f € C/(X), the
following conditions are equivalent:

(i) supd(fa(t), f(t)) — 0O for all compact C C I,
teC n—0o0

(ii) fu(tn) — f(t) for allt,,t € I such thatt, — t.
n—oo

n—oo

Proof Assume (i) and let t,,,t € I satisfy ¢, —_ t. By Lemma (i), there

exists a compact set C' C [ such that ¢, € C for all n (and hence also t € C).
Then for each € > 0, there exists an N < oo such that d(f,(t), f(t)) < ¢ for
alln > N. Now

d(fu(tn), F(1)) < d(fulta), f(tn)) +d(f(ta), f(1)) < e+ d(f(ta), f(1))

for all n > N, and hence

limsup d(fu(tn), f(1) <e
n—oo
by the continuity of f. Since € > 0 is arbitrary, this shows that (i) implies
(ii). On the other hand, if (i) fails for some compact C' C I, then for s
suitable subsequence we can choose t,, € C' and € > 0 such that

d(faltn), f(ta)) > e Vn.

Since C' is compact, by going to a further subsequence, we can without loss
of generality assume that ¢,, — ¢ for some t € C. Since

d(fn(tn)v f(t)) > d(fn<tn)> f(tn» - d(f(tn)a f(t)) > e+ d(f(tn)> f(lf)),

using the continuity of f, we see that for our chosen subsequence

liminf d(fa(t,), f(t)) > €,

n—oo

which contradicts (ii). |

There exists a metrisable topology on Cr(X) such that a f,, € C;(X) con-
verges to a limit f if and only if the equivalent conditions of Lemma [2.13
are satisfied. Note that by and the remarks below it, these condi-
tions uniquely determine the topology. Note also that by condition (ii) of
Lemma , the topology on C;(X') depends only on the topology on X and
not on the precise choice of the metric on X. A possible choice of a metric
on C;(X) is

plg, f)=> 27" S _dg®), f®).

I }
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where d is a bounded metric that generates the topology on X. Such a metric
can always be found: if d is any metric generating the topology on X', then
d'(z,y) :=d(z,y) A1 is a bounded metric that generates the same topology.
Usually, we do not care about the precise choice of the metric on C;(X'); apart
from p, there are many other possible choices. We call this the topology on
C;(X) the topology of locally uniform convergence.

2.5 The Hausdorff metric

Let (X, d) be a metric space, let K(X) be the space of all compact subsets
of X and set K (X) := {K € K(X) : K # 0}. Then the Hausdorff metric
dg on K, (X) is defined as

dy(Ky, Ks):= sup d(xq1, Ks3) V sup d(z, Ki)
r1€K, ro€ Ko (23)

= inf {¢>0: K, C K5 and K, C K},

where as before d(z, A) := inf,c 4 d(z,y) denotes the distance between a point
€ Xandaset A C X and A° := {z € X : d(z, A) < £}. The corresponding
topology is naturally called the Hausdorff topology. Note the subtle difference
between “the Hausdorff topology” (the topology generated by the Hausdorff
metric) and “a Hausdorff topology” (any topology satisfying condition (iv)
of Section . We extend this topology to K(X') by adding () as an isolated
point.

A correspondence between two sets A and B is a set R C A X B such
that

Vae AJbe Bs.t. (a,b) e R and Vb€ B Ja € Ast. (a,b) € R.

In words, this says that for each element of A, there is a “corresponding”
element of B and conversely for each element of B, there is a correspond-
ing element of A. We let Corr(A, B) denote the set of all correspondences
between A and B. The following exercise relates the Hausdorff metric to
correspondences.

Exercise 2.14 Let (X,d) be a metric space. Show that

du (K1, Kp) = inf sup  d(x1, 72) (K1, Ko € Ky (X)), (2.4)

ReCorr(K1,K2) (z1,72)ER

A good source for the Hausdorff topology is [SSS14, Appendix B]. Some
more information can be found in [BBIOI, Chapter 7]. The basic properties
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of the Hausdorff topologies can be summarised in three lemmas. We first
state all three lemmas, and then give proofs. The first lemma shows that
the Hausdorff topology depends only on the topology on X, and not on the
choice of the metric.

Lemma 2.15 (Convergence criterion) Let K,, K € K, (X) (n > 1).
Then K, — K in the Hausdorff topology if and only if the following three
conditions are satisfied

(i) There exists a compact C C X such that K, C C for all n.
(ii) K = {SB e X :dr, € K, s.t. x, —>:1:}.
(i) K = {x e X :dx, € K, s.t. © is a cluster point of (%)neN}-
The next lemma shows that IC; (X) is Polish if X is.

Lemma 2.16 (Properties of the Hausdorff metric)
(a) If (X,d) is separable, then so is (K (X),dxy).
(b) If (X,d) is complete, then so is (K (X),dy).

The final and third lemma implies in particular that K (&X') is compact
if X’ is compact.

Lemma 2.17 (Compactness in the Hausdorff topology) A set A C
K (X) is precompact if and only if there exists a compact C' C X such that
K C C for each K € A.

We now set out to prove Lemmas 2.17 We start by giving an alter-
native formulation of conditions (ii) and (iii) of Lemma [2.15|

Lemma 2.18 (Cluster and limit points) Conditions (ii) and (iii) of
Lemma [2.15 are equivalent to

(i) K= {:L‘ e X: nh_}rgod(x,Kn) = O},

(ili) K = {z € X :liminfd(z, K,) = 0}.
n—oo
Proof If for some x € X there exist (z,)neny With z, € K, for all n and
x, — ¢ € K, then d(z, K,,) < d(x,z,) — 0, and conversely, if d(z, K,,) — 0,
then we can choose z,, € K,, such that d(z, z,) < 2d(z, K,,) — 0, proving the
first equality. Similarly, if for some x € X there exist (x,),en With x, € K,
for all n and an infinite set N C N such that the subsequence (z,,),ecn satisfies
lim d(x,,x) =0,

N>3n—o0
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then clearly liminf, .. d(z, K,) = 0, and conversely, if this holds, then we
can choose an infinite set N C N such that

lim d(z, K,) =0,
N>n—oo
and for each n € N we can choose z,, € K,, such that d(z,z,) < 2d(z, K,).
Using the fact that K, # 0 for all n, we can extend (x,)n,en to a sequence
(Tn)nen wWith z,, € K, for all n € N that has x as a cluster point. |

Proof of Lemma We claim that condition (ii) of Lemma implies
that

supd(z, K,,) — 0. (2.5)
Indeed, if this is not the case, then there exist an € > 0 and an infinite N C N
such that sup,c g d(z, K,) > 2¢ for all n € N. Then we can choose z,, € K
such that d(x,, K,) > € for all n € N. Since K is compact, the sequence
(xn)nen has a subsequence that converges to a limit in K, i.e., there exists
an infinite N’ C N and = € K such that

r= lm =z,
N’'5n—00

Since d(z, K,,) > d(zp, K) — d(z,x,) > € — d(x, x,) for all n € N’, we have

liminf d(z, K,) > ¢,

N’'3n—o00
which contradicts condition (ii)” of Lemma [2.18, We next claim that condi-
tions (i) and (iii) of Lemma imply that

sup d(z, K) — 0. (2.6)

IGKn n—00

Indeed, if this is not the case, then there exist an ¢ > 0 and an infinite
N C N such that sup,cx, d(x, K) > 2¢ for all n € N. Then we can choose
x, € K, such that d(z,, K) > ¢ for all n € N. By condition (i), there exists
a compact C' such that K, C C for all n. It follows that there exists an
infinite N’ C N and = € C such that

r= lim =z,
N’'3n—o00
Since d(z, K) > d(zp, K) — d(x,x,) > ¢ — d(x,z,) for all n € N’, taking
the limit, we see that d(x, K) > € and hence z ¢ K. On the other hand,
x is a cluster point of the sequence (z,),en, S0 We arrive at a contradiction



2.5. THE HAUSDORFF METRIC 33

with condition (iii). Together, and show that (i)—(iii) imply that
du(K,, K) — 0 as n — oo.

Assume, conversely, that dy(K,, K) — 0 as n — oo. Set K, := K and
N := NU {oc}. We claim that C' := |J, 5 K» is compact. To see this, let
(zr)ken be a sequence with z;, € C for all k. We claim that (zy)ren has a
subsequence that converges to a limit in C. For each k£ € N, we can choose
n(k) € N such that x; € K,). If there exists an n € N such that n(k) = n
for infinitely many values of k, then the claim follows from the compactness
of K,. In the opposite case, there exists an infinite set N C N such that
n(k) € N for each k € N and n(k) # n(k') for each k, k' € N with k # k.
For each k € N, we can find zj, € K such that d(z}, x) < 2d(K, K, )). Since
K is compact, we can find an infinite set N’ C N such that the sequence
(7}, )ken’ converges to a limit # € K. Since d(x, z;) < d(x, x),) + 2d(K, Kyx))
tends to zero as N’ 5 k — oo, we conclude that (x})rens converges to
r € K C C, proving the compactness of C'. In particular, this proves that
the sets K, satisfy condition (i).

To see that conditions (ii) and (iii) hold too, we observe that for each
x € K, one has d(z, K,) < d(K, K,) — 0 as n — oo, while for z ¢ K, one
has d(z, K,) > d(z,K) — d(K, K,,) = d(z,K) > 0 as n — oo. This shows
that

{z € X :liminfd(z,K,) =0} C K C {z € X: lim d(z, K,) =0},
n—oo

n—oo

so by Lemma we conclude that conditions (ii) and (iii) are satisfied. B

The proofs of Lemmas and need a little preparation. Recall that
in any metric space (X, d), by definition, a set A C X is totally bounded if for
every € > 0 there exists a finite collection of points x1,...,x, € X such that
A C U, Be(x;), where B.(z) denotes the open ball of radius £ around z.
It is well-known that total boundedness is equivalent to the statement that
every sequence r,, € A has a Cauchy subsequence. As a consequence, a set
A C X is compact if and only if it is complete and totally bounded.

Lemma 2.19 (Totally bounded sets in the Hausdorff metric) A set
A C K. (X) is totally bounded in the metric dy if and only if the set A =
{r e X 3K € A s.t. x € K} is totally bounded in the metric d.

Proof Let B.(z) denote the open ball in X of radius ¢ around a point
x € X, and let B.(x) denote the open ball in I, (X) of radius ¢ around a
point K € K, (&X).

Assume that A is totally bounded. Let ¢ > 0 and let A C X be a finite set
such that A = J,cx B-(7). Let K € Aand set A" :={zx € A: B.(z)NK #
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0}. Then for all y € K there is an x € A’ such that d(z,y) < € and for all
x € A there is a y € K such that d(z,y) < € proving that dy(A', K) < e.
This shows that

Ac|JB.(),
!

where we take the union over all nonempty subsets A’ C A. Since there are
finitely many such A’, and each A’ is a compact subset of X', this proves that
A is totally bounded.

Conversely, if A is totally bounded, then for each ¢ > 0 we can find
Ky,...,K, € K (X) such that A C (J,_, B:/2(K,,), where B.(K) denotes
the open ball in the Hausdorff metric of radius € centered around a compact
set K. Since compact sets are totally bounded, for each k£ we can find finitely
many points Ty 1, ..., Zgm, € X such that K C U;n:kl B.ja(xy;). It follows
that A C Uy, U2 Be(2,5), showing that A is totally bounded. |

Proof of Lemma To prove part (a), let D be a countable dense subset
of (X,d), and let A be the set of all finite nonempty subsets of D. Then
A C K4 (X) and A is countable, so it suffices to prove that A is dense in
(K4 (X),dn). We will show that for each K € K, (X) and & > 0, there exists a
set A € A such that dy(A, K) < e. Since K is compact, it is totally bounded,
so we can find a finite set B C & such that K C |J,.p B:/2(x). Without loss
of generality, we can assume that d(z, K) < ¢/2 for all x € B. Since D is
dense, for each x € B we can find an 2’ € D such that d(z,2’) < £/2. Then
A= {2’ : x € B} is a finite subset of D such that for all y € K, there exists
a z € A such that d(y,z) < e and conversely, for all z € A, there exists a
y € K such that d(y, z) < €, proving that dg(4, K) < e.
To prove part (b), let K, € K, (X) be a Cauchy sequence and let

A:={z e X: lim d(z,K,) =0}, B:={z€ X :liminfd(z, K,)=0}.
n—o0 n—o0
We claim that A = B. Indeed, if there exists some x € B\ A, then there
is some £ > 0 such that for each k > 1 we can find n,m > k such that
d(z,K,) < ¢ and d(z, K,,) > 2¢, hence dy(K,, K,,) > ¢, contradicting the
assumption that the K, form a Cauchy sequence.

Let K := A = B. We claim that K is closed. To prove this, we will show
that if z, € A satisfy x; — x for some x € X, then z € B. Since z, € A
we can find z, € K, such that 3, — x; as n — oo. For each k, we can
choose n(k) > k such that d(xynw, zr) < d(xk, ). Then n(k) — oo and
d(x, Knry) < d(@pnw), ) < 2d(zg, ) — 0 as k — oo and hence z € B.

We next claim that K is compact. Since each sequence in the set {K, :
n > 1} contains a Cauchy subsequence, the set {K,, : n > 1} is totally
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bounded, hence by Lemma there exists some totally bounded set con-
taining all of the K,,. Let C' denote its closure. Then C' is compact since X
is complete, hence also K C C'is compact since K is closed.

Since the sets K, are contained in the compact set C' and since A = B,
we see that conditions (i)—(iii) of Lemma are satisfied, so we conclude
that dy(K,, K) — 0 as n — oo. We have shown that every Cauchy sequence
in (IC+(X), dH) is converges, i.e., this space is complete. |

Proof of Lemma Assume that A C K, (X) and that there exists
a compact C' C & such that K C C for all K € A. Then C is totally
bounded and complete, so by Lemmas and (b), the same is true for
{K € K{(X): K C X}, implying the latter is compact and hence its subset
A is precompact.

Conversely, if A C K, (X) is precompact, then its closure A in the metric
dy is compact. To complete the proof, it suffices to show that C = {x €
X : 3K € Ast.x € K} is compact. Since A is compact, it is totally
bounded, so Lemma [2.19 implies that C' is totally bounded too. It therefore
suffices to show that C' is complete. Any cluster point of a Cauchy sequence
must necessarily be a limit point. Therefore, to show that C' is complete,
it suffices to show that each Cauchy sequence z,, € C has a cluster point
z € C. Choose K,, € A such that z,, € K,,. Since A is compact, by going to
a subsequence if necessary, we may assume that K, — K for some K € A.
Since dy(K,, K) — 0, we can choose z!, € K such that d(z,,z!) — 0. Since
K is compact, by going to a further subsequence if necessary, we may assume
that a/, — x for some x € K. Since d(x,,x) < d(x,,x)) + d(z!,z) — 0 this
proves that the original sequence x,, has a cluster point z € K C C. |

We conclude this section with two more lemmas. The first lemma is useful
when proving convergence of I, (X')-valued random variables.

Lemma 2.20 (Tightness criterion) Assume that X is a Polish space and
let K, (n € N) be K (X)-valued random variables. Then the collection of
laws {P[K,, € -] :n € N} is tight if and only if for each € > 0 there exists a
compact C C X such that P[K,, C C] > 1 —¢ for alln € N.

Proof This is an immediate consequence of Lemma[2.17 Indeed, ifa C' C X
is compact, then by Lemma [2.17 the set C := {K € Ky(X) : K C C} is
compact, so it is clear that the conditions of the lemma imply tightness of the
laws {P[K,, € -] : n € N}. Conversely, if these laws are tight, then for each
e > 0 there exists a compact C C K (X) such that P[K,, € C] > 1 — ¢ for
all n € N, which by Lemma implies the existence of a compact C C X
such that K C C for all K € C and hence also P[K,, C C] > 1 —¢. n

The next and final lemma of this section says that if v : X — ) is a
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continuous map between metrisable topological spaces, then K (X) 2> K —
Y(K) € K (Y) is also a continuous map.

Lemma 2.21 (Map acting on compact sets) Let X and ) be metrisable
topological spaces, let 1 : X — Y be a continuous map, and let

DK):={y@): 2 € K} (K€K (X))

denote the image of a compact set K C X under ¢. Then ¥(K) € K, (V)
for all K € K (X), and the map ¢ : K (X) — K (X) is continuous with
respect to the Hausdorff topology.

Proof The well-known fact that the continuous image of a compact set is it-
self a compact set has already been mentioned at the beginning of Section[2.2]
To see that ¢ : K, (X) = K4 (X) is continuous, assume that K,, — K. Then
by Lemma [2.15]

A e (X)st. K, CCVn>1 (2.7)

and
K={ze X : 3z, € K, s.t. x, — z}

2.8
={r e X :dzx, € K, s.t. x is a cluster point of (z,)nen}- (2:8)

Since 9(C) is compact and U(K,) C (C) for all n > 1, by Lemma m, to
prove that ¢¥(K,) — ¥(K), it suffices to show that
D(K)={y € X : Iy, € ¥(K,) s.t. yo — y}
—{y € X : Ty, € Y(K,) s.t. y is a cluster point of (Y, )nen}-
The latter condition can be rewritten as
{V(2):2e K} ={ye X3z, € K, s.t. ¥(x,) = y}
={ye X : 3z, € K, s.t. y is a cluster point of (@D(mn))neN}.

It therefore suffices to prove that
(i) {¢(z):ze K} c{ye X : 3, € K, s.t. ¥(z,) = y},
(i) {y € X : Jz, € K, s.t. y is a cluster point of (w(wn))neN}
C{v(z):z e K}.

To prove (i), we use that by (2.8]), for each x € K there exist z,, € K,, such
that x, — z, and hence ¥ (x,) — ¥(z) by the continuity of ¢). To prove
(ii), assume that =, € K, (n € N) and there exists a sequence (n(m)),>1
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with lim,, o n(m) = oo such that y = lim,, e ¥(Zp(m)). By and the
compactness of C', by going to a further subsequence if necessary, we can
assume without loss of generality that lim,, . Tp@m) = x for some x € C.
Then z € K by and limy, o0 ¥(Tnem)) = ¥(x) by the continuity of
which shows that y = i (z). |

2.6 Squeezed space

Let (X,d) be a metric space, let {*} be a set containing a single element
called *, which we assume is not an element of X', and let

R(X) == (X x R) U {(*, —00), (,+0) }. (2.9)

See Figure [2.1|for a picture of R(R), with R := [~o0, 00]. We will show that
it is possible to equip R(X) with a metrisable topology such that (x,,t,) —
(xz,t) € X x R if and only if x, — z and ¢, — ¢, while (z,,t,) — (%, £oo) if
and only if ¢,, — oo (with no conditions on z,). We can think of the space
R(X) as being obtained from X x R by squeezing the sets X' x {400} into
the single points (*, 00). For this reason, we call R(X) the squeezed space.

Figure 2.1: The squeezed space R(R).

To define a metric on R(X’) with the desired properties, we first extend
d to X U {x} by setting d(z,*) = d(*,z) := oo if x # * and := 0 otherwise.
Let R := [~00, 00| denote the usual two-point compactification of the real
line. We fix a continuous function ¢ : R — [0, 00) such that ¢(¢) > 0 for all
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t € R and ¢(+oo) = 0, we choose a metric di that generates the topology
on R, and we define dyy, : R(X)* — [0, 00) by

dses (2, 9), (y, 1)) = (D(s) A b(1)) (d(z, y) A1) +|o(s) — o(t)] +dg(s, t) (2.10)

Lemma 2.22 (Metric on squeezed space) The function dsy, is a metric

on R(X).

Proof For brevity, we write d'(x,y) := d(z,y) A1l. Then d’ is a metric on X.
The only nontrivial statement that we have to prove is the triangle inequality,
and it suffices to prove this for the function

di, (2, 9), (y, 1)) = (6(s) A G())d (2, y) + |6(s) — o(t)].

We estimate

dugy (2, 5), (2, 0)) < (6(3) Ad(w) (d (2, y) +d'(y, 2)) + |6(s) — $(u)]. (2.11)

If o(t) > ¢(s) A ¢(u), then ¢(s) A ¢(u) is less than ¢(s) A ¢(t) and also less
than ¢(t) A ¢(u), so we can simply estimate the expression in (2.11)) from
above by

(@(s) A o) d (2, y) + (6(t) A d(w))d (y, 2)) + |¢(s) = d(t)] + |6(t) — $(u)]
and we are done. On the other hand, if ¢(t) < ¢(s) A ¢(u), then

|6(s) = ()| + [6(t) = d(u)| = |¢(s) — B(u)] +2((s) A B(u) — 6(1)).

Using the fact that d’ < 1, we can now estimate the right-hand side of (2.11)
from above by

ot )(d’(:c y) +d'(y, z)) 2(¢(s) A d(u) — (1) + |d(s) — ¢(u)|
= (o(s) A o(t)d' (z,y (cb(t) A d(u))d (y, z)
+\<b (t)|+\¢ o(u)|,

and again we are done. |

The following lemma shows that the topology generated by the metric
dsq, has the desired properties we stated earlier. In particular, this lemma
shows that the topology generated by the metric dyy, depends only on the
topology on X and not on the choice of the metric on X'. Recall that by ,
a metrisable topology is uniquely characterised by its convergent sequences,
so the topology on R(X) is uniquely characterised by the conditions (i) and
(ii) below.



2.6. SQUEEZED SPACE 39

Lemma 2.23 (Topology on squeezed space) A sequence (z,,t,) € R(X)
converges to a limit (z,t) in the metric dy, defined in if and only if
the following two conditions are satisfied:

(i) t, — t in the topology on R,
(i) oft € R, then x,, — x in the topology on X.
Proof This is immediate from the definition of dg,. |

The following lemma shows that R(X) is a Polish space if X is Polish.
Lemma 2.24 (Properties of squeezed space)
(a) If (X, d) is separable, then so is (R(X), dsq,)-
(b) If (X,d) is complete, then so is (R(X), dsqz)-

Proof If D is a countable dense subset of (X, d), then D x Q is a countable
dense subset of (R(X), dsq,), proving (a).

To prove (b), let (x,,t,) be a Cauchy sequence in (R(X), dsq,). Then by
t, is a Cauchy sequence in R and hence t,, — t for some t € R. Ift € R,
then by x, is a Cauchy sequence in (X, d) so by the completeness of
the latter, z,, — x for some = € X. By Lemma [2.23] it follows that (x,,t,)
converges, proving the completeness of (R(X), dsq)- |

The following lemma identifies the compact subsets of R(X). In partic-
ular, the lemma shows that R(X') is compact if X' is compact.

Lemma 2.25 (Compactness criterion) A set A C R(X) is precompact
if and only if for each T < oo, there exists a compact set K C X such that
{reX:(z,t)e A te[-T,T]} C K.

Proof Assume that A C R(X) has the property that for each T' < oo, there
exists a compact set K C X such that {z € X : (z,t) € A, t € [-T,T]} C K.
To show that A is precompact, we will show that each sequence (z,,t,) € A
has a convergent subsequence. By the compactness of R, we can select a
subsequence (2/,,¢) such that ¢, — t for some t € R. If t = 00, then by

n»’n

Lemma [2.23 (2, t,,) — (*,£00) and we are done. Otherwise, there exists a
T < oo such that t!, € [-T,T] for all n large enough. By assumption, there
then exists a compact set K C & such that z/, € K for all n large enough,
so we can select a further subsequence such that (z/,,t!) converges to a limit
(x,t) € X xR.

Assume, on the other hand, that A C R(X) has the property that for
some T' < 0o, there does not exist a compact set K C X such that {x € X :

(x,t) e A, t € [-T,T]} C K. Set
B:={z€X:(x,t) € Aforsomete[-T1T]}
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The closure of B cannot be compact, since this would contradict our assump-
tion. It follows that there exists a sequence x,, € B that does not contain a
convergent subsequence, and there exist ¢, € [T, T] such that (x,,t,) € A.
But then, in view of Lemma , the sequence (z,,t,) cannot contain a
convergent subsequence either, proving that A is not precompact. |

2.7 Path space

Let X be a metrisable space and let R(X) be the squeezed space defined
in Section [2.6| By definition, a path in X is a nonempty compact subset
m C R(X) such that {z € X' : (z,t) € 7} has at most one element for each
given t € R and the set

I.:={teR:3z e XU{x}st. (z,t) e} (2.12)

is a closed subinterval of R. We call I, := I, N R the domain of m and we
call

or:=inf I, and 7, :=supl, (2.13)

the starting time and final time of the path m. For each t € I, we define
w(t) € XU {x} by {n(t)} :={2z € X : (x,t) € 7}. Then I, >t 7(t) is a
function from I to X. We let II(X’) denote the set of all paths in X.

Lemma 2.26 (Path viewed as a function) The domain I, of a path
m € II(X) is a closed subinterval of R, and t — m(t) is a continuous function
from I to X. Conversely, if I C R is a closed interval and t — f(t) is a
continuous function from I to X, then there exists a path m € II(X) such
that I, = I and ©(t) = f(t) (t € I). The path 7 is uniquely determined by
the interval I and function f, except in the trivial case when I = (), in which
case there are two possible choices for .

Proof We first show that for each 7 € II(X), the function I, > t — m(t)
is continuous. Assume that t,,t € I, and t, — t. Since 7 is compact,
the sequence (7(t,),t,) is precompact. Since m(t) is the only element of
{r € X : (2,t) € 7}, each subsequence of the (w(t,),t,) must converge
to ((t),t). By Lemma [2.2] we conclude that (7 (t,),¢,) — (m(),t). Since
t € R, by Lemma [2.23] we conclude that 7(¢,) — m(¢), which shows that
I >t 7(t) is continuous on I as claimed.

Let I C R be a closed interval and let f : I — X be continuous. Assume
that I is nonempty. Let I be the closure of I in R. Extend f to I by setting
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f(t) == xif t = +00. Let m := {(f(t),t) : t € I}. It follows from Lemma [2.23]
and the continuity of f that the map

I3t (f(t),t) € R(X) (2.14)

is continuous. Since I is compact and since 7 is the image of I under the
continuous map , we conclude that 7 is compact. Clearly, {z € X :
(x,t) € 7} has precisely one element for t € I, and is empty for t ¢ 1.
This shows that 7 € TI(X). Since I is the only closed subinterval of R such
that I NR = I, we see that 7 is uniquely determined by the interval I and
function f.

In the special case that I = (), it is easy to see that there exist precisely
two paths 7 such that I, = I (the condition 7(t) = f(¢) (¢t € I) is void in this
case). These are the trivial paths with I, = {00} or = {oo}, respectively.

|

In view of Lemma [2.26] we often view a path 7 € II(X) as a continuous
function defined on a closed interval I, C R. If I C R is a closed nonempty
interval, then we identify the space C;(X') defined in Section with the
subset of II(X') defined as {m € II(X) : I, = I}.

Let K4 (R(&X)) be the set of nonempty compact subsets of the squeezed
space R(&X). We equip K (R(X)) with the Hausdorff topology. We observe
that II(X) is a subset of K (R(X)). We naturally equip II(X) with the
induced topology from its embedding in I, (R(X)).

Lemma 2.27 (Paths with a fixed domain) Let I C R be a closed
nonempty interval. The induced topology on C;(X) from its embedding in
[I(X) is the topology of locally uniform convergence.

Proof Assume that m,,7 € C;(X), viewed as functions, satisfy m, — 7
locally uniformly. We need to show that viewed as compact subsets of R(X),
the sets m,, 7w satisfy 7, — 7 in the Hausdorff topology on K (R(X)). Let [

denote the closure of I in R. By Lemma [2.15] we need to show that |, 7,
is precompact and

T C {(z,t) € R(X) : 3t, € I s.t. (mu(tn), tn) — (z,t)},
{(z,t) € R(X) : (x,t) is a cluster (2.15)
point of (ﬂ'n(tn), tn) for some ¢, € 7} C .
To see that |J, 7, is precompact, we need to show that each sequence of

the form (7, (m)(tm); tm)m>1 has a convergent subsequence. If n(m) infinitely
often takes the same value n, then the claim is obvious from the compactness
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of m,, so without loss of generality we may assume that n(m) — oo. Going
to a subsequence if necessary, we may assume that t,, — ¢ for some t € I. If
t = +o0o, then the claim is again obvious so we may assume that t € I. In
this case Lemma (i) tells us that m,am) (tm) — 7(t) so we have found a
convergent subsequence as required.

To prove the first inclusion in (2.17)), let (7(¢),¢) € 7 and set ¢, := ¢ for
all n. If t € I, then m,(t) — 7(t) since locally uniform convergence implies
pointwise convergence, and if ¢ = +oo then trivially (x,t) — (*,t) asn — oc.
To prove the second inclusion, assume that (7,(m)(tnm))s tam)) — (2,1) as
m — oo for some (x,t) € R(X), t, € I, and n(m) — oo. If t € I, then we
can use Lemma (ii) which tells us that m,m)(tnmm)) — 7(t) and hence
(x,t) = (n(t),t) € m. If t = +o0, then trivially x = * and (x,t) € 7.

Assume, conversely, that m, — 7 in the Hausdorff topology on I} (R(X)).
We need to show that m,,7 € C;(X) and that 7, — = locally uniformly.
Assume that ¢,,t € I such that ¢, — t. By Lemma [2.13 (ii), it suffices
to show that m,(t,) — =(t) for all such t¢,,t. Equivalently, we may show
that (m,(tn),t,) — (7(t),t). By Lemma [2.2] it suffices to show that the
set {(mn(tn),tn) : n € N} is precompact and (7(t),t) is the only cluster
point of the sequence (m,(t,),t,). By Lemma there exists a compact
set C C R(X) such that m, C C for all n, so {(m,(ts),t,) : n € N} is
precompact as required. Let (x,t) be any cluster point. By Lemmam (ii),
(x,t) € m and hence x = 7(t), which shows that m,(t,) — 7(t) as required. B

Our next proposition says that the space of paths in X is Polish provided
X has this property.
Proposition 2.28 (Polish space) If X' is a Polish space, then so is I1(X).

The proof of Proposition [2.28 needs some preparations. Let d be a metric
generating the topology on X and let = € II(X). For each 7w € TI(X), 6 > 0
and T < oo, we define

mrs(m) == sup {d(7(s),7(t)) :s,t € Iy, -T <s<t<T, t—s<d}.
(2.16)
The quantity mrs(7) is called the modulus of continuity of the path 7. More
generally, for any compact subset K C R(X), we can define

mrs(K) = sup {d(z,y) : (z,5),(y,t) € K, =T <s <t <T, t—s<0d},

which coincides with our previous definition if 7 is a path. In analogy with

(2.12)), we also define
I :={teR:3weXU{x}st. (z,t)e K}.
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Lemma 2.29 (Characterisation of paths) A compact subset 7 C R(X)
is an element of the path space II(X) if and only if [ is a closed subinterval
of R and (lsin% mys(m) =0 for all T < 0.

%

Proof Assume that 7 € K (R(X)) and limsups_,,mrs(m) > 0 for some
T < oo. Then we can find (x,, $,), (Yn, tn) € T and 6 > 0 with d(z,,y,) > 0,
-T<s,<t,<T,and t, —s, < 1/n. Since 7 is compact, by going to a
subsequence, we can assume that (x,,s,) — (z,s) and (y,,t,) — (y,t) for
some (z,$), (y,t) € 7 with d(z,y) > 6 >0, -T <s<t<T,and t — s = 0.
This shows that © ¢ TI(X).

Conversely, if 7 ¢ TI(X), then either I, is not a closed subinterval of
R or there exist (z,t),(y,t) € m with # # y. In the latter case, since
(*,+00) are the only points in R(X) with time coordinate +oo we must
have t € R. But then mys(m) > d(x,y) > 0 for all T' > |¢|, which shows that
lim sups_,, mrs(m) > 0 for some T < oo. |

Proof of Proposition If X is a Polish space, then by Lemma [2.24] so
is R(X) and hence by Lemma so is Ky (R(X)). Let us set

K':={K € K4(R(X)) : I is a closed subinterval of R}. (2.17)

Then K’ is a closed subset of K, (R(X)) and hence Polish in the induced
topology by Proposition 2.4l For each €,6 > 0 and T < oo, the set

Arcs i ={K € K' : mps(K) > ¢}

is a closed subset of K’ and hence its complement A7, s is open. By Lemma

229,
H(X) - m UA;:L,I/m,l/Iw

nm k

which is a countable intersection of open sets, i.e., a Ggs-set. By Proposi-
tion it follows that TI(X) is a Polish space. n

A set A C II(X) is called equicontinuous if

lim sup mygs(m) =0 (T < ).

0—=0 reA
The following theorem identifies the compact subsets of II(&"). Condition (ii)
is called the compact containment condition. If I C R is a closed nonempty
interval, then C;(X) is a closed subset of IT and hence the following theorem
can also be used to identify the precompact subsets of C;(X). In this con-
text, the result is known as the Arzela-Ascoli theorem. Note that while the
definition of equicontinuity depends (at least a priori) on the choice of the
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metric d on X', whether a set A C II(X) is precompact only depends on the
topology on X', so when verifying conditions (i) and (ii) below, we are free
to choose any metric d that generates the topology on X

Theorem 2.30 (Arzela-Ascoli) A set A C II(X) is precompact if and only
if

(i) A is equicontinuous,

(ii) for each T < oo, there exists a compact set C C X such that w(t) € C
forallme A, t € [-T,T).

Proof Let K’ be the space defined in , equipped with the Hausdorff
topology. Let A denote the closure of A, viewed as a subset of the space K.
Then A is a precompact subset of II(X) if and only if A is a compact subset
of K" and A C TI(X). By Lemmas and , A is a compact subset of K’
if and only if condition (ii) holds. To complete the proof, it suffices to show
that assuming that (ii) holds, one has A C II(X) if and only if (i) holds.

We first show that (i) implies A C II(X). Assume that 7, € A converge
in the Hausdorff topology to a compact subset m C R(&X’). To show that
7 € II(X), will apply Lemma If (z,s), (y,t) € m, then by Lemma [2.15]
there exist (2, $n), (Yn,tn) € m, such that (z,,s,) — (x,s) and (y,,t,) —
(y,t). If s,t € [-T,T] and |t — s| < ¢, then for n large enough we have
Spytn € [T — 1,T + 1] and |t, — s,| < 2. Since d(z,,y,) — d(z,y), it
follows that

lim sup my s(7) < lim sup sup mr41.25(m,) = 0 (0>0, T <o),
6—0 6—0 n

which by Lemma implies that m € II(X).

Assume now that (ii) holds but (i) fails. Then there exist T < oo and
€ > 0 such that for each n > 1, we can find 7, € A with mq1/,(7m,) > €. This
means that there exist =T < s, < ¢, < T such that d(m,(s,), T.(t,)) > €
and t, — s, < 1/n. By (ii), A is a compact subset of X', so by going a
subsequence we may assume that m, — 7 € K'. By going to a further
subsequence, we may assume that s, — s and t,, — t for some s,t € [T, T].
But then s = ¢ since t,, — s, < 1/n. Let z, := m,(s,) and y,, := m,(t,). By
(ii), we can select a further subsequence such that x, — x and y, — y for
some z,y with d(z,y) > . By Lemma [2.15 we have (z,t), (y,¢) € 7 which
shows that 7 ¢ I1(X) and hence A is not a subset of IT(X). |
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2.8 Tightness

In this section, we use the general results from the previous section to derive
a tightness criterion for sequences of random variables with values in the

space II(R).

Lemma 2.31 (Precompactness) Let A be a subset of II(R). Then A is
precompact if and only if for all T < oo and € > 0, there ezists a § > 0 such

that
|m(u) —w(t)| < e forallm e Aand o, <t <u

s.t. (m(t),t), (7(u),u) € [-T,T)?, u—t<4.
This statement remains true if we drop one of the conditions (mw(t),t) €

[=T,T)? or (n(u),u) € [-T,T)>

Proof Let ¢ : R — [—~1,1] be strictly increasing and continuous with
¢(£o0) = £1. Then

d(z,y) == |¢(z) — o(y)|  (z,y €R).

is a metric generating the topology on R. Since R is compact, by the Arzela-
Ascoli theorem (Theorem [2.30)), A is precompact if and only if it is equicon-
tinuous, i.e.,

sup {d(7(t),7(u)) :7 € A, 0, <t <u<T,
tue[-T,T), u—t<d} —0 VT < oc.
0—0

In other words, A is not precompact if and only if

I <ococande>0st.Vo>0dre Aand o, <t <u <7,

st tu e [=T,T), u—t<dand d(n(t),n(u) > e. (2.18)

We claim that this is equivalent to

dS\ T <ocande>0st. V9 >03dn€e Aand 0, <t <u <7y s.t.

t,u € [-T,T], w(t),n(u) € [-5,5], u—t <& and d(n(t),7(uv)) > e/3.

(2.19)
The implication :> (2.18) is trivial. To prove the converse, assume that
holds for some 7" < oo and ¢ > 0. Making ¢ smaller if necessary,
we can without loss of generality assume that 0 < ¢ < 1. We can choose
the function ¢ in the definition of our metric d on R to be symmetric and
then define S > 0 by d(£S,£00) = ¢/3. Now fix § > 0 and let 7 be
as in ([2.18). If 7(t),m(u) € [, 5] already holds we are done. If 7(t) ¢



46 CHAPTER 2. TOPOLOGICAL PREREQUISITES

[—S, 5], then either 1. 7(t) € [—o0,—S) or 2. 7(t) € (S,00]. Assume that
we are in case 1. Since d(m(t), m(u)) > &, we must have m(u) € (—5,00].
Therefore, by continuity, there must be some ¢’ € [t, u] such that 7(t') = —S.
Then d(7(t'),7(u)) > (2/3)e. If w(u) < S we are done. Otherwise, by
continuity, there must be some u € [t/,;u] such that 7(«') = S and now
d(m(t'),m(v)) = d(—5S,S) > /3. Case 2 is similar, by symmetry, and the
case that 7(t) € [=S,S] but w(u) & [-S,S] can also be treated in the same
way.

If we drop one of the conditions 7(t) € [—S5,S] or 7(u) € [—S,S] from
, then this condition is weaker than but stronger than ([2.18]).
However, we have already shown that implies , so all conditions
are equivalent. In other words, A is precompact if and only if for all S, T < oo
and ¢ > 0, there exists a § > 0 such that

d(m(t),m(u)) <e/3forall € Aand o, <t <wust.
7(t),m(u) € [-S,8], t,u e [-T,T], u—t <9,

and the same is true if we drop one of the conditions n(t) € [-S,S5] or
m(u) € [-S5,S]. Replacing S and T by SV T + ¢ if necessary, we can simplify
this by saying that A is precompact if and only if for all 7' < co and ¢ > 0,
there exists a ¢ > 0 such that

d(m(t),m(u)) <eforallme Aand o, <t <us.t.
(7(2),t), (w(u),u) € [-T,T)* u—1t <4,

and the same is true if we drop one of the conditions (7(t),t) € [T, T]? or
(m(u),u) € [=T,T]*. We can choose the function ¢ that we used to define the
metric d on R to be Lipschitz continuous with Lipschitz constant one; then d
has the property that d(z,y) < |z —y| for all z,y € R. Conversely, as long as
at least one of 7(t) and m(u) lies inside [T, T], by making d(7(t), 7(u)) as
small as we wish, we can also make |7 (t) — 7(u)| as small as we wish. From
these observations, the claim of the lemma follows. [ |

Proposition 2.32 (Almost sure precompactness) Let A be a random
subset of II(R). Then A is almost surely a precompact subset of II(R) if and

only if
P[‘W(u)—ﬂ(tﬂ >¢c for somem e Aand o, <t <u <7,
s.t. (w(t), 1), (m(w),u) € [-T, T, u—t < 4] = 0 VI'<oo, €>0.
—

The same is true if we drop one of the conditions (W(t),t) € [-T,T7? or
(7(u),u) € [T, T2
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Proof We only prove the claim with both conditions (x(t),t) € [T, T
and (ﬂ(u), u) € [T, T)? in place. If we drop one of these conditions, then
the argument goes precisely in the same way. Let A‘;T,E denote the event that

‘ﬂ(u) —W(t)‘ >cforsomer € Aand o, <t <u<T,
st. (m(t),1), (7(u),u) € [-T,T)*, u—t<§é.

Then § < ¢ implies A‘ST’E C AéT/’E and A7, = (s-0 A‘ST7E is the event that

Vo>03drne Aand o, <t <u <7,
s.b. (w(t), 1), (w(u),u) € [-T,T]?, u—t <4, and |w(u) — n(t)| > e.

The assumption of the proposition says that limg_, P(Ag‘,a) = 0, which im-
plies P(A7.) = 0. Since this holds for all " < oo and ¢ > 0, it follows

that
IP( U U An,l/m) =0,

n>1m>1

which shows that almost surely, for all n > 1 and m > 1, there exists a § > 0
such that

|7r(u) —7(t)] <1/mforallm e Aand o, <t <u <7,
s.t. (m(t),t), (7(uw),u) € [-n,n)?, u—t <4,

By Lemma [2.31], it follows that A is almost surely precompact.

On the other hand, if the assumption of the proposition does not hold,
then the event Ap. has positive probability for some 7" < oo and € > 0, which
by Lemma [2.31] implies that A is with positive probability not precompact.

|

Proposition 2.33 (Tightness of random compact sets of paths) Let
K (II(R)) be the set of nonempty compact subsets of TI(R), equipped with
the Hausdorff topology. Let (Ay)n>1 be a sequence of random variables with
values in Ky (II(R)). Then the probability laws (P[A, € -]) _, are tight if
and only if

n>1

supP[ |7(u) — w(t)| > € for somew € A, and 0 <t <u <77

- s.t. (w(t), 1), (m(u),u) € [T, TP, u—1t <6 P 0

for all T < oo and € > 0. The same is true if we drop one of the conditions
(7(t),t) € [=T, T or (7(u),u) € [-T,T]*.
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Proof We only prove the claim with both conditions (7 (t),t) € [T, T]* and
(W(u),u) € [-T,T)? in place. If we drop one of these conditions, then the
argument goes precisely in the same way. By Theorem [2.12] the probability
laws (P[A, € -]) > are tight if and only if for each > 0, there exists a

compact set C' C K (II(R)) such that
}EEP[AH eC]>1—n.

Equivalently, we may show that there exists a precompact set C' C K, (II(R))
with this property, because its closure C' is then compact with P[A,, € C] >
P[A, € C]. By Lemma , a subset C' C K, (II(R)) is precompact if and
only there exists a compact C C II(R) such that A C C for all A € C. Tt
follows that the probability laws (P[A, € -]) _, are tight if and only iiﬂ

n>1
Vn > 0 3 compact C C II(R) s.t. 12% PlA, CcC|>1—n. (2.20)
Let
Ay = {r eI(R) : |m(u) — 7(t)| <eVor <t < 7,

s.b. (w(t), 1), (m(w),u) € [T, T, u—t < d}.
The assumption of the proposition then says that

: )
}gflp[An C A7.] — 1 (T'<oo, £>0)

Let (k,m)km>1 be positive constants. Then we can choose d(k, m) > 0 such
that
1anP’[.A C.Akl/ } 1 — Mk (k,m >1).

Then
mfIP’ A C ﬂ .Ak]f/m) 2 1— Z Nheom-
km>1 k,m>1

By Lemma [2.31] the set ﬂk7m21 Ai(’fﬁ) is precompact. Since the positive

constants (7gm)k,m>1 are arbitrary, we can make Y, . 7k, as small as

we wish. Taking for C the closure of ﬂkal Ai(’f}:?, this proves ([2.20) and

shows that the assumption of the proposition implies tightness of the laws

(P[A, € ~])n21.

’Indeed, the existence of such a C is necessary by our previous condition and
Lemma and conversely, if such a C exists, then by Lemma C:={A: ACC}is
compact so we can apply our previous condition.
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Assume, conversely, that these laws are tight and hence holds. Fix
T <ooand € > 0. By , for each n > 0, there exists a compact C such
that
supP[A, ¢ €] <,
n>1
Since C is compact, by Lemma , there exists a 9 > 0 such that C C A‘sT,a.
This shows that for each n > 0, there exists a ¢ > 0 such that

supP[A, ¢ A% ] <n,

n>1

which implies that the assumption of the proposition is satisfied. |

2.9 Cadlag paths

Paths, as we have defined them in Section [2.7, correspond to continuous
functions defined on a closed time interval and taking values in a metrisable
space X. For some purposes, it will occasionally be necessary to generalise the
concept of a path so that paths can make jumps. We recall that a function,
defined on a closed real interval and taking values in a metrisable space X,
is called cadlag (from the French “continue a droit, limite a gauche”) if it is
right-continuous and has left limits at each time. It is possible to define a
space of cadlag paths that extends the space of continuous paths defined in
Section [2.7] This has been done in detail in [NS22]. Since the technicalities
are somewhat involved, we will only cite some of the results of that paper
without proof. Our set-up differs slightly from the set-up in the main body
of [NS22|], but the results we cite below can be translated into our set-up
using [NS22, Lemma 5.3].

Let X be a metrisable space and let < be a partial order on X. By
definition, the partial order < is compatible with the topology if the set

X2 .= {(aj,y) EXQ:xjy}

is a closed subset of X2, equipped with the product topology. Equivalently,
this says that if z,, — z, y, — y, and z,, <y, for all n, then it should always
be true that x < y.

By definition, a cadlag path in X is a nonempty compact subset 7 C R(X)
that is equipped with a relation < such that:

(i) for each t € R, the set {z € X : (z,t) € 7} has at most two elements,

(ii) Ir:={t e R: 3z € X U{*} s.t. (z,t) € w} is a closed subset of R,
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(iii) =< is a total order on 7 that is compatible with the topology on 7 and
(x,s) = (y,t) for all (x,s),(y,t) € m with s < ¢t.

We call o, := inf_T7r and 7, := sup I t_he starting time and final time of m,
and we set I, := I, NR. For each t € I, we define 7(t—), n(t+) € X U {x}
by

{r(t=),7(t+)} ={z € X : (z,t) en} with =w(t—) =< 7(t+).

The total order < on a cadlag path 7 corresponds to the time order and
helps us, when the set {z € X : (z,t) € 7} contains two elements, to find
out which element is the “first” and which the “second” in the time order.
It is shown in [NS22, Lemma 3.2] that cadlag paths, as we have just defined
them, correspond to cadlag functions in the usual sense of the word, in the
sense that the function I, 3 t — m(t+) is right-continuous and the function
I, >t — mw(t—) satisfies

m(t—) = ligwr(t—i—) (t €I, o <t).
The limit from the left is not defined at t = o, however, and contrary to the
usual conventions for cadlag functions, it may happen that 7(o,—) # 7(o.+).
Likewise, it is possible that a cadlag path © makes a jump at its final time 7.
Recall the definition of a correspondence from Section 2.5] We write
z1 < z3 as a shorthand for z; < z5 and 27 # 25, and say that a correspondence
R between two cadlag paths 7,7’ is monotone if

there are no (21, 21), (22, 25) € R such that z; < 29 in 7 and 2 < 2] in 7'

We let Corr (my, m2) denote the set of all monotone correspondences between
two cadlag paths 7m; and m,. We denote the space of cadlag paths in X by
[I5(&X) and in analogy with (2.4)), we define a metric ds on IIg(X) by

dg(m,7') = inf Sup  dsqu(2,2") (m, 7" € Hg(X)), (2.21)

ReCorry (m,7!) (2,2))€R

where dy, is the metric on the squeezed space R(X). It is shown in [NS22,
Prop 3.3] that if X' is a Polish space, then so is IIg(&X'), equipped with the
topology generated by ds. By [NS22, Lemma 3.5], the space of (continuous)
paths II(X) is a closed subset of IIg(X'), and by [NS22, Prop 3.4], the topology
on II(X) coincides with the induced topology from its embedding in TIg(X).
It is shown in [NS22| Section 3.4] for sequences of paths that are all defined on
the same time interval and that do not jump at the endpoints of this interval,
convergence in the topology on Ilg(X) corresponds to correspondence in the
classical Skorohod topology.
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For cadlag paths, there is an analogue of the Arzela-Ascoli theorem (The-
orem [2.30). The Skorohod modulus of continuity of a cadlag path 7 is defined
as

mfspy(;(ﬂ) = sup { d(xg, {:Ul,xg}) C(xty) em, t € [-T,T] (i =1,2,3),

(21, t1) X (w2, 12) =X (w3,3), T3 — 11 <6}
(2.22)
We say that a set A C Ilg(X) is Skorohod-equicontinuous if

lim sup m3. 5(7) = 0 (T < 00).
§—0 TeA ’

The following theorem, that we cite from [NS22, Thm 3.7], is very similar to
Theorem 2.30

Theorem 2.34 (Compactness criterion) A set A C Ig(X) is precompact
if and only if

(i) A is Skorohod-equicontinuous,

(i) for each T < oo, there exists a compact set C C X such that w(t) € C
forallme A, t e [-T,T).
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Chapter 3

The Brownian web

3.1 Arrow configurations

In this chapter, we are interested in the diffusive scaling limit of the (un-
perturbed, standard) voter model, and its dual system of coalescing random
walks. We will focus on the systems coalescing random walks, and more
precisely on the collection of all open paths in their graphical representation.
Thus, we will be interested in collections of coalescing random walks, start-
ing from each point in space-time, and their diffusive scaling limit, which can
informally be described as coalescing Brownian motions, start starting from
each point in space-time.

In the context of the voter model, it is natural to consider coalescing
random walks in discrete space and continuous time. It is sometimes more
convenient to consider coalescing random walks in discrete space and time.
We will therefore start by studying the latter, and prove that they have
a diffusive scaling limit. In Section below, we will indicate how the
arguments can be adapted to the continuous-time setting of the voter model.

By definition, we call

72

even

= {(z,t) € Z° : v+t is even}

the even sublattice of Z*. Let w = (w.).ezz,. be an ii.d. collection of random
variables that are uniformly distributed on {—1,+1}. We can use w to define
a random directed graph with vertex set Z2 . and set of oriented edges

E = {(.T,t), (fE +W(1‘,t)7t + 1)) : ($7t) S ngen}‘

We call the random directed graph (Z2 E) an arrow configuration. See

Figure [3.1] for a picture.

23
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Figure 3.1: An arrow configuration.

In Section [2.7], for any metrisable space X', we gave a definition of the path
space II(X'). Recall that I; denotes the domain of a path 7 € II(X") and that
o, Tr denote its starting time and final time, respectively. We will especially
be interested in the case that the metrisable space X is R := [~00, o0], the
extended real line. We let

M= {r € I(R) : 7, = 0o}.

We call II" the space of all upward paths. In view of Lemma 2.26] elements
of II" correspond to continuous functions 7 : I, — R, where I is an interval
of the form [0, c0) if the starting time o, is finite, and

I.=Rifo,=—-00 and I,=0if o, = +o0.

We will call the point
Zp = (W(aﬂ),oﬂ)
the starting point of the path m. Note that in general z, is an element of

R(R), the squeezed space defined in Section . By definition, a open path

in the arrow configuration (Z2,,, E), or simply a open path in w, is a path

7 € II" with the following properties:

(i) or € ZU{—00,+00} and (m(t),t) € Z2

even

(teZ, t>o,),
(ii) 7T(Yf + 1) = 7T(Zf) + W(n(t),t) (t el, t> Jﬂ),

(iii) 7(t+s) = —=s)m(t) +sn(t+1) (0<s<1, t€Z, t > 0,).
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In words, these are upward paths that visit points in the even sublattice at
integer times and follow the arrows, with linear interpolation between integer
times. We let

U=UWw):={r eIll": 7is a open path in w}. (3.1)

We let U denote the closure of U in the topology on II'. The following
proposition says that I is a.s. compact and compared to I only contains a
few extra trivial paths. Below, we use the notation Z := Z U {00, o0}, i.e.,
this is the closure of Z in R.

Proposition 3.1 (Compact set of paths) The closure U of the random
set of upward paths U defined in s almost surely a compact subset of
. Moreover, almost surely, the set U\U consists of all paths © € TIT with
ox € Z and either w(t) = —oc for allt € I or 7n(t) = +o0 for allt € I.

Proof Since paths in U are Lipschitz continuous with Lipschitz constant
one, equicontinuity is obvious so U is precompact by Proposition and
hence U is compact.

Let s € Z and let € II" be defined by o, := s and 7(t) := —oo for all
or <t < o0. To see that 7 € U, choose x,, € Z such that (z,,s) € Z2,, and
x, — —oo. Let m, € U be the unique open path started at (z,,t). Since
U is compact, by going to a subsequence if necessary, we can assume that
7, — 7' for some 7' € II". Since 7, is a random walk starting from (z,,,t)
and x, — —oo, the law of m,(t) converges weakly to the delta measure on
—o0 for each t > s, from which we conclude that 7’ = 7 and hence 7 € U.
In the same way, we see that U contains all trivial paths 7 with o, € Z
and 7(t) = oo for all o, < t < oo. Since U is closed, it also contains all
limits of such paths, so letting o, — oo or o, — —oo we see that U also
contains all trivial paths with o, = —oo and either 7(t) = —oo for all £ € R
or m(t) = oo for all t € R, as well as the trivial path with o, = +0c0.

To complete the proof, we must show that if 7 € U satisfies 7(t) € R
for some t > o, then 7(t) € R for all t > o,. We first note that paths
in U are noncrossing in the sense that there do not exist w, 7" € U and
o Vo <s<t<oosuch that 7(s) < 7'(s) while 7'(t) < m(¢). It is easy to
see that this property is preserved in the limit so paths in &/ are noncrossing
too. Now assume that m € U satisfies w(t) € R for some ¢ > o,. Choose
2y = (Tp, 8p) € Z2,., With s,, < o such that 2z, — (o0, s) for some s € R, and
let 7, € U denote the open path started from z,. Then m, is a random walk
started from z,. By our previous arguments, m,(t) — 0o a.s. so 7(t) < m,(t)
for all n large enough. Since paths in & are noncrossing it follows that there
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exists an n such that m(t) < 7,(t) < oo for all t > o,. In the same way, by
symmetry, we see that —oo < 7 (t) for all t > 0. n

We now turn to what we are mainly interested in, which is the diffusive
scaling limit of arrow configurations. For each ¢ > 0, we define a diffusive
scaling map 0. : R? — R? by

0.(z,t) = (ex, ) ((z,t) € R?). (3.2)

Let R(R) be the squeezed space defined in Section 2.6, We extend 6. con-
tinuously to R(R) in the obvious way, by setting

0.(+00,t) := (£o00,e%) (t€R) and 6.(*,+00) := (¥, +00).

For any subset A C R(R), we let
0-(A) :={0.(z) : 2 € A}

denote the image of A under 6.. In particular, this notation applies to paths
7 € II(R), which according to their defininition in Section correspond to
compact subsets of R(R). It is easy to see that 0.(7) € II" for all 7 € IIT, so
the diffusive scaling map 6, : R(R) — R(R) naturally gives rise to a diffusive
scaling map from II" to II" which by a slight abuse of notation we also denote
by .. Going one step further, for any subset A C II", we let

0-(A) :=={0.(m) : m € A}

denote the image of A under this map.

In Section [2.5] we equipped the space K(X) of all compact subsets of a
metrisable topological space X with the Hausdorff topology. As an immediate
consequence of Lemma 2.21] we obtain:

Lemma 3.2 (Scaling of paths) For each ¢ > 0, the map 0. : 11" — I is
continuous.

Proof Immediate from Lemma , the continuity of the map 6. : R(R) —
R(R), and the fact that in Section we viewed the path space II(R) as
a subset of K(R(R)) and equipped it with the induced topology from this
embedding. ]

Let U be the set of all open paths in an arrow configuration and let U/
be its closure, which by Proposition is a random compact subset of IIT.
Then, since the continuous image of a compact set is compact, by Lemma[3.2]
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for each ¢ > 0, the diffusively rescaled set of paths 6, () is a random compact
subset of II". Our aim is to prove that

Plo.U) € -] =PWe -] (3.3)

where = denotes weak convergence of probability laws on the space K(IT"),
equipped with the Hausdorff topology, and W is a random compact subset
of II" that will be called the Brownian web.

3.2 Coalescing Brownian motions

As a first step towards proving (3.3), we start by proving something like
convergence of finite dimensional distributions. More precisely, for each ¢ >
0, we choose finitely many points z{, ..., z; in the diffusively rescaled lattice

0.(Z2,.,), in such a way that

(21,...,25) = (Z1,. .+, 2n)
for some zy, ..., 2, € R Letting 75, ..., 7 denote the paths in ¢ with start-
ing points 2§, ..., 2, we will argue that (75, ..., 7)) converges in distribution

to a collection of coalescing Brownian motions.

Let B! = (B})i>0 and B? = (B?);> be two independent standard one-
dimensional Brownian motions started from initial states B} = z; (i = 1,2),
and let

= inf{t > 0: B} = B?},

which is a.s. finite since (B — B?);> is a Brownian motion (with double the
quadratic variation of a standard Brownian motion), and one-dimensional
Brownian motion is point recurrent. Let B? = (B )i>0 be defined by

-y B} ift<r,
By = B! )
¢ if 7 <t.

Then it is possible to chec that B2 is a standard Brownian motion, and our
definition is symmetric in the sense that if we define B} := B} (t < 7) and
— B? (1 < t), then (B}, B?);>0 is equally distributed with (Btl, B? )e>0- The
processes B' and B? are of course not independent. The process (Bt , B?) >0
is a Markov process that is known as coalescing Brownian motions.

We can carry out the same construction for any finite number of Brownian
motions, that can moreover start at different times. See Figure for an

'In fact, one way to prove this is to derive it from Proposition below.
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Figure 3.2: Coalescing Brownian motions.

illustration. Let 2q,...,2, € R? with z; = (z;,s;) (i = 1,...,n), and let
B!,..., B" be independent Brownian motions such that B’ = (B});>,, starts
at time s; in Bl = x;. We set 1y := 00, Ay := {(B},t) : sy <t < oo} and
define inductively for j =2,...,n

7; :=inf {t > 55 (Bg,t) cA U UAj_l},

Aj = {(Bt],t) 1S <t< ’Tj}.
By the recurrence of one-dimensional Brownian motion, almost surely 7; < oo

for all 2 < 7 < n. Note that the sets Ay, ..., A, are disjoint. In view of this,
we can uniquely define ¢(j) € {1,...,5 — 1} by the requirement that

(B7,,75) € Ay
Using this, we define inductively B! := B! and
J if s. :
Bg — ?t() if Si S 13 S 75,
We call BY, ..., B" coalescing Brownian motions starting from the space-time
points z1, ..., 2, € R2.

We are now ready to formulate a result about the convergence in law of
finitely many open paths in an arrow configuration. We have already become
used (hopefully!) to the slight abuse of notation by which . can denote both
a diffusive scaling map acting on space-time points, or on sets of space-time

points such as paths, or even sets of paths. Taking this one step further, we
also denote

Oc(z1,. .y 2n) = (0-(21), ..., 0-(20)),  O=(my,...,mn) == (0(m1), ..., 0:(mn))

when zq,..., 2, are space-time points and 7, ..., m, are paths.



3.2. COALESCING BROWNIAN MOTIONS 29

Proposition 3.3 (Convergence of finite dimensional distributions)
Let g, > 0 satisfy e, — 0. Fixn > 1 and for each k, let 2¥,... 2k € 72 ..
Assume that

0., (2F,...,2%) — (21,..., 20) € (R*)™.
k—oo
Fiz an arrow configuration and for each k, let w¥, ... 7% be the unique open
paths in the arrow configuration with starting points 2%, ..., 2%. Then

P[Qak(ﬂ'f,...,ﬂ's) € } lj;P[(m,...,wn) € -},

where = denotes weak convergence of probability measures on (II")" and
T, ..., Ty are coalescing Brownian motions starting from z1, ..., z,.

Proof Our definition of coalescing Brownian motions involved a procedure
that started with n independent Brownian motions (B!,..., B") and used
them to construct n coalescing Brownian motions (B, ..., B™). More for-
mally, we can view (B',..., B") as the image of (B!, ..., B") under a map

(71 ey ) = (1, oo, TTp) (3.4)

that takes n paths 7y, ..., 7, in II" with starting points in R? and maps them
into n new paths 7y, ..., 7, with the same starting points.

For each k, let (R®! ... RF") be a collection of independent random
walks started from 2%, ..., 2F and let (R*',..., R®") be its image under the
map from (3.4). Then (R*',..., R*") are coalescing random walks. It is
easy to see that they are equal in law with (7f,..., 7%). We want to show
that

P[0, (R*,...,RF") € -] = P[(B',...,B") € -].

k—o00

It is easy to see that the diffusive scaling map commutes with the map in
, i.e., the random variable in the left-hand side of our equation is the
same as what we would obtain if we first diffusively rescale the independent
random walk paths and then apply the map from (3.4)).

Weak convergence in law of diffusively rescaled independent random walks
to independent Brownian motions follows from Donsker’s invariance princi-
ple. Using Skorohod’s representation theorem (Theorem, we can couple
our random variables such that

0. (R*, ... R*™) — (B',...,B") as.

k—o00

in the topology on (II")". If the map in (3.4) would be continuous with
respect to the topology on (IIT)", then the rest of the proof would now be
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easy, since we would just apply this map to both sides of our last equation
and we would be done.

Things are not quite so simple, however, since it is easy to check (even for
n = 2) that the map in is not continuous with respect to the topology
on (ITM)™. It turns out, however, that (B!,..., B") is almost surely a point of
continuity of this map, which is just as good. Here, with a point of continuity
of the map in (3.4]) we mean, of course, a collection of paths (7, ..., m,) with
the property that for each (7§,... 7¥) such that

(7r’f,...,7r’n€) — (M1, oy ),
k—oco
one also has
(77— (R, )
k—oo
That (B!, ..., B") is almost surely a point of continuity follows quite easily
from our definitions and from Lemma [3.4] and Exercise 3.5 below. We leave
the details to the reader. [ |

Lemma 3.4 (Brownian paths cross when they meet) Let B = (B})i>s,
(1 = 1,2) be independent Brownian motions started from deterministic space-
time points z; = (x;,8;) (1 = 1,2), respectively, and let

T :=inf{t > s, V sy : B} = B}}.

Then almost surely, for each € > 0, there exist times t_,t, € [T, T + €] such
that
B} < B} and Bt1+ > Bt2+.

Proof By the strong Markov property, (BiH — B72'+t)t20 is a Brownian mo-
tion, so it suffices to prove that for a Brownian motion (B;):>o started in
zero both 7_ := inf{t > 0: B; < 0} and 7, := inf{t > 0 : B; > 0} are as.
zero. Since (By)i>o is equally distributed with (\/Xkalt)tZO, we see that 74
is equally distributed with A\='7y, for each A > 0. It follows that the function
A +— Plrx > )] is constant on (0,00). However, if P[ry > 1] > 0, then it
is easy to see that P[7. > 2] must be strictly smaller than P[rL > 1], so we
conclude that P[ry > A] = 0 for all A > 0. |

Exercise 3.5 (Convergence of meeting times) Let 7, m € I have
starting points z; = (x4, 8;) (1 = 1,2), respectively, and assume that their first
meeting time

T :=1nf{t > 51V sg: mi(t) = ma(t)}
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satisfies T < o0o. Assume moreover that for each € > 0, there exist times
t_,ty € [T —e, 7+ €] such that

m(t-) <mo(t-) and mi(ty) > ma(ts).
Let 7k 7k € TI" satisfy wF — m; (i = 1,2). Then the first meeting times 73, of
ﬂ’f and 7r§C satisfy T, — 7. Hint: First show that generally T < liminfy_ o 7%.
Then use the assumption about crossing to prove that limsup;_, . 7 < k.

3.3 The Brownian web

Let D C R? be countable. Since D is countable, we can enumerate it as

D := {z : i > 1} where (z;);>1 be a sequence of space-time points z; €
R2. Then for each n > 1, we can construct a collection of random paths
(71,...,m,) that are distributed as coalescing Brownian motions starting
from (z1, ..., 2,). Since these laws are consistent, by Kolmogorov’s extension

theorem, we can construct a random collection of paths (7,),ep such that for
each finite set A C D, the paths (7,).ea that are distributed as coalescing
Brownian motions starting from the points in A. We call (,).ep a collection
of coalescing Brownian motions started from the countable set D.

Proposition 3.6 (Precompactness) Let (7,),ep be a collection of coa-
lescing Brownian motions started from a countable set D C R2.  Then
{m. : 2 € D} is almost surely a precompact subset of 11T

Proof (sketch) We apply Proposition to A = {m, : z € D}. Fix
T < oo and g,0 > 0 and consider the grid

G5 1= {(%ke,lé) k1€ Z}.

Let A = {n,:2€ DUG.s} be a collection of coalescing Brownian motions
started from the countable set D U G, 5. We can couple A’ to A such that
n, = m, for each z € D. Since paths in A cannot cross pathsin {7/ : z € G. 5},
it is not hard to see (see Figure that almost surely on the event

|m(u) — w(t)| > e for some m € Aand 0, <t <w
st. (m(t),t) € [-T,T)?, u—t <46
one has that

|y (5 +7) — 2| > 3¢

3.9
for some (z,s) € G.sN[-T — &, T +¢]* and r € [0, 24]. (3:5)
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By Lemma below, if B is a standard Brownian motion, then

2
P[ sup |B,| > 1ie] <Ce™* /5,
re(0,26]

for some C' < oo and ¢ > 0. A simple union bound then tells us that the
probability of the event in (3.5)) can be estimated from above by

Cre 167 e —ce? /o

for some C'r < oo and ¢ > 0. This quantity goes to zero as 6 — 0 for fixed
T < oo and € > 0, so by Proposition we conclude that {7, : z € D} is
almost surely precompact. [ |

™
[ ] [ ] [ ] [ ] ) [ ]
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Figure 3.3: The tightness argument. The blue path m moves a distance > ¢
during a time interval [t, u] of length < ¢, forcing the green path 7’ starting
from the point z € G. 5 to move a distance > £/3 from its starting position
during a time interval of length 2d. Note that the blue path could have
passed below the point 2’ € G, 5 that lies just above z.

We adopt the following notation. If A C K(II") is a collection of paths

and D C R(R) is a set, then we let
A(D) := {7r eA:z € D} (3.6)

denote the subset of A consisting of all paths that have their starting points

in D. In particular, for z € R(R), we write A(z) := A({z}). As before, we
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let A denote the closure of a set A C IIT. The following theorem introduces
the main object of interest of these lecture notes. See Figure for an
illustration.

Theorem 3.7 (The Brownian web) There exists a random compact set
W C K(II") whose distribution is uniquely determined by the following prop-
erties.

(i) For each z € R?, almost surely there exists a unique w, € II" such that

W(z) = {m.}.
(ii) For each z,...,2, € R? the paths (7,,,..., 7, ) are distributed as
coalescing Brownian motions starting from zq, ..., z,.

(iii) For each countable dense set D C R?, almost surely W = W(D).

o
== =
=
== =

Figure 3.4: Artist’s impression of the Brownian web.

Remark 1 In Section we will see that in point (i) of Theorem [3.7] the
order of the “for all” and “almost surely” statements cannot be interchanged.
Although for a fixed, deterministic z € R?, it is true that almost surely, W(z)
consists of a single path, there exist random points z € R? in which W(z)
has two, or even three elements.
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Remark 2 A collection of paths of the form W(D), where D is any deter-
ministic countable dense subset of R?, is called a skeleton of the Brownian
web.

Proof of Theorem Let D C R? be countable and dense and let (7,).ep
be a collection of coalescing Brownian motions started from D. Then {7, :
z € D} is precompact by Proposition and hence

W:={nr,:2€D} (3.7)

is a random compact subset of II'. We claim that paths in YW do not cross,
in the sense that there do not exist 7,7’ € W and o, Vo < s < t such that
m(s) < 7'(s) but 7'(t) < w(t). Indeed, if such paths would exist, then they
would be limits of paths m,, 7/, in {m, : z € D} that would also have to cross
for n large enough, which is not possible.

We will now show that W has the properties (i)—(iii) from the theorem.
Fix z = (z,5) € R% Let g, be positive constants converging to zero, let
2F = (1,8%¢,), and let D' := DU {zF : n > 1}. We can couple (7.).cp

to a collection of coalescing Brownian motions (7’).cps started from D’ such
that m, = 7, for all z € D. Let

Tpo=inf{t > 07 _(t) = 7. (t)}. (3.8)

Since paths cannot cross, we see that 7, > 7 > --- and hence 7,, — T a.s.
for some random variable 7,,. Using Lemma [3.4] it is easy to see that if we
start two independent Brownian motions from z, and z', then their first
meeting time converges to zero in probability as n — oco. Together with our
earlier observation, this implies that 7., = s a.s. Since paths in W do not
cross the paths 7., any path 7 € W that starts in (7(0,),0,) = 2 must
satisfy "

w_(t) <7(t) < 7r;$ (1) (t > s). (3.9)

Zn

Since T,, = s a.s., there can be at most one such path, proving property (i).

Property (ii) now follows from the fact that we can couple (7,).ep to a
collection of coalescing Brownian motions (77,).epuiz,,....,} such that 7, = 7,
for all z € D. To prove property (iii), we ust show that our construction does
not depend on the choice of the countable dense set D. Let D and D’ be
countable dense subsets of R?, let (7.).epup be coalescing Brownian motions
started from D U D', and let

W:={n,:2€D}, W :={r :2€e€D},

(3.10)
and W' :={r,:2€ DUD}.
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To prove (iii), it suffices to show that W = W’. By symmetry, it suffices to
show that W C W'. Since both W and W’ are closed, it suffices to show
that for each z € D, the path =, satisfies 7, € W. By what we have already
proved, there exists unique paths 7’ € W and n” € W” with starting points
Zp = Zmn = 2. Since @ € W we must have 7’ = 7" and since 7, € W' we
must have 7 = 7., so we conclude that 7, = 7" =7 ¢ W'. |

For the next lemma, we let

Il ={rell':n(t)=—-ocoVt >0} U{rell' : 7(t) = 400 Vt > 0,}

triv
denote the set of trivial paths that are constantly —oo or co.

Lemma 3.8 (Trivial paths) Let W be a Brownian web. Then 1T, C W
a.s. and each m € W\III . satisfies w(t) € R for all o, <t < co.

triv
Proof This follows from the same argument as in the proof of Proposi-

tion B.11 [ |

We still need to provide an estimate that we have used in the proof of
Proposition [3.6]

Lemma 3.9 (Reflection principle) Let (B;)i>o be Brownian motion.
Then
P[ sup B, < a] =P|[|B,| < q] (t,a > 0). (3.11)
s€[0,t]
Proof Let 7 := inf{t > 0 : B; = a}. By the strong Markov property and
the symmetry of Brownian motion, conditional on the event {7 < t}, the
events {B; > a} and {B; < a} have equal probabilities (see Figure [3.5)).
Since P[B; = a] = 0 and the event {B; > a} almost surely implies {7 < t},
it follows that
P[ sup B, < a] =1—2P[B; > a] =P[|B;| < al. (3.12)
s€[0,¢]
|

Lemma 3.10 (Tail estimate) Let N be a standard normal random vari-
able. Then
—a*/2

PN >a] < e . (3.13)

1
2
Proof This follows by writing

PN > a] = \/%/oo e~T/24y — \/L_/Ooo e—(+a)*/24,

! 2T
2 o0 2

—a?/2 1 [T a2 1 —a?)2
e N\ e dz = 5e )
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r\w il

Figure 3.5: The reflection principle: P[r < t] = 2P[B; > a.

Lemma 3.11 (Large displacements) Let (B;);>o be Brownian motion.
Then )
P[ sup |B,| > a] <2e? /(2t), (3.15)

s€[0,t]

Proof Let N denote a standard normal random variable. We estimate, using

Lemmas [3.9) and [3.10]
]P’[ sup |Bs| > a} < 2]?[ sup B, > a] = 2P[|Bt\ > a] = 4P[B; > qj
s€[0,t] s€[0,t]
— AP[VIN > a] < 2e9°/(21),
(3.16)
[ |

3.4 Dual arrow configurations
By definition, we call

Zigq :={(z,t) € Z? : x + t is odd}
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the odd sublattice of Z2. In Section 3.1} we showed how an i.i.d. collection w =
(w2)zezz,,, of uniformly distributed {—1, +1}-valued random variables defines
a random directed graph (Z2,,, E) that we called an arrow configuration.

Given w, we define @ = (&.).ez2 by

(D(a:,t-i-l) = w(x,t) ((.’E t) € ngen) (317)

We can use @ to define a random directed graph with vertex set Z?2,; and set
of oriented edges

F = {(z,1),(x — Dy, t— 1)) : (x,1) € Z214}-
We call the random directed graph (ngd,ﬁ ) the dual arrow conﬁgumtwn
associated with the original (“forward”) arrow configuration (Z2,,, E). The
dual arrows are uniquely characterised in terms of the forward arrows by the

property that dual arrows and forward arrows do not cross. See Figure
for a picture.

Figure 3.6: An arrow configuration (black) and its dual (white).

Recall that in general, o, and 7, denote the starting and final time of a
path m € TI(R). In particular, we define

Y := {7 € I(R) : 0, = —00}.

We call IT* the space of all downward paths. Clearly, II¥ is equal to IIT after
a rotation over 180 degrees. When no confusion can arrive] we will call the

2We have to be careful since the intersection of II" and I+ is not empty, but consists
of all bi-infinite paths for which o, = —oco and 7, = co. As we will see in a moment,
however, there are no nontrivial bi-infinite paths in an arrow configuration.
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point

Zp = (7T(T7r>,7'7r)
the starting point of a downward path 7 € II¥. We define a downward open
path in the dual arrow configuration (Z2%,, ﬁ), or simply a open path in @ in
exactly the same way as we defined upward open paths in the forward arrow
configuration. We let

U =U* (@) := {r €II': 7 is a open path in &} (3.18)

denote the set of all downward open paths in the dual arrow configuration
and we let U denote the closure of &* in the topology on IT+.

3.5 The dual Brownian web

We have already introduced notation for the diffusive scaling map 6. which
may be applied to points z = (x,t) in space-time R(R), to subsets of space-
time such as paths, and even to sets of paths. We will use similar notation

for the map

RR) > (2,t) = —(2,t) = (—2, —t) € R(R).

Thus, for any set A C R(R), we set —A := {—z: z € A}. In particular, this
applies to the case that A = 7 € II". Then II" 3 7 — —7 € II* is a bijection
from IIT to II*. Also, if A C II" is a sets whose elements are paths, then
we set —A := {—7m : m € A}. Using this notation, we say that 7q,..., 7,
are downward coalescing Brownian motions starting from space-time points
21y ..y 2p if =T, ..., =7, are (usual, forward) coalescing Brownian motions
starting from space-time points —zi,...,—z,. In the same way, we define
countable collections of downward coalescing Brownian motions.

Let 71,75 € ITI' be two downward paths started from space-time points
(z;,8:) € R? (1 = 1,2), and let

T = 7(71, Ty) := sup {t < 81N\ sgm(t) = ﬁg(t)}

be their first meeting time (in the downward direction), which may be —oc.
The open set

W(ﬁ'l,ﬁg) = {(l‘,t) T <t< S8 NSy 7%1(15) <z < ﬁ'g(t)}

is called the wedge defined by 71, To. See Figure for an illustration. We
say that a (forward) path m € II" enters the wedge W (71, 7t9) if there exist
times o, < s < t such that

(7‘(’(8),8)) ¢ W (71, 7) and (W(t),t)) € W(ry, ),
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Figure 3.7: The wedge W (7, Try) defined by the dual paths 71; and 7.

where W (71, 7t5) denotes the closure of W (7, 7#). In a completely analogous
way, we define the first meeting time of two forward paths, the wedge defined
by two forward paths, and what it means for a downward path to enter such
a wedge. We make the following simple observation.

Lemma 3.12 (Limits of wedges) Let (7!"),>1 (i = 1,2) be sequences of
downward paths and let (7™),>1 be a sequence of forward paths. Assume that
there exist 7; € II¥ (i = 1,2) and © € II' such that

at — o (i=1,2) and 7" — 7w
n—oo

n—o0

in the topologies on IV and 11", and that moreover

T(ﬁﬁ?)f;@ﬂﬁh@)‘

Assume that for each n, the path ©™ does not enter the wedge W (7}, 7).
Then the path m does not enter the wedge W (71, 7).

Proof By definition, if 7 enters the wedge W (71, T2), then there exist times
o, < s <t such that

(7(s),8)) & W(1,72) and (7(t),t)) € W(F1, 72).

Since 7, — m, there exist times o, <'s, < t, such that (Wn(sn),sn)) —
(7(s),s)) and (mn(ts),t)) — (7(£),t)). We claim that for n sufficiently
large,

(7" (5n), $n)) & W (a1, 75)
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Indeed, if (7"(s,),s,)) € W(aT,#%) for infinitely many values of n, then
going to a subsequence and taking the limit, using the convergence of the
paths and meeting times, we would find that (m(s),s)) € W(#1, #2), which
contradicts our assumptions. In the same way, we see that

(7" (tn). tn)) € W (AT, 73)

for n sufficiently large, so we arrive at a contradiction with the assumption
that 7" does not enter W (wp, 7%). n

Proposition 3.13 (Dual coalescing Brownian motions) Let D,D be
countable dense subsets of R%. Then it is possible to construct a collection
(72)zep of coalescing Brownian motions together with a collection (7.),.4 of
downward coalescing Brownian motions in such a way that:

o For cach z € D and 21,2 € D, the path m, does not enter the wedge
DV(ﬁn,ﬁ@).

e For each z € D and 21,29 € D, the downward path 7, does not enter
the wedge W (7,,,m.,).

The proof of Proposition makes use of the following simple lemma.

Lemma 3.14 (Tightness of joint law) Let X',) be Polish spaces, let
(X, Yo )n>1 be a sequence of random variables with values in X x Y, and let

X and Y be random variables with values in X and ), respectively. Assume
that

PX,€ ] = PX€-] and PY,€ -] = P[Y € -]

n—o0 n—o0

Then the probability laws

(P{(Xn,Ya) € -]),2,

are tight.
Proof The convergence of the marginal laws implies that the probability
laws

(P[X, € .])nZl and (P[Y, € '])nZl

are tight, so for each € > 0, there exist compact sets C C X and K C ) such
that

supP[X,, £ C] <e and supPlY, ¢ K] <e

n>1 n>1
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Then C x K is compact and
sup P[(X,,,Y,) & C x K] < 2e.

n>1
Since € > 0 is arbitrary, it follows that the laws of (X,,,Y,) are tight. |

Proof of Proposition (sketch) Let U be the collection of open paths
in an arrow configuration and let U* be the collection of downward open
paths in the associated dual arrow configuration. Let €, be positive constants
tending to zero. For each z € D, choose z, € Z2,, such that 0. (z,) — z,

even

and for each z € D, choose 2" € Z2,, such that 6., (2") — z. For each z € D

and n > 1, let R} € U be the unique forward open path starting at z,, let
R? € U* be the unique downward open path starting at z", and let

ml = 0., (R) and 1= 0., (1)
denote the associated diffusively rescaled paths. We claim that

P[(n2):ep € ] = P[(m.):ep € -],

P[(#2).cp € -] = P[(7.)oen € -]

where = denotes weak convergence of probability laws on the spaces (IIT)?
and (IT*)P respectively, which are equipped with the product topology, and
(m.)zep is a collection of coalescing Brownian motions while (7), 4 is a col-
lection of downward coalescing Brownian motions. Indeed, to prove this, by
the definition of the product topology, it suffices to prove convergence of finite
dimensional distribitions. But this has already been done in Proposition |3.3]

In fact, using Exercise [3.5, we can strengthen our previous claim in a
sense that also includes convergence of meeting times. More precisely, one
can show that

P[((ﬂ'?)zep, (T(W?177T22))(21,22)€D2) € }
e ]P)[((Wz)ZGlW (T(ﬂ—znww))(zl,zz)GD?) < '}7

n—oo

(3.19)

and similarly for the collection of downward paths.
By Lemma |3.14] going to a subsequence if necessary, we can assume that
the joint law of the random variables

(WZ)ZED’ (7‘(7‘(‘21, 7T22)>(21’22)€D2, (ﬁ?)z€D’ (T(ﬁ-glv ﬁ?2)>(31122)€D2
converges weakly. Then we can use Skorohod’s representation theorem (The-
orem [2.11)) to couple our random variables so that the convergence is almost
sure, i.e., we can find a coupling such that

n n n
m, — m,as. and T(m), 7)) — T(m.,,T.,) as.
n—oo n—oo
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for all z, z1, 20 € D, and likewise for downward paths. Since paths of & do
not enter wedges of U* and vice versa, we can use Lemma to conclude
that the same is true for the limit object. |

Theorem 3.15 (Wedge characterisation of the Brownian web) Let
D, D be countable dense subsets of R?, let (.).ep be a collection of coalescing
Brownian motions started from D, and let (7.), .4 be a collection of downward
coalescing Brownian motions started from D. Assume that paths in (7,).ep

do not enter wedges of (7.),.p. Let

W_.={m, : 2z € D},
Wy :={m € II' : 7w does not enter wedges of (#.),.p}-
Then W_ =W,.

Proof (sketch) To prove the inclusion W_ C W, let 7 € W_. Then there
exists 2z, € D such that m,, — 7 asn — oo. Let 21,22 € D. By assumption,
7., does not enter the wedge W (.1, 7.2) for any n > 1. By Lemma m,
it follows that m does not enter W (7,1, 7,2). This completes the proof that
W_ C Wy
Before we continue, we note that our assumptions imply that the forward
paths do not cross downward paths, in the sense that if z = (z,s) € D and
= (y,u) € D satisfy s < u, then m,(s) < #.(s) implies 7. (t) < 7.(t) for all
t € [s,u]. Indeed, we can always choose some 2" = (y/, ) € D with u < o/
such that 7,/ (u) < 7,»(u) and the meeting time 7(7,/, 7,») is less than s.
Then 7.(t) > 7./(t) for some t € (s, u] would imply that 7, enters the wedge
W (7, @), contradicting our assumptions.
We now prove that W, C W_. Let m € W,. By Lemma we can
without loss of generality assume that 7(¢) € R for all t € I.. Fix o, < t; <
- <t and € > 0. We claim that there exists a z = (z,s) € D such that

or < s<tyand |m,(t;) —7(t)] <eforalli=1,..., m. To prove this, we will
use a “fish trap” construction illustrated in Figure[3.8] Foreach:=1,... ,m,

we choose 24 = (., ) € D such that t’. > t; and
W(tl) —e< T, (tl) < 7T<tl> < ﬁz_‘_(tl) < W(tl) +e.
Since 7 does not enter the wedge W(7,: , i ), the meeting time of 7, and
ﬁzi must satisfy
T(Ti, 7 ) < o,
and we have #.; (t) < w(t) < & (t) for all t € [or,;]. We can now choose
z = (x,s) € D such that o, < s < t; and
sup i (t) < m.(t1) < lgl?éf 7 (t1).

1<i<m
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Figure 3.8: “Fish trap” construction showing that the path 7 that does not
enter wedges can be approximated by a path 7, starting at a point z taken
from a deterministic countable dense set of space-time points.

Since the path 7, cannot cross any of the downward paths ﬁzii , we must have
7. () < m.(t;) < 7. (t;) (1<i<m)

and hence |, (t;) — w(t)] < e for all i = 1,...,m, proving our claim.

Now let &, > 0 satisfy ¢, — 0 and let 0, < t; < --- < t,,,. By what we
have just proved, for each n there exists a z, € D such that |7, (t;)—7(t)] < e
for all ¢ = 1,...,m. By Proposition the closure of {m, : z € D} is
compact, so we can find a convergent subsequence. It follows that there
exists a 7 € W_ such that 7'(¢t;) = w(t;) for all i = 1,...,m. Now let
{t; + i € N} C (0r,00) be countable and dense. By what we have just
proved, for each m, there exists a m,, € W_ such that m,,(t;) = 7(¢;) for all
1 =1,...,m. Since W, is compact, we can find a convergent subsequence,
the limit of which must be the path 7. This proves that W, C W_. |

3.6 Convergence to the Brownian web

Proposition 3.16 (Tightness of rescaled arrow conﬁgur_ations) LetU
be the set of all open paths in an arrow configurations and let U be its closure.
Let €, > 0 be positive constants such that €, — 0. The the probability laws

(P[gen (H) S ])

n>1



74 CHAPTER 3. THE BROWNIAN WEB

on K(IIM) are tight.

Proof (crude sketch) One needs to check the tightness criterion of Propo-
sition [2.33] This is very similar to the proof of Proposition [3.6, One uses
convergence of finite dimensional distributions (Proposition and then
uses a grid as in the proof of Proposition to estimate the event in Propo-
sition . We refer to [FINRO4, Prop. B2| and [SSS16, Prop. 6.6.4] for
details. |

Let D,f) be countable dense subsets of R2. By Proposition , we
can construct a collection (7,),ep of coalescing Brownian motions starting
from D and a collection (7),.p of downward coalescing Brownian motions

starting from D such that paths in (7.).cp do not enter wedges of (72) ep
and vice versa. We call the pair (W, W) defined as

W:={r.:2€D} and W:={#,:zeD} (3.20)
the double Brownian web and we call Wthe dual Brownian web

Lemma 3.17 (Double Brownian web) The law of the random variable
(W, W) does not depend on the choice of the countable dense sets D, D C R?.

Proof The analogue statement for the Brownian web has already been
proved as part of the proof of Theorem , around . The statement
for a single web does, as far as I can see, not automatically imply the state-
ment for the double Brownian web, but one can adapt the argument given at
. Here we give an alternative argument that also reproofs the statement
for a single web and does not depend on the earlier argument.

Let D, D', D be countable dense subsets of R2. Let (7.).ep be a collection
of coalescing Brownian motions starting from D, let (7),cp be a collection
of coalescing Brownian motions starting from D', and let (7.), 4 be a collec-
tion (7,),.p of downward coalescing Brownian motions starting from D. By
Proposition [3.13, we can couple (7.).cp to (7.),cp in such a way that paths
in (7.).ep do not enter wedges of (.), 4 and vice versa. Similarly, we can
couple (77,).ep to (7.),cp in such a way that paths in (7}).cp do not enter
wedges of (7.),.4 and vice versa. We can then couple all three collections
(72):2eps (7))zepr, and (7.),. in such a way that the joint law of (7.).ep
and (7.),.p is as before and the joint law of (7).cp and (7.),.p is also as
before. For example, this can be achieved by making (7.).cp and (7)).ep/
conditionally indepenent given (7.), 4, and with the same conditional laws
as before.
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For this coupling, let (W, W) be deﬁned using D, D and let (W', W) be
defined using D', D. Then Theorem [3.15| tells us that

W = {m € II" : 7 does not enter wedges of ().} =W as.

It follows that the joint law of (W, W) is the same as the joint law of (W', W).
In the same way, we can also replace D by another countable dense subset
of R? without changing the law of the double Brownian web. |

=SS 2
=
=

A

Figure 3.9: A rescaled discrete web and its dual.
The following theorem, which is the main result of this chapter, implies
in particular the convergence in (3.3). See Figure [3.9|for an illustration.

Theorem 3.18 (Approximation of the double Brownian web) Let U
be the set of open paths in an arrow configuration and let U* be the set of
downward open paths in the associated dual arrow configuration. Then

PlO.(UU) € -] :SIP[(W,VV) € -], (3.21)

where = denotes weak convergence of probability laws on the space K(ITT) x
K(IV), and (W, W) is the double Brownian web.



76 CHAPTER 3. THE BROWNIAN WEB

Proof Fix countable dense sets D, D C R? and define (W, W) as in ((3.20)).
It suffices to prove convergence along any sequence &, of positive constants
tending to zero. It follows from Proposition [3.16] (compare Lemma[3.14) that
the laws

(Blo., @7 < -])

are tight, so by going to a subsequence, we may assume that they converge
to some limit law P[(V, V) € -]. By Lemma it suffices to show that each
such subsequential limit is equal to P[(W, W) € -].

As in the proof of Proposition , for each z € D, we choose z, € 72,

such that 6., (z,) — z, and for each z € D, we choose 2" € Z?2,, such that
0,(2") — z. For each 2 € D and n > 1, we let R} € U be the unique
forward open path starting at z,, we let R? € U* be the unique downward

open path starting at 2", and we let

n>1

=0, (RY) and 7= 0., (RY)
denote the associated diffusively rescaled paths. In the proof of Proposi-
tion [3.13] we have shown that

P[((72)zem: (7(72, 7)) ey earem?) € -]
e P[((”z)zEDa (T(WZN 7TZZ))(?«'M’«'Q)GDQ) € ] ’

n—oo
and similarly for the collection of downward paths. We argued there that
going to a subsequence if necessary and using Skorohod’s representation the-
orem, we can couple our random variables such that

n n

m, — m,as. and T(m), 7)) — T(m., T2,) as.

n—oo n—oo
for all z, 21,29 € D, and likewise for downward paths. We can extend this
argument to obtain that moreover

~

0., (UU") _ V,V) as.

in the topology on K(IT") x KC(IT+) for some random compact sets V C IIT and
V C II*. We will show that for this particular coupling, (V,V) = (W, W)
a.s., where the latter is defined in terms of (7.).ep and (7;),.p. This shows
that all subsequential limit laws are the same and hence by Lemma |2.2| that
the original sequence converges.

By symmetry between forward and dual webs, it suffices to prove that
V = W. We will prove that W_ C V C W,, where W_ and W, are defined
as in Theorem [3.15] Since W = W_ = W, the claim then follows.
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Since V is closed, to prove that W_ C V, it suffices to prove that 7, € V
for all z € D. Recalling Lemma[2.15] this is obvious since 72 € 6., (i) for all
n while 7 — 7, a.s. and 0., (U) — V a.s.

To prove that V C W, , we need to show that paths m € V do not enter
wedges of (7.).cp. By Lemma [2.15] for each m € V, there exist 7" € 6., (U)
such that 7 — 7. To see that 7m does not enter any wedge W(7,,,7,,)
of (7.),cp, we use that for each n, the path 7™ does not enter the wedge
W(aZ 77 ). By our assumptions, the discrete paths 7' (i = 1,2) converge
a.s. to T, (i = 1,2) and moreover their meeting times converge a.s., so we
can use Lemma to conclude that 7 does not enter W (7.,, 7.,). n

Exercise 3.19 (Shortened paths) Let W be a Brownian web. Show that
almost surely, for each m € W and s > o, the path 7' defined by o = s
and 7'(t) :=w(t) (t > s) satisfies 7' € W.

3.7 Continuous time random walks

In this section we return to the one-dimensional nearest-neighbour voter
model and its dual system of coalescing random walks, introduced in Sections
[L.IHL.3] We let w denote the graphical representation of a nearest-neighbour
voter model on Z, i.e., w is a Poisson point set with intensity measure as in
(1.2), where A = Z and p(i, j) is the nearest-neighbour kernel defined in (L.9).
Elements of w are of the form (vot;;,t), where vot;; is a nearest-neighbour
voter map (i.e., | — j| = 1) that has to be applied at time ¢. In pictures,
we draw space Z horizontally, time vertically, and we represent an element
(votj;,t) of the graphical representation w by an arrow from the space-time
point (j,t) to (i,t) of the form: —mm.
Slightly deviating from our conventions in Chapter [I} we define

wt = (rwij,t) : (votji,t) € w}, (3.22)

i.e., this is the graphical representation of the dual system of coalescing
random walks defined in , except that we have not reversed time. In
pictures, we represent an element (rw;;,¢) of the graphical representation w*
by an arrow from (i,t) to (j,t) of the form: mm——. In other words, w is
obtained from w by reversing the direction of all arrows, but not turning the
picture upside down, as we did earlier.

Let Z + 1 :={i+4 :4¢€ Z}. We can define voter maps votj and
coalescing random walk maps rw;; with 7,5 € Z + % in the same way as we
did for 7,5 € Z. The difference is that these maps now act on configurations



78 CHAPTER 3. THE BROWNIAN WEB

in {0, 1}Z+% instead of {0,1}%. 1In pictures, we represent these maps by
arrows just as we are used to. With these conventions, we define
wh:= {(rwi_%ﬂdr%,t) : (voti_1,,t) Ew} (3.23)
U{(er%’i_%,t) : (voti+1,,~,t) € w}. '
The reason behind this definition is that if we apply the voter map vot,;_;;
to a configuration that has a boundary between the ones and zeros at the
position i — %, then this boundary moves to i+ % Likewise, an application of
vot,y1, moves a boundary from ¢ 4 % to 1 — % In particular, if we start the
voter model with each site in a different colour, then the boundaries between
these colours evolve as coalescing random walks described by the graphical
representation w’.

We next define downward open paths in the graphical representation w*
and upward open paths in the graphical representation w'. A technical issue
that we have to deal with is that because we work in continuous time, these
open paths will have jumps. We use the formalism of cadlag paths described
in Section . Recall that IIg(RR), defined there, is the space of cadlag paths
in R, equipped with a topology that (at least for paths defined on fixed
domains) corresponds to the Skorohod topology. We let

M = {7 € Mg(R) : 7z = 00} and T = {m € TI(R) : 0r = 00}

denote the spaces of cadlag half-infinite upward and downward paths. We
say that a path 7 € Hg is an open upward path if

(i) 7(t—),7(t+) € Z+ 3 for all t € I,
(ii) if w(t+) # 7(t—), then (TWr(—)r(+), t) € W',
(ili) if ¢ > o, and (TWr(-y,t) € w' for some j € Z + 3, then 7(t+) = J.
Similarly, we say that a path 7 € Hé is a open downward path if
(i) m(t—),n(t+) € Zfor all t € I,
(ii) if 7w(t+) # 7(t—), then (TWr()(—), t) € w',
(iil) if ¢ < 7 and (Twg(4y,,t) € w' for some j € Z, then 7(t—) = j.

See Figure for an illustration. We let U and U* denote the sets of all
open upward and open downward paths, respectively. The reason for the
conditions ¢ > o, and ¢t < 7, in point (iii) of each definition is that we want
to work with compact sets of paths. If (rw;;,t) € w', then for each n > 1,
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there exists an open upward path , in w' that starts at (i,¢ + n™!), and
these paths converge to a limit path 7 that starts at (i,¢) but does not jump
at its starting time. Thus, if we would require (iii) also for ¢ = o, then the
set of open upward paths would not be closed. On the other hand, with our
present definition, one can prove the following statement, that is similar to
Proposition [3.1] For brevity, we skip its proof.

-

Figure 3.10: Open upward and downward paths in the graphical representa-
tion of a one-dimensional nearest-neighbour voter model.

Proposition 3.20 (Compact set of paths) The closure u of the ran-
dom set of open upward paths UT is almost surely a compact subset of Hg.

Moreover, almost surely, the set ?TIT\L{T consists of all paths m™ € Hg with
either m(t) = —oo for allt € I or w(t) = 400 for allt € I.. An analogue
statement holds for U*.

In the remainder of this section, we sketch the proof of the following
theorem, that is similar to Theorem [3.18

Theorem 3.21 (Convergence to the double Brownian web) Let U"
be the set of open upward paths in w' and let U be the set of open downward
paths in wt. Then
Plo.U U e -] = P[W, W) € -], (3.24)
e—0

where = denotes weak convergence of probability laws on the space K(Hg) X
K(ITE), and (W, W) is the double Brownian web.
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Proof (crude sketch) The proof is completely analogous to the proof of
Theorem |3.18, Convergence of rescaled continuous-time random walks to
Brownian motion is standard, so one obtains convergence of finite dimen-
sional distributions precisely as in the discrete time setting (Proposition.
Using Exercise (3.5} one sees that this convergence can be strengthened so that
it also includes convergence of meeting times in the sense of . Adapting
the argument of Proposition m (which itself is an adaptation of the proof
of Proposition , using also Lemma one can moreover show that if
€, are positive constants tending to zero, then the laws

(P, U, U € -]) (3.25)

n>1
on K(IT}) x KC(IT}) are tight. For brevity, we are rather sloppy on this part.
To fill in the details, one would need to work with Skorohod-equicontinuity
and Theorem to prove a tightness criterion for laws on KC(ITf), which
is similar to Proposition but the conditions of which are weaker, since
Skorohod-equicontinuity is a weaker concept than the usual equicontinuity.
To complete the proof, one needs to show that if the laws in con-
verge weakly along a subsequence to a limit law on KC(IT) x K(TIY), then
this limit law must be the law of a double Brownian web. We fix a count-
able dense set D C R? and for each z € D, we choose 2z, € Z x R such
that 0., (z,) — z. Since the points z, are deterministic, at each z, there
almost surely start a unique upward and downward open path. By what
we have already proved, these paths converge in law to coalescing Brownian
motions, and also their meeting times converge in law. Using Skorohod’s
representation, we can find a coupling for which the convergence is almost
sure. Let (7, ).,ep and (7,).ep be the almost sure limits of the chosen upward
and downward open paths, respectively. Using the argument of Lemma [3.12]
we see that paths in (7,).ep do not enter wedges of (7,).ep. Theorem
now tells us that the sets W_ and W, defined there satisfy W_ = W, , and
both are distributed as a Brownian web. Letting V' denote the almost sure

limit of 6. (Z/{T), as in the proof of Theorem |3.18] it then suffices to show that
W_CVCWy.

The inclusion W_ C V is straightforward. If we would know that V C II'
almost surely, then the inclusion ¥V C W, would follow by exactly the same
argument as in the proof of Theorem [3.18] but for the moment we have only
indicated how one can obtain the weaker statement that V C Hg, where Hg
is the space of cadlag upward paths. Therefore, one way to complete the
argument is to show that V C II" almost surely, which can probably be done
by using arguments similar to those used in the proof of Proposition [3.6, An
alternative argument, that is probably easier, is to strengthen Theorem [3.15
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by showing that the set W, there can be replaced by the (a priori larger) set
W, = {7r € Hg : w does not enter wedges of ('ﬁ'z)zgp}.

It seems this should follow from the same arguments as those used in the
proof of Theorem but because of time restrictions, we skip the details.

Though there is no doubt among experts in the field that Theorem [3.2]]
holds, it seems nobody so far has bothered to write down a detailed proof. In
fact, the only published paper that I am aware of that shows convergence of
collections of cadlag paths is [EFS17], which however deals with the Brownian
net instead of the web and shows convergence for a different approximating
model. |

3.8 Some historical notes

The Brownian web originated from Arratia’s PhD thesis [Arr79] and a sub-
sequential unfinished manuscript [Arr81]. The topic remained dormant until
the work of Téth and Werner [TW98| who used the Brownian web to study
a form of one-dimensional self-repellent random walk. They classified all
types of special points. Together with Soucaliuc [STWO00] they also proved
that forward and dual paths interact through Skorohod reflection. Fontes,
[sopi, Newman and Stein got interested in the Brownian web motivated by a
one-dimensional model in mathematical physics [FINSO1], which led Fontes,
Isopi, Newman and Ravishankar [FINRO4| to study this object in more de-
tail. In particular, they were the first to give the Brownian web its name,
view it as a compact set of paths, and prove convergence with respect to
the Hausdorff topology. Wedges were first introduced in the framework of
the Brownian net in [SS08]. A more detailed account of the history of the
Brownian web can be found in [SSS16].
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Chapter 4

Properties of the Brownian web

4.1 The coalescing point set

Let (W, W) be a double Brownian web, i.e., a Brownian web and its dual.
For each s,t € R with s <t and closed A C R, we define

Xor(A):={z € R: It € W(x,t) s.t. 7(s) € A},
Vou(A):={rm(t) : m e WA x {s})}, (4.1)
X o(A) = {zeR:3r e W(z,s) s.t. 7(t) € A},
ytsA) {7T WGWAX{t})}

We can think of the maps (X;¢)s<; as a continuum analogue of the StO(ilaStiC
flow (X,:)s<¢ defined in Section . Let us fix closed sets A, B C R and
define, in analogy with (1.5]),

Ay =Xy (A) and By i=Yo,(B)  (t>0). (4.2)

Then we can think of the process (A;):>o as of some sort of continuum version
of the voter model and similarly, we can think of (B;);>¢ as a continuum
version of coalescing random walks, i.e., this process should correspond to
coalescing Brownian motions. We call (A4;)i>o the continuum voter model
and (Bt)t>o the coalescing point set. In Section below, we will prove that
(At)i>0 and (Bi)i>o are indeed Markov processes. In the present section,
we start by proving some elementary properties of the maps (Xs:)s<: and

(ys,t)s§t~

Lemma 4.1 (Additivity) One has X,;(A) € K(R) for each A € K(R) and
s <t. Moreover,

X, (AUB) = X,,(A)UX,(B) (A BeKk(R), s<t). (4.3)

83
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Analogue statements hold with X, replaced by Vs ;.

Proof If x, € X,,(A) satisfy x, — z for some x € R, then there exist
Fn € W(x,,t) such that 7,(s) € A. Since W is compact, by going to a
subsequence, we can assume that 7, — 7 for some 7 € W. Then # € W(:B, t).
Since A is closed moreover 7(t) € A. Together, the last two observations
imply that = € X;:(A), proving that X;(A) is closed. The proof for Vs, is
the same. Formula follows immediately from the definitions of X ; and
Vst n

The following lemma is the continuum analogue of the duality relation
(L.15)), for the moment restricted to coalescing Brownian motions without
branching or deaths.

Lemma 4.2 (Continuum duality) For each A, B € K(R) and s,t € R
with s <t, one has

M nB£0y = any, ) £ 0
Proof This is a straightforward consequence of our definitions, since
X (ANB#£D & 7 e W(Bx {t}) st. #(s) €A & Vi (B)NA#0.
|

Our next aim is to show that the coalescing point set (B;):>o defined in
“comes down from infinity” in the sense that regardless of the initial
state B, for each t > 0 the set B, is locally finite. Since clearly B C B’
implies Vo +(B) C Vo(B'), it suffices to prove the claim for B = R. Roughly
speaking, the following result says that if we start particles performing co-
alescing Brownian motions from each point on the real line, then at each
positive time there are only locally finitely many particles left. This is some-
times described by saying that coalescing Brownian motions come down from
nfinaty.

Proposition 4.3 (Density of the coalescing point set) One has
b—a
V7t

Proof We first calculate the probability that Yo :(R) N [a,b] # 0. We con-
struct (W, W) from collections () .ep and (72) ,ep of forward and downward
coalescing Brownian motions, so that paths in (7,).ep do not enter wedges
of (#.),cp and vice versa. We choose D such that (a,t), (b,t) € D. Let

E[[Yo:(R) N[a,b]|] = (a,b€R, a<b, t>0).

Tap = T(T(at), T(ot))
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Figure 4.1: Illustration of formula (4.4). If 7,5, > 0, then no path in W
starting at time 0 can pass through (a,b) at time ¢. On the other hand, if
Tap < 0, then any path in W starting at time 0 between 7,4 (0) and 7,4 (0)
must pass through [a, b] at time ¢.

be the first meeting time of the downward paths started at (a,t) and (b, ).
We claim that (see Figure

YVoi(R)N(a,b) #0 implies 7,5, <0 implies YVo:(R)N[a,b] # 0. (4.4)

Indeed, if 7,5 > 0, then the paths 7, and 7, form a wedge that prevents
paths in W starting at time zero from passing between (a,t) and (b, t), prov-
ing the first implication. On the other hand, if 7,; < 0, then for each time
s > 0 we can find some x such that 7, (s) < x < Tpy(s). The web W
must contain a path 7 starting at (z, s) and since such a path cannot cross
the downward paths 7,4 and 7.y, it must satisfy a < 7(t) < b. We can
construct such a path 7° with starting time s for each s > 0, so using the
compactness of W, we see that YV must also contain a path 7° starting at
time zero such that a < 7 (t) < b, proving the second implication.

The difference (B;(s) — Ba(s))s>o of two Brownian motions is equally
distributed with (v/2B(s))ss0, where (B(s));>0 is a single Brownian motion.
Therefore, using the reflection principle,

P(r.s < 0] = P[ sup (Ba(s) — Bi(s)) < b—ad]
0<s<t
b—a
b—a 1 2 2
:]P) su BS < = e_ZC /2tdx
[Oﬁsgt (s) < V2 | Vomt )t

In particular, this implies that

Plz € You(R)] = lig%P[yo,t(R) N(z—cx+e)#0] =0 (zeR, t>0),
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and hence
P[yo,t(R) N(a,b) # @} = P[yo,t(R) N a,b] # m = Plra < 0]

Now

27L

E[[Yo(R) N [0,1]]] = lim ZIP’[J)W(R) N[(i —1)27", 327" # 0]

1 VI 1
= lime~! / e % /2tdx:—.
e—0 V21t ) _e/v2 vVt

A similar formula holds for the expectation of ‘y07t(R) N [0, TH for any r > 0
and the general result follows by translation invariance. |

We conclude this section with some useful consequences of Proposition
. In the following lemma, we let IT* := IIT N II* denote the space of all
bi-infinite paths and we let IT*(R) := II* N TI(R) denote the space bi-infinite
paths with values in R (as opposed to R).

Lemma 4.4 (No bi-infinite paths) Let W be a Brownian web. Then
WNIHR) =0 a.s.

Proof We start by observing that

PWNIIHR) # 0] < lim P[3r € W s.t. 0, = —o0, 7(0) € [-n,n]],
n—oo
where by Lemma[3.§ the inequality is in fact an equality. Now Proposition[4.3]
gives

P[3r € W s.t. 0, = —o0, 7(0) € [—n,n]]
2n
<1l 1. < - — = lim — =
_}LI?OP[HTFGWS)C or < —t, m(0) € [-n,n]] tlgglo\/ﬁ 0,
Here again, with a bit of extra work, one can show that the inequality is in
fact an equality, but we do not presently need this. |

Lemma 4.5 (Coalescence of paths) Almost surely, for all paths m, 7' €
W, if w(t) = 7'(t) for somet > o, V o, then w(u) = 7' (u) for all u > t.

Proof By Lemma[3.8] it suffices to prove the statement under the additional
assumption that 7(¢) = 7'(t) € R. Let T C R be countable and dense. If
t > o, V oy, then there exist r,s € 7 with 0, Vo <1 < s <t and the
paths obtained from 7 and «’ by cutting off the piece before time r are also
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paths in the Brownian web. Therefore, it suffices to prove for deterministic
r < s that if two paths 7,7’ € W with o, = o = r satisfy n(t) = 7/(¢) for
some t > s, then 7(u) = 7'(u) for all u > t.

By Proposition the random set

A={n(s):meW, o, =r}NR

is locally finite. We claim that for each x € A, there exists a unique path
T(z,s) € W(z,s), and conditional on A, the collection of paths

(71—(:1:,3) )xeA

is distributed as coalescing Brownian motions. Indeed, this follows from the
fact (which can easily be proved using discrete approximation) that restric-
tions of the Brownian web to disjoint parts of space-time are independent.
As a result, the random set A is independent of W(R x [s,00)), so after
we condition on A, paths started from a countable collection of fixed points
(z,s) with z € R will be distributed as coalescing Brownian motions.

The statement we want to prove now follows from the fact that if two
coalescing Brownian motions meet at some random time, then they coalesce,
i.e., the two paths are equal from that time onwards. |

Lemma 4.6 (Minimal and maximal paths) Let W be a Brownian web.
Then almost surely, for each z = (z,s) € R?, there exist paths w75 € W(z)
such that 7 (t) < w(t) < 7 (t) for allm € W(z) and t > 0. Ifx, <z <z
satisfy = — x and 7T(j;) € W(zt), then

W(ﬂ;) — F (4.5)

n—o0
in the topology on TIT.

Proof By symmetry, it suffices to prove the statements for 7. Let z < 2
satisfy 27 — x and choose W(J;L) € W(z}). By the compactness of W, the

set {W(J;L) : n > 1} is precompact in the topology on II'. Let 7 be any

subsequential limit of the sequence (W(J;L))n>1. Then clearly 7 € W(z). By

Lemma , each m € W(z) satisfies m(t) < 7r(+n) (¢) for all m > 1 and t > 0,
so taking the limit, we see that 7(t) < 7 (¢) for all ¢ > 0. This proves that
the set W(z) has a maximal element 7. Such a maximal element is clearly

unique, so the sequence (W(J;))ml has a unique cluster point, which is 7.
Since {W(J;) : n > 1} is precompact, it follows that the sequence (W(J:z))ng
converges to 7. |

The following lemma says that if a sequence of paths in the web converges
(such as for example in (4.5))), then this convergence actually takes place in
a rather strong sense.
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Lemma 4.7 (Strong convergence of paths) Let W be a Brownian web.
Then almost surely, for all m,, 7@ € W such that 7, — m, there exist times
tn > oy, V o such that t, — o and m,(t) = w(t) for allt > t,.

Remark We recall that the Brownian web has the property that almost
surely, for any countable dense set D C R? one has W = W(D), where
W(D) is called a skeleton of W. Lemma implies that for each path in
the web m € W and for each ¢ > 0, there exists a skeletal path 7' € W(D)
such that 7(t) = 7'(t) for all t > o, + €.

Proof By Lemma [3.8] it suffices to prove the statement under the additional
assumption that 7(¢) € R. Proposition |4.3[tells us that for each deterministic
s < t, the set

Ay = {77(15) TeW, o, < 3} NR
is a.s. a locally finite subset of R. Let 7 be a countable dense subset of R.
Then almost surely, A,; is locally finite for all s, € 7 with s < t. Now
if m,, ™ € W satisfy m, — m, then for each s,t € T with 0, < s < t, we
have for n sufficiently large that o,, < s and hence m,(t),7(t) € As¢. Since
mn(t) — m(t) and since A, is locally finite, it follows that 7,(t) = 7 () for n
sufficiently large. By Lemma [1.5 m,(t) = n(¢) implies m,(u) = m(u) for all
u > t. Since T is dense, we can choose t as close to o, as we wish, and hence
the statement of the lemma follows. |

Exercise 4.8 Show that formula can be strengthened (for deterministic
a,b, and t) in the sense that Yo (R)N[a, b] # O almost surely implies Yo (R)N
(a,b) # 0.

4.2 Brownian local time

In the next section, we will study the interaction between paths in the forward
and dual Brownian web. As a preparation, in the present section, we collect
some well-known facts about Skorohod reflection and Brownian local time.
Let C := Cjpo0)(R) denote the space of continuous functions f : [0,00) — R.
We set

C@I:{fECff():O},

C*t:={f €C: fis nondecreasing},

CPOS::{fEC : fEO},

and we write Cj :=C*T N Cy. We set

my(f) :=0A Oi<n£t 1 (t>0, feC). (4.6)
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In particular, if f € Cy, then this is the running minimum of the function f.
Assume that h € C satisfies hy > 0, and let

gr = hy — my(h) (t >0). (4.7)

We observe that g; > 0 and that v, := —my(h) is a nondecreasing function
that increases only at times when g; = 0. The following definition makes this
precise. Let go € [0,00) and f € Cy be given. By definition, a solution to the
Skorohod reflection equation

dg: = dfy +die (£ >0) (4.8)
is a pair (g,7) of functions g € Cpes and ¢ € Cg such that

(i) gt =90+ fr +1: (t 2 0),

(11) / 1{gt>0}dwt - 0
0

Here, the notation in point (ii) means that we integrate the function ¢ —
1g,>01 with respect to the measure whose distribution function is v, i.e.,
this is the unique measure g on [0,00) such that p([0,t]) = ¥ (¢t > 0).
Condition (ii) makes the intuitive concept precise that 1, increases only at
times when g; = 0. See Figure for an illustration. The following lemma

says that solutions to (4.8]) are unique and given by (|4.7)).

Lemma 4.9 (Skorohod reflection) For each go € [0,00) and f € Cy, the
Skorohod reflection equation (@ has a unique solution (g,) with initial
condition go. This solution is given by

g = fr—mi(f) and Wy =—-mi(f)  (t>0), (4.9)
where f, := go + fi (t >0).

Proof It is not hard to check that if we define g and ¢ by (4.9)), then (g, 1)
is a solution to the Skorohod reflection equation . To prove uniqueness,
assume, conversely, that has two solutions (g, 1) and (¢’,') that are
not equal but which satisfy go = gj,. Then, by condition (i) of the definition
of a solution to the Skorohod reflection equation, there must be a v > 0 such
that g, # g.,. By symmetry, we can without loss of generality assume that
gu < ¢g.,. Let s :=sup{t € [0,u] : ¢ = ¢g;}. By continuity, g; = ¢- and ¢g; < g,
for all t € (s,u]. Setting fy = f, — fs and ¢, := 1, — s, we observe that
(9,7) solves the Skorohod reflection equation

dg, = dft + d?ﬁt (t > s)
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Figure 4.2: Reflected Brownian motion: the functions f,g, and v from
Lemma [4.9|in the case that f is a Brownian path.

on the time interval [s,00), and an analogue statement holds for (¢’,¢’). In
view of this, shifting the time s to zero, if uniqueness does not hold, then we
can without loss of generality assume that we are in the following situation.
We have two solutions (g, 1) and (¢’,%’) to the Skorohod reflection equation
(4.8) with initial states gy = g{ for which there exists a v > 0 such that
gi < g, for all t € (0, u].

Since 0 < ¢ < g; for all t € (0,u], condition (ii) of the definition of a
solution implies that ¢; = 0 for all ¢ € [0,u]. Together with the fact that
go = g and condition (i) of the definition of a solution, this implies that
gt > g; for all t € [0,u], contradicting our assumption that ¢, < g; for all
0<t<u. ]

Exercise 4.10 Let f € Cy be given and assume that (g,v) and (¢, ")
are solutions to the Skorohod reflection equation (@ with possibly different
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initial states go and g,. Show that
90 < go implies g <g, and g —g <gy—go  (£=0). (4.10)

We will especially be interested in the case that the function f from
Lemma is Brownian motion. In this case, the function ¢ is reflected
Brownian motion, and % is its local time at the origin. To explain this in a
bit more detail, we need to take a small detour.

If (Bi)i>o is a d-dimensional Brownian motion, then we can define a
stochastic process (£;);>0 taking values in the space M(R?) of finite mea-
sures on R? by

/Rdﬁt(d@f(m) = /0 ds f(Bs) (t >0, f € By(RY).

The random measure ¢, is called the occupation local measure of the Brownian
motion (B;)i>o. In particular

= [anas) s

is the amount of time the Brownian motion has spent inside a measurable
set A up to time ¢. In one dimension, it is well-known that ¢; has a density
with respect to the Lebesgue measure. The following theorem is originally
due to Trotter. The process (L;);>o below is called Brownian local time.

Theorem 4.11 (Brownian local time) Let (B;);>o be a one-dimensional
Brownian motion. Then almost surely, there exists a random continuous
function L : [0,00) x R — [0,00) such that

Jast@s@ = [asf) (=0 1 BER).

Modern proofs of Theorem [4.11| are based on Tanaka’s formula, which
says that

1B :/Otsgn(Bs)stnLLt(O) (t>0), (4.11)

where the integral is an It0 stochastic integral. Tanaka’s formula can be used
as a definition of Brownian local time, for which one then proves the prop-
erties described in Theorem m For details, we refer to [McKG69, Mey76,
RWST7]. In fact, in the remainder of this chapter, we will mostly work with
Tanaka’s formula as the definition of L;(0) and do not really need its inter-
pretation as local time in the sense of Theorem [4.11]
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Proposition 4.12 (Reflected Brownian motion) Let B = (B;);>o be
a standard Brownian motion and let (Li(0));>o be its local time at 0. Let
W = (Wy)i>o0 be another standard Brownian motion and let

Ay =Wy —my(W)  and Ly :== —my(W) (t>0). (4.12)

Then
P[(|B], Li(0)) 50 € -] =P[(As, Li)izo € - ].

Proof (sketch) Let (B;):>o be a Brownian motion and let

t
W, ::—/ sen(B,)dB,  (t>0).
0

It is not hard to show that W = (W;);>o is a Brownian motion. We will
show that A; = |B| and L, = L;(0) (¢ > 0). We apply Lemma [4.9 Tanaka’s
formula says that |B;| = L;(0)—W; (t > 0). Clearly | B;| is nonnegative
and L;(0) is nondecreasing and increases only when |B;| = 0. For the details,
we refer to [KS91, Thm 3.6.17]. |

4.3 Law of a forward and dual path

Let (W, W) be a double Brownian web, let (z,s), (y,u) € R2, and let 7 €
W(z,s) and # € W(y,u) be the almost surely unique paths in the web and
dual web starting at these points. If s > u, then it is easy to see (for example
using discrete approximation) that the paths 7 and 7 are independent, but
this cannot be the case when s < u, since we have seen in Section (3.5 that 7
and 7 do not cross, which would have a positive probability for independent
forward and backward Brownian paths. In this section, we give a precise
description of the joint law of © and 7. This goes back to [STWO00].

Lemma 4.13 (Path reflected to the right off a dual path) Let 7 € 11"
and 7 € I satisfy o < 72 and 7(0;) < w(oy). Then there exists a unique
path 7 € 11" and continuous function 1) : R — R such that

(1) 2w = 2zp and ©'(t) = 7(t) + V() (t > 0x),
(ii) w(t) < 7'(t) for all s <t < u,

(iii) ¢ is nondecreasing with V(o) = 0 and the measure
di is concentrated on {t € [0y, 2] : 7(t) = 7'(t)}.
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Proof Let (z,s) := ((0x),0x) and (y,u) := (#(7#), 7+) denote the starting
points of 7 and #. Define f : [s,u] — R by f, := n(t) — #(t) and set
fi == fi — fo (t € [s,u]). Then Lemma tells us that the Skorohod
reflection equation

dg = dfy + dx: (s <t<wu) (4.13)

has a unique solution with initial state g, = 7w(s) — 7(s). (Lemma is
stated for unbounded time domains but the statement and proof carry over
without a change if the time domain is bounded.) Define ¢ : R — R by
W(t) == x¢ (t € [s,u]), ¥(t) == xs (t <s) and () := xu (t > u), and define
7 e Mz, s) by ©'(t) = 7(t) + g (t € [s,u]) and 7' (t) = 7' (u) + (7(t) — 7(u))
(t > w). Then 7’ and v satisfy conditions (i)—(iii) of the lemma if and only
if g and x satisfy the Skorohod reflection equation (4.13)) with initial state
gs = m(s) — m(s). Thus, existence and uniqueness of 7" and x follow directly
from Lemma [4.9] n

By symmetry, in complete analogy to Lemma [£.13] we can also define a
path by reflection to the left off a dual path.

Lemma 4.14 (Path reflected to the left off a dual path) Let 7 € II"
and 7# € IV satisfy o < 7 and 7(0,) > 7(0,). Then there exists a unique
path © € 1T and continuous function v : R — R such that

(1) 2w = 2; and @' (t) = 7(t) —Y(t) (t > 0x),
(ii) 7(t) > 7'(t) for all s <t < wu,

(iii) v is nondecreasing with ¥ (o,) = 0 and the measure
d is concentrated on {t € (o, 73] : 7(t) = 7'(t) }.

Let C(R) denote the space of all continuous functions ¢p : R — R,
equipped with the topology of uniform convergence. Then we can define
a map ¢ by

I x T 3 (1, 4) w2 (#,¢) € T x C(R), (4.14)
where:
o 7 :=mand Y(t) :=0 (t € R) if o > 7%,
e 7' and ¢ are defined as in Lemma if o < 7 and 7(o,) < 7(o,),

e 7' and 1 are defined as in Lemma if o, <7 and 7(0;) < (o).
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Lemma 4.15 (Continuity of the reflection map) Assume that m,, ™ €
" and #,, 7 € IV satisfy m, — m and 7, — 7 in the topologies on II' and
II¥. Assume moreover that either o, > T+ or o, < 7z and 7(o;) # 7(0x).
Then

O(mp, 1) —> O(m, 7M)

n—oo

in the topology on 11T x C(R).

Remark Our proof of Lemma [4.15| will show that the conclusion remains
valid even when o, < 7z and 7(0,) = w(0,), provided that 7, (o, ) < 7,(0x,)
for all n.

Proof of Lemma In the proof of Lemma [4.13| we have seen that there
exists a one-to-one correspondence between solutions to conditions (i)-(iii)
of the lemma and solutions of the Skorohod reflection equation . By
Lemma solutions of such a Skorohod reflection equation are of the form
(4.9). Thus, the claim follows from the fact that if a sequence of functions
fm e C with fg > () converges locally uniformly to a limit f, then also the
functions t — my( f”) converge locally uniformly to ¢ — my( f ).

Note that if o, < 74, then we have to assume that 7(o,) < 7m(o,) or
Tn(0m,) < (o, for all n because of the obvious discontinuity in our defi-
nition of the map ® in points (7, 7) with 7(o,) = 7(o,). |

Theorem 4.16 (Interaction between forward and dual paths) Let
(W, W) be a double Brownian web, let (x,s),(y,u) € R2, and let 7, 7 be
the almost surely unique paths such that m € W(z,s) and & € W(y,u) Let
B = (B})i>s be a Brownian motion started at Bs = x, independent of 7, and
let (',¢) := ®(B, %), where ® is the map in ([{.14). Then (w,7) is equal in

law to (7', 7).

Proof We use discrete approximation. We first prove an analogue statement
for open paths in an arrow configuration and then take the limit, using
Skorohod’s representation theorem and the continuity properties of the map
® defined in (4.14]).

Let U be the set of open paths in an arrow configuration and let U* be the
set of downward open paths in the associated dual arrow configuration. Fix
(y,u) € Z2,, and let P be the unique element of U*(y, u). Fix (z,s) € Z2,
and let (Xj)g>s+1 be ii.d. uniformly distributed {—1,+1}-valued random
variables, independent of P. Let P be the random walk that is defined for

integer times by

¢
P =x+ ZX’“ (t > s),

k=s+1
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and then for general ¢ > s by linear interpolation. We can then define a
reflected random walk P’ = (P));> started at P! = x first for integer times
by
P -1 ift<wu, B,=P_,, and P,_; = P_, +1,
Pl:i=4q P +1 ift<u, P,=P ,, and Py =P | —1,
P/, +X;  otherwise,
and then for general ¢ > s by linear interpolation. Then it is easy to see that

the conditional law of P’ given P is precisely the conditional law of the the
unique element of U(x, s) given P.

Figure 4.3: A random walk reflected to the right off a dual random walk path
P. The reflected path is P'(t) = P(t) + U(t), where P is an independent
random walk and W is a reflection term. The steps where reflection takes
place are indicated in red.

If uw < s, then clearly P’ = P’. In the opposite case, we claim that P’ is a
reflected version of P, very similar to the reflected paths defined in Lemmas
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and [4.14. To see this, let us first focus on the case that P(s) < z. On
this event, we define ¥ : [s,¢] — R by

U(t) := /0 (%P(r) - %P(T))l{ff’(r) Lo P’(r)}dr (t € [s,u]),

with the convention that the derivatives are zero at integer times. We extend
U to R by setting W(t) := 0 for ¢t < s and ¥(t) := ¥(u) for t > u. Then it is
straightforward to check (see Figure that:

(i) P'(t) = P(t) + V() (t = s),

(ii) P(t) < P'(t) for all s <t <w,

(iii) W is nondecreasing with W(s) = 0 and the measure
d¥ is concentrated on {t € [s,u] : P(t)+1= P'(t)}.

In other words, this says that P’ s precisely the random walk path P, re-
flected to the right off the path (P(t) + 1) in the sense of Lemma {4.13]

t€(s,u)
In a similar way, we see that on the event that z < P(s), the path P’ is the
random walk P, reflected to the left off the path (P(t) - 1)t€[s . I the sense
of Lemma [£.14] ’
We can now prove the statement of the theorem. We first treat the case
that s < u. We choose positive constants ¢,, tending to zero, and points
(24, 8n) € Z2 .o, and (Yn, up) € Z24, such that

even

0., (n,8,) — (x,8) and 0., (yn,u,) — (y,u).
n—oo

n—oo

Note that s, < w, for all n large enough. We let P, be the unique element
of U(yn, un), we let P, be an independent random walk started at P,(s) = z,
and we define reflected paths P! in terms of P, and P, as above. We let ¥,
denote the associated reflection functions. It will also be handy to introduce
notation for the dual path P, shifted by +1 or —1 depending on whether
pn(s) < X, Or X, < pn(s) We denote this modified dual path by P,, i.e.,

(t € (—oo,un]).

A

P,(t)+1  if Py(s) < xn,
P,(t)—1 ifz, < Py(s)

We denote the corresponding diffusively rescaled paths and functions by

(ﬁ'na Bn: B;La wn) = esn (Pn7 Pna Pr/u \Ijn)
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Note that we rescale the reflection function in the same way as the paths.
The properties (i)—(iii) above are preserved under rescaling, so on the event
that 7,(s,) # x,, we have that

(B, ¥n) = ©(By, Tn), (4.15)

where @ is the map in . In the case when u < s, we can without loss of
generality choose our approximating points such that u,, < s, for all n. Then,
taking as a definition, we also have that (B!, 7,) is distributed as the
pair of rescaled forward and dual paths started from (x,, s,) and (y,, u,).
The rest of the proof is now easy. It follows from Theorem that the
pair of rescaled paths (B, 7,) converges in law to (m,7), the forward and
dual Brownian web paths mentioned in the theorem. On the other hand, the
pair of rescaled paths (7,, B,) converges in law to a pair (7, B) where 7 is
as before and B is an independent Brownian motion started at (z,s). Using
Skorhod’s representation theorem, we can couple our random variables such
that the latter convergence is almost sure. Since the event 7(s) # x has
probability one, we can use and the continuity property of the map ®
stated in Lemma , to conclude that for this coupling, (B!, 1,) converge
almost surely to (7,1) := ®(B, 7). In particular, this implies that (7, 7) is
equal in law to (7', 7), as claimed. |

Figure [4.4] shows a numerical simulation of the set of all Brownian web
paths started at a fixed time s, together with the set of all dual Brownian web
paths started at a fixed time ¢ > s, where one can (with a bit of imagination)
see the forward path being reflected off the dual paths, and vice versa.

4.4 Special points

We have defined the Brownian web W as the closure of {r, : z € D}, where
(7.).ep is a collection of coalescing Brownian motions started from a count-
able dense set D C R% Here {7, : z € D} is precompact by Proposition
and hence W is a compact subset of II". Using compactness and the fact
that D is dense, we see that for each z € R?, there exists at least one path
7 € W that starts at z. For each z € R?, we let

Mout (2) 1= |W(z)‘

denote the number of paths in W that start at z. In Theorem [3.7, we have
proved that mo.(z) = 1 a.s. for each deterministic 2 € R?. In this section,
we will prove that in spite of this, almost surely, there exist points z with
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. ‘i_" iy ‘h‘-—;i-?:.r}

Figure 4.4: The sets of all Brownian web paths and dual Brownian web paths
started at two fixed times s < t.

Mout(2) = 2 and even mey(z) = 3. The key to understanding this is (again)
duality.

We say that a path m € II" enters a point 2z = (z,u) € R? if 0, < u and
m(u) = x. We denote the set of Brownian web paths entering z by

Win(2) := {m € W : 7 enters z}.

We define an equivalence relation ~ on W, (z) by setting m ~ 7’ if and only
if there exists a time s with o, V o < s < u such that 7 (t) = #/(t) for all
t € [s,u] and we let

Win(z) = {7 e W:m € Wa(z)} with 7:={r' € Wi(2): 7~}
denote the set of equivalence classes. With these conventions,
Min(2) = | Win(2)]
denotes the number of nonequivalent paths m € W entering z. We call
(min(2), Mout(2)) the type of a point z € R2.

Theorem 4.17 (Special points of the Brownian web) Let W be a
Brownian web. Then almost surely, all points in R? are of one of the following
types:

0,1), (0,2), (0,3), (L,1), (1,2), (21),
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and all these types occur. For each deterministic t € R, almost surely, all
points in R x {t} are of one of the following types:

0,1), (0,2), (L,1),

and all these types occur. A deterministic point (z,t) € R? is almost surely
of type (0,1).

Points of type (1,2) are further distinguished into points of type (1,2),
and (1, 2),, depending on whether the incoming path is the left or right of the
two outgoing paths. The proof of Theorem needs a few preparations.

Recall that in Section we defined paths 7 € TI(R) as subsets 7 C R(R)
with certain special properties. Our definitions excluded the case that m = (),
but for some purposes it is convenient to allow the empty paths, so we define

IIH(R) :=TI(R) U{0}. If [s,u] C R is a compact nonempty interval, then we

define the restriction of a path 7 € II(R) to the interval [s,u] as

W’[M] = {(z,t) em:t € [s,ul}.
Note that W‘[S u € IIH(R) for all 7 € II(R). If A C TI(R) is a set of paths,
then we define

A|[s,u] = {ﬂ-‘[s,u] T e A}\{@},

where now we remove the empty path so that A‘[S q C II(R).

Lemma 4.18 (Independent increments) Let —oo <ty < --- <t, < 0.
Then the restricted Brownian webs

W’[to,tl]’ e ’W|[tn_1,tn]

are independent.

Proof (sketch) We use discrete approximation. Let —oco < s < u < o0,
choose positive constants ¢,, tending to zero, and let s,,u, € Z satisfy
e2s, — s and e2u,, — u. Let U be the set of paths in an arrow configuration.
Then we claim that

Plo.,U|,, .)€ ] = PW[ , €], (4.16)

n—o0

where = denotes weak convergence of probability laws on II(R). This would
quite easily follow from Theorem 3.18|if the map A .A| (s,] VETE continuous,

but that is not the case (Exercise |4.19 below). Nevertheless, (4.16]) can be




100 CHAPTER 4. PROPERTIES OF THE BROWNIAN WEB

proved by adapting the proof of Theorem [3.18]in a straightforward manner.
For brevity, we skip the details.
Now let —oo <ty < -+ <t,, < oo. Then we can find t7,...,t € Z with
17 < ... <t such that eit? — t; for each 0 < ¢ < m. Since the restricted
discrete webs
U “'7“‘&:;,1,%1

[tg:tT]’

are independent, taking the limit, we see that the same is true for the re-
stricted Brownian webs. [ |

Exercise 4.19 Show that the map A — A‘ (o] is not continuous with respect
to the topology on K(II(R)).

The following lemma shows how the type of a point in the dual Brownian
web can be derived from its type in the Brownian web. This lemma will also
be key in understanding why certain types of points must exist, or on the
other hand do not exist; see Figure [4.5

Lemma 4.20 (Types of points in dual web) Let (1iin(2), 50 (2)) denote
the type of a point z € R? in the dual Brownian web W. Then for each z € R?,

Mout(2) = Min(2) + 1 and Mo (2) = min(2) + 1.

Proof By symmetry, it suffices to prove that meu(2) = min(2) + 1. If there
is an incoming path in W at z, then forward paths started on either side of
such a dual path cannot coalesce until the starting time of the dual path,
since otherwise the dual path would enter the wedge defined by these forward
paths. As a result, since the incoming paths divide the area just above z into
Mmin(z) + 1 regions, approaching the point z from different directions, using
the compactness of W, we see that there are at least m;,(z)+1 distinct paths
in W starting at z. On the other hand, if there are two outgoing paths in
W at z, then any dual path that is started between these paths must stay
between these forward paths and pass through z. Therefore, m;, > mou — 1.
Together with our earlier claim that meu(2) > Mmi(z) + 1, this proves the
claim. [ |

Proof of Theorem [4.17] (sketch)] Let D C R? be countable and dense and
let W(D) be the associated skeleton of the Brownian web. By Lemma
and the remark below it, if 7 € WV enters a point z, then there exists a
7" € W(D) such that 7 and 7" are two equivalent paths entering z. Thus, for
each z € R?, we have that m,(z) is also the number of non-equivalent paths
in the skeleton W(D) entering z. A completely analogue statement holds for
paths in the dual web.
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Figure 4.5: Possibe types of points in the Brownian web and its dual.

If z € R?is a deterministic point, then Theoremtells us that mey (2) =
1 and Moy (z) = 1. By Lemma , this implies that z is almost surely of
type (0,1).

If t € R is a deterministic time, then clearly there exist (random) z € R
such that m,(z,t) = 1, while by our previous argument there also exist
z € R such that my,(z,t) = 0. We claim there exist no x € R such that
min(x,t) > 2. Indeed, by the remarks at the beginning of our proof, for
this to be true there would have to exist skeletal paths 7,7 € W(D) with
7(t) = 7'(t) while 7(s) # 7'(s) for all o, Vo < s < t. For any two paths in
{m, : z € D}, this event clearly has probability zero. Since D is countable,
we can conclude such paths 7, 7’ do not exist. By a similar argument, we see
that there exist no « € R such that my,(z,t) = 1 and my,(x,t) = 1. Indeed,
for this to be true, a path in {m, : z € D} started below time ¢ and a dual path
in {7, : z € D} started above time ¢ would have to be at the same location at
time t. By Lemma what happens below time ¢ is independent of what
happens above time ¢, and therefore such an event has probability zero. We
conclude that if t € R is a deterministic time, then for each x € R, one of the
following statements must be true: 1. my,(z,t) = My, (2, t) = 0 (which is true
for deterministic z), 2. my,(x,t) = 0 and my,(x,t) = 1, and 3. my,(z,t) = 1
and My, (z,t) = 0, and all these cases occur. By Lemma m, it follows that
all points on R x {t} are of the types (0,1), (0,2), (1,1), and all these types
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occur.

To complete the proof, we must show that (at random times), points
of type (0,3), (1,2), and (2,1) also occur, but no other types of points can
occur. It is clear that there exist points z € R? with my,(z) = 2, but by
the remarks at the beginning of our proof, there exist no points z € R? with
min(2) > 3, because for that to occur, three Brownian motions started from
deterministic points would have to coalesce in one and the same point, which
has probability zero. There are in fact only countably many points z with
min(z) = 2, since these are the coalescence points of the countable collection
of coalescing Brownian motions {r, : z € D}.

We claim that each point z with m,(z) = 2 satisfies mi,(z) = 0. To see
this, we need to consider the joint law of two forward paths started from
deterministic points and one dual path started from a deterministic point.
We claim that if we forget about the trajectory of the coalescing forward
Brownian motions after their coalescence time, then the conditional law of the
dual path given the trajectories of the forward paths up to their coalescence
time is described by a Brownian motion with Skorohod reflection off the two
forward paths. The proof of this is similar to the proof of Theorem [4.16], so
we skip the details. Now the conditional probability that the dual path hits
the two forward paths exactly in the point where they coalesce is zero, which
implies there are no points with m;,(z) = 2 and my,(z) > 1.

By Lemma these arguments show that there exist points of type
(2,1), and by duality also of type (0,3), but no points of type (n,m) with
n>3 orn=2and m>2 orn=1andm > 3.

By Lemma [4.20], and our previous remarks, to complete the proof and
show that there exist points of type (1, 2), it suffices to prove that there exist
point z € R? with my,(z) = 1 and my,(z) = 1. This follows from the fact
that forward paths reflect off dual paths, proved in Theorem [4.16] [ |

Exercise 4.21 Let W be a Brownian web. Recall the definition of the
mazimal path T+ € W(z) (2 € R?) from Lemmal4.6. Say that a point z € R
is a point of continuity of the map z — wt if

mh =7t forallz, e R? st z, — 2.
Show that the set of points of continuity of the map z — ) is given by
{z € R? : mhyy () = 0}.

Exercise 4.22 Let x € R be deterministic. Try to determine which types of
points almost surely occur, or do not occur, in the set {x} xR. Note: there is
one type of point for which this question is not so easy to answer rigorously
(although you may guess the correct answer).
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4.5 The continuum voter model

In this section, we return to the processes (A¢)i>o and (By):>o defined in (4.2)).
We will show that they are indeed Markov processes, which can be thought
of as the continuum limits of the voter model and coalescing random walks,
respectively.

Lemma 4.23 (Stochastic flow property) Let ¢t € R be deterministic.
Then almost surely,

Xt,u O Ast = Xs,u and yt,u o ys,t = ys,u (S <t< U)

Proof We first prove the inclusion &, o Xs(A) D X, (A) for each closed
ACR. If z € X,,(A), then there exists a 7 € W(z, u) such that 7(s) € A.
Set a’ := 7(t). By Excercise m, there exists a 7’ € W(2/,t) that coincides
with # on (—oo,t]. It follows that ' € X,;(A), which by the fact that
7(t) = 2’ implies that x € A}, o X (A).

If t is deterministic, then the opposite conclusion can also almost surely
be draw. If © € X;, o X,,(A), then there exists an 2’/ € R, & € W(x,t), and
# € W(2/,t) such that #(t) = 2’ and #/(s) € A. Since t is deterministic and
1in (', t) = 1, Theorem [4.17)allows us to conclude that (2/,t) is of type (1,1).
But then 7’ must coincide with 7 on (—o0, t], which implies that = € X, (A).

This concludes the proof that if ¢ € R is deterministic, then X}, o X, =
X, as. for all s <t, u >, and closed A C R. The proof that ViwoVst =
Vs 1s basically the same. [ |

Proposition 4.24 (Continuum voter model) Let K(R) be the space of
all compact subsets of R, equipped with the Hausdorff topology. Then setting

Py(A, ) =P[X(A) € -],
Qu(A, ) =P [Vos(A) € -]
defines transition kernels on IC(R) such that for each A, B € K(R), the pro-
cesses (A¢)iso and (Bi)i>o defined in are Markov processes with transi-

tion kernels (P;)i>0 and (Q¢)i>o, respectively.

} (A e K(®), t>0),

Proof We need to show that for each deterministic 0 <t < u,
P[Au c - | (AS)OSSSt] = Pu—t(Ata ) a.sS.

Since A is deterministic and Ay, = Xp(A) (0 < s < t), where X is a
function of W|[0 g We see that (As)o<s<t is a function of W Lemma 4.23
tells us moreover that

Au = X07u(A) = thu O Xo,t(A) = Xt,u(At)-

(0,8
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Since A}, is a function of W|[t ]’ by Lemma |4.18| it is independent of W|[0 q

and hence also of (As)p<s<:. This implies that
]P[Xt,u(At> € - ‘ (As)o<s<t = (as)Ogsgt} = P[Xt,u(a/t) S } = P, _(as, -)

for almost every (as)o<s<: with respect to the law of (Ag)o<s<i. It follows
that

P[Au c - ’ (AS)OSSSJ = ]P)[Xt,u(At) (S ‘ (AS)OSSSt} = Pu—t(At7 ) a.s.

The proof for (B;);>0 is completely the same. |

Remark An alternative construction of a continuum voter models has been
given by Steve Evans in [Eva97]. His construction is based on duality with
coalescing motions, which can be very general Markov processes (not nec-
essarily Brownian motions, and with state space much more general than
the real line), and he also allows voter models with infinitely many types.
Because of the high level of abstraction, the paper is a bit hard to read.

Exercise 4.25 Let W be a Brownian web. Show that the set I := {:L’ €ER:
Mmin(z,0) = 1} is a.s. countable. Conditional on W, let (X(x));cez be i.i.d.
uniformly distributed {0, 1}-valued random variables, and define (A¢)iso by

Ay:={zeR:3r € W(z,t) s.t. x(7(0)) = 1}.
Show that for deterministic 0 < s < t, one has
At = Xs,t(As) a.S.

Sketch a proof that the process (Ai)iso is the scaling limit of voter mod-
els started in i.i.d. uniformly distributed initial laws (compare the picture in

Section .

4.6 The Arratia flow

Let (W, VV) be a double Brownian web. Recall the definition of the minimal
and maximal paths 7 starting at a point z € R? in Lemma [4.6 For z =
(y,t) € R?, we similarly let 47 and 7 denote the unique elements of W(z)
such that 7 (s) < @(s) < 7f(s) for all s < ¢. For each s,t € R with s <,
we define a map P : R — R by

Dyu(7) =, (1) (s <t, z€R). (4.17)
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Similarly, we set
bo(y) =7l ,(s)  (s<t yER). (4.18)

We say that a function f : R — R is monotone if it is nondecreasing, i.e.,
r <y implies f(x) < f(y). If f: R — R is monotone and right-continuous
with lim, 4., f(2) = oo, then we define its generalised inverse as

[ y) =swp{zeR: flx) <y} (yeR) (4.19)

Then f~! is monotone and right-continuous with lim, 4+, f~*(y) = £oo, and
its generalised inverse is the function f. See Figure for an illustration.

Figure 4.6: The generalised inverse f~'(y) := sup {z € R: f(z) < y} of a
monotone right-continuous function f: R — R.

Proposition 4.26 (Arratia flow) Almost surely, for all s,t € R with s <'t,
the functions @, are monotone and right-continuous with im,_, 1 - V() =
+o00, and ®, 5 is the identity map for each s € R. Moreover, for each deter-
manistic s,t,u € R with s <t < u, one has

Q0P =P, as. (4.20)
For each deterministic to < --- <'t,,
the maps @y, 4y, ..., Py, 1, are independent. (4.21)

Finally, almost surely for all s,t € R with s <t, the random map (ft,s 1s the
generalised inverse of ;.



106 CHAPTER 4. PROPERTIES OF THE BROWNIAN WEB

Property , together with the fact that @, is the identity map for
each s € R, say that (®,;)s<; is a stochastic flow, and property says
that (®;)s<: has independent increments. One has to be careful with the
order of the “for all” and “almost sure” statements. We will see in the proof
of Proposition that while property holds almost surely at deter-
ministic times, it fails to hold simultaneously for all times, since there almost
surely exist random times s < ¢t < u such that does not hold. By
contrast, all other statements of the proposition hold almost surely simulta-
neously for all times (deterministic or random).

Proof of Proposition |4.26| Since paths in the Brownian web coalesce as
soon as they meet (Lemma , the maps ®,, are clearly monotone for
all s < t, and right-continuity follows immediately from Lemma 4.6l By
monotonicity, the limit lim, ,o, ®s¢(x) exist. If this limit were finite, then
that would imply the existence of paths in the Brownian net coming in
from infinity, which by Lemma does not happen, so we conclude that
lim, o ®,.(z) = oo and similarly lim, , o ®,(z) = —oco. These same ar-
guments also show that the functions qADt,s are monotone and right-continuous
with lim,_ 10 (i)t,s<x) = +00.

It is clear from the definition that @, , is the identity map for each s € R.
We next prove . Since @, is the identity map for each s € R, it
suffices to prove the statement for s < ¢t < u. Thus, we need to show that
for deterministic times s < t < u, one almost surely has

+ _ o+

W(W(J;@(t%t)(u) =T, (W) (x € R). (4.22)
Since t is deterministic, by Theorem |4.17], almost surely for all x € R, the
point (ﬂ'(J;’S)(t),t) is of one of the types (0,1), (0,2), or (1,1). Since the
path 7r(+ « enters this point, we must have min(ﬂa’s) (t),t) > 1, which allows

z,

us to conclude that the point (W(J;’S) (t),t) must be of type (1,1). It follows

that 7T(++ 0.0) must be the continuation of Wa 9 and (4.22) holds. Note,
Tr(z,s) 5 )

however, that this argument essentially uses that t is deterministic. There
exist random times t such that for a suitable choice of s <t and x € R, the
point (W(J; 9 (t),t) is of type (1,2);. In such cases, the path 7, is the

(T 5 (1)
continuation of W&’S) and fails.

The independent increment property follows from the analogue
proerty of the Brownian web, stated in Lemma [£.18] To complete the proof,
we must show that for all s, € R with s < ¢, the random map <i>t’3 de-
fined in (4.18)) is the generalised inverse of ®,. We first make some general
observations. Let F denote the space of all monotone and right-continuous
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functions with lim, 1. f(z) = £oo. We adopt the notation

f(x—) :=lim f(x) (x eR, feF).

't

Then x +— f(z—) is the left-continuous modification of f. It is not hard to
check that

foy<y & z<fHy-) (x,y eR, feF), (4.23)

where y — f~1(y—) is the left-continuous modification of the generalised
inverse of f. Therefore, to show that @, , is the generalised inverse of ®,,, it
suffices to show that

o,(r)<y & w<dly—) (s<t, v,yeR).
The left-continuous modification of @)t,s is given by

(Abs,t(y_) = ﬁ-(_%t)(s) (8 S t) ) € R)v
so we need to show that

ﬂa,s)(ﬂ <y & w<7wgy,t) (4.24)

)

By the symmetry of the problem, it suffices to prove only the implication
=-. Since forward and dual paths do not cross, 7'('(+ )(t) < y clearly implies

T,s

x < m, (). To see that in fact we must have z < 7 . (¢) imagine that,
conversely, z = t)(t). Then there must exist a 7 € W(x,s) such that

~—

Tyn < T On [s,t]. Since forward and dual paths interact via Skorohod

reflection, m must lie strictly on the right of 7?(;

+
71'($

;) b most times in [s, ], so

9 is not the maximal element of W(x, s), contradicting our assumptions.
[ |

)

Remark Our proof actually shows that for each deterministic ¢ € R, almost
surely, (4.20) holds for all s,u € R such that s <t < u.

The following lemma, which is of interest in its own right, prepares for
an alternative proof of the fact that @, is the generalised inverse of ®,.

Lemma 4.27 (Evolution of halflines) The maps X, defined in

almost surely satisfy

Xy u([—00,2]) = [~o0, 7, (u)] (s <u, z€R).
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Proof By definition, y € X,,([—oc0,z]) if and only if there exists a 7 €
W(y, u) such that #(s) < 2. We need to show that y € X, ([—oc, z]) if and

only if y < 7r( o). Ify < 7r(+ o(w), then there exists a & € W(y, u) such
that 7(t) < (+ (t) for all t € [s,u]. In particular, 7(s) <z, so we conclude
that y € Xsu( ) Conversely, if y € Xsu([—oo,x]), then there exists

a # € W(y, u) such that 7(s) < z. It follows that there exists a m € W(z, s)
such that 7(t) < 7(t) for all ¢ € [s,u]. This implies y = 7(u) < 7(u) <
7r(+ (u). |

z,s)
Using Lemma , we can alternatively prove (4.24]) by writing
T <y & Xey([—00,2]) Ny, 0] =0

& [-00,2]NVis(ly o)) =0 & < T ()

where we have used the definition of the map j)ms in and the duality of
Lemma [4.2]

We extend the maps ®,; to R by setting ®, ;(+£00) := +o00, and similarly
for ®;,. For any set A C R, we let ®,,(A) := {®,,(z) : © € A} denote
the image of A under ®,;. We also let ®,;(A) := {z € R : ®,,(z) € A}
denote the inverse image of a set A C R under the map ®,,. Note that in
view of Proposition , for s < ¢, the maps ®,, are very much not one-
to-one. Therefore, there is a big difference between the inverse image of a
set under ®,,;, and the image of the same set under the generalised inverse
i)t,s. The following lemmas link these images and inverse images to the maps
Xt Vs, QA(t,s, j)t,s defined in 1) Below, for obvious notational reasons, we
let

clos(A) := A

denote the closure of a set A C R.

Lemma 4.28 (Images) For each deterministic t € R and deterministic
closed set A C R, one has almost surely

yt,u<A) - (I)t,u(A) (t S u) and j}t,s(A) = (i)t,s(A) (S S t)‘

Lemma 4.29 (Inverse images) For each deterministic t € R, one has
almost surely

Xsi(A) = clos(@;j(A)) and X, 4(A) = clos(®,,(A))

for all s <t and u >t and for all closed sets A C R.
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Proof of Lemma [4.28| By the symmetry between the Brownian web and
the dual Brownian web, it suffices to prove only the statement for ), ;. Filling
in the definitions, we see that

Vsr(A {77 WEWAX{S})}
(I)s,t( = {71'(:675)( )iz e A}

This immediately implies that the inclusion ®,(A) C Vs:(A) holds almost
surely for all s < t and for all closed A C R. We will show that if s and A
are deterministic, then the opposite inclusion also holds almost surely. Since
s is deterministic, Theorem tells us that almost surely mgyu(z,s) < 2
for all x € R, so

VorlA) = {s (1) s € A}

Thus, if the inclusion ®,:(A) C Vs t( ) is strict, then there exist © € A and
y € R such that W(_JC,S)( ) =y but 7T(w 9 (t) # y for all 2/ € A. By Lemmas
and [4.7] this implies that there exists an € > 0 such that (z —e,z) N A = 0.
It is not hard to see that the set

O_A={z€A:F>0st (z—c,x)NA=0}

of “left boundary points” of A is countable. Since A is deterministic, Theo-
rem tells us that each point (z, s) with x € 9_A is almost surely of type
(0,1). This contradicts the fact that 7 (t) = y but 7r (o) (t) # Y, s0 we

conclude that the inclusion ®,,(A) C V,.(A) is in fact an equality. |

Proof of Lemma [4.29| By the symmetry between the Brownian web and
the dual Brownian web, it suffices to prove only the statement for X ;. Filling
in the definitions, we see that

Xoi(A)={y e R: 37 € W(y, 1) s.t. 7(s) € A},

A

b (A)={y eR:af (s) € A}.
It follows from Lemma [4.6] that
A — . A~ . 2
Ty = limmg, ) and @ ) =limmi, 0 ((ys) €RY). (4.25)

Since y € clos(@_l(A)) if and only if it is the limit of y, € é;sl(A), using
moreover Lemma [4.7], it follows that

clos(i)gsl(A)) {yeR: 7r () € Alu{yeR: Ty (5) € A}, (4.26)

t)

It follows that Clos(Cb_l(A)) C X;(A), and this inclusion is strict if and only
if there exists an y € R such that 7 ,(s) € A, Wyt)( s) & A, but w(s) € A
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for some 7 € W(y,t). This is possible only if (y,t) is of type (2,1) (see
Figure , but by Theorem such points almost surely do not occur at

deterministic times t. |

Exercise 4.30 Recall the definition of points of types (1,2), and (1,2),. For
each z € R, define

N {w; if = is of type (1,2)1,
+

T, otherwise.

Modify the definition of the Arratia flow in by replacing ), by ﬂ;,s.
Show that with this modified definition, ®s; may fail to be right-continuous
for some s,t, but on the other hand the stochastic flow property now
holds almost surely for all s <t < u simultaneously.



Chapter 5

The Brownian net

5.1 Adding branching and deaths

As in Chapter , we let Z2 ., and Z2,, denote the even and odd sublattices
of Z?. Generalising the set-up of Chapter 3] let w = (w.),ezz. be an iid.
collection of random variables that take values in the subsets of {—1,+1}.
We can use w to define a random directed graph with vertex set Z2 . and

set of oriented edges
E:={((z,t), (@ +y,t + 1)) : (x,t) € Lo, Y € Wap) -

Generalising our earlier definition, we will call the random directed graph
(Z2,, E) an arrow configuration. In particular, when w, takes the values
{—1} and {+1} with equal probabilities, this is an arrow configuration as
defined in Section [3.1] In the present chapter, we look at sequences w™ of
arrow configurations where w" = (w7).ezz2, , for each n > 1, is a an i.i.d.

collection with common law

Plw! = {-1}] =l,, Pl ={+1}] =r,,
Plwl ={-1,+1}] =b,, P! =10]=d,.

z

(5.1)

Here 1, is the probability that at a given point z € Z?2 , there starts (only)

an arrow to the left, r, is the probability of an arrow to the right, b, is the
branching probability, i.e., the probability that both arrows are present, and
d, is the death probability, i.e., the probability that no arrows are present.
Recall that ¢, and 7, denote the starting time and final time of a path
7 € II(R). Generalising our definition from Section , we say that 7 is a

open path in the arrow configuration w™ if = € TI(R) has following properties:

(1) (ﬂ'(t)ﬂf) S ngen (t € Z7 2> aﬂ')a

111
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(11) 7T<lf + 1) — 7T(If) € Wr(e)t) (t c Z, t> O'W),
(iti) 7(t+s) =1 —s)m(t) +sm(t+1) (0<s<1, t€Z, t > 0,).

We let V, denote the set of all open paths in w™. Note that even in the
special case when [,, = r, = % and b, = d,, = 0, this is not quite the same
object as the set U defined in Section [3.1] since we allow open paths to end
at some final time 7, < co. We let V,, denote the closure of V, in II(R). In
this chapter, we will sketch a proof of the following theorem. Recall that 6.

denotes the diffusive scaling map defined in (3.2)).

Theorem 5.1 (The Brownian net with killing) Let ¢, be positive con-
stants tending to zero and let « € R and ,§ € [0,00). Let w, be arrow
configurations with probabilities l,, 1y, by, d, satisfying

et (rn—1ln) — o, e;'b, — B, and E;an — ). (5.2)
n—oo n—o00

n—oo

Let V,, be the set of open paths in the arrow configuration w,. Then

Plf.,(Va) € -] = P[N. € -], (5.3)

where = denotes weak convergence of probability laws on the space K(II(R))
of compact sets of paths, equipped with the Hausdorff topology, and N, is a
random compact subset of II(R), whose law only depends on the parameters

a, 8,9.

Exercise 5.2 Show that the conditions are equivalent to
(B + a)en + o(en),

=1 —1(8—a)e, + olen),

as n — oQ.

In Theorem [5.1] the Brownian net with killing is obtained as the limit
of branching-coalescing random walks in discrete time. A similar result is
expected to hold for the collections of open paths in the graphical represen-
tations of biased voter models, though the details have nowhere been written
down. This is similar to what we saw in Section

For most of the chapter, we will be concerned with the case that d, =0
for all n, and hence also § = 0. This will allow us to work with the space II"
of upward paths as we are used to from Chapter 5 In Section [5.8 we will
briefly indicate how the arguments can be generalised to allow for a positive
death probability. For simplicity, in what follows, we will moreover focus on
the case that = 0 and § = 1. In this case, the limiting object in is
known as the standard Brownian net.
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Figure 5.1: An arrow configuration with branching and deaths.

5.2 Left and right paths

We consider a sequence w” of arrow configurations as in the previous section
with
d, =0, e'(rn—1,) — 0 and &, 'b, — 1. (5.4)

n—0o0 n—oo

We define V,, as in the previous section and set U, := V, NIIT. Since the
death probability is zero, V), can simply be recovered from U, by adding
all shortened paths, that are cut off at an arbitrary time in Z. Thus, all
information is contained in the set i/, and we can continue to work with the
space IIT that we are used to from the previous chapter.

We define collections of {—1, +1}-valued random variables

17 e 17 b e b
w " - (wzn) ZGngcn and wr " - (wi n) ZEZ%VCH
by
. -1 it —1ewl, +1 it +1¢€w?l,
w" = _ and wl" = _
+1 otherwise, —1 otherwise.

Then w"™ and w™" correspond to arrow configurations of the type we used

in Chapter |3 to approximate the Brownian web. They are constructed from
w™ by making a choice at each branching point z, in such a way that at each
such point, w’™ only contains the left arrow and w™® only contains the right
arrow. We let U and U~ denote the sets of all paths in IIT that are open in
the arrow configurations w'™ and w™", respectively. We call 4} and U~ the
collections of left and right open paths.



114 CHAPTER 5. THE BROWNIAN NET
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Figure 5.2: A left and a right open path in an arrow configuration with
branching.

We also define dual arrow configurations

(,:jl’n — (d}l,n

~Arm __ [ ~Arm
b )Zezzdd and w f(w

z )Zezidd
in terms of W' and w™™ as in ([3.17). Then @ is equally distributed with w'™
after a rotation over 180 degrees (but not after mirroring in the horizontal

axis!) and a shift to the odd sublattice, and the same is true for @"" and

w"™. We define w" = (@?)zeZZ by
odd

o= {obm oy,

Finally, we let
U:, U¥, and U

denote all paths in II¥ that are open in the arrow configurations @", &',

and @w"", respectively. Figure shows a left and right path in an arrow
configuration with branching, and Figure shows the corresponding left
and right arrow configurations and their duals.

We define a Brownian web with drift o in the same way as the standard
Brownian web, except that the coalescing Brownian motions now have drift
a. If W is a standard Brownian web, then we can construct a Brownian web
with drift « by setting W' := {7’ : 7 € W} with 7’ := {(z+at,t) : (z,t) € 7}.

Theorem 5.3 (Scaling limit of left and right paths) Let ¢, be positive
constants, tending to zero, let UL, U~ be the collections of left and right paths
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Figure 5.3: A left arrow configuration (blue) and a right arrow configuration
(red), together with their dual arrow configurations.

in arrow configurations w" satisfying , and U¥ U be the associated
dual left and right paths. Then
Plo., (U, U,) € -] = P[W W) € -],

n—o0

P[0, U, U,) € -] = P[W' W) € -],

n—o0

where = denotes weak convergence of probability laws on the space K(ITT) x
K(I¥), and W, WY and (WF, WF) are double Brownian webs with drift —1
and +1, respectively.

Proof The proof of Theorem [3.18|carries over with only a very minor change:
when we prove convergence of finite dimensional distributions as in Proposi-
tion [3.3] the limit is a system of coalescing Brownian motions with drift —1
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or +1, respectively. Indeed, letting L7 and R} denote the unique left and
right paths in U, starting from a point z € Z2__, we observe that

even’

E[LI(t+1) = LY ()] = rn — b — by ~ —&0,
E[RIt+1) = LI(t)] =rp — ln + by ~ +en
as n — oo, which is easily seen to imply that L7 and R converge after

diffusive rescaling to Brownian motions with drift —1 and +1, respectively.
|

Theorem does not tell us anything about the limit of the joint law of

—1 —T . . . .

U, and U,. It turns out that in the limit, the interacting between left and
right paths is a form of sticky reflection. In view of this, in the next section,
we will study sticky reflection. This will then be used to prove a result about

the scaling limit of the joint law of Zjln and U, , which in the end will be used
to prove Theorem first under the more restrictive assumptions ({5.4)), and
then generally.

5.3 Sticky reflection

In this section, we study sticky reflection. This is similar to Skorohod reflec-

tion (Lemma , but a bit more complicated. Recall the definition of the

function spaces C,Cp,Cy, and Cpos in Section We also define C} C C; by
Co={f€Co:0< f(t)— f(s) <t—sV0O<s <t}

Let g(0) € [0,00), f € Co, and h € Cg be given. By definition, a solution to
the sticky reflection equatz’onﬂ

dg(t) = df(T) + dh(S,) (¢ >0) (5.5)
is a triple (g, S, T) of functions g € Cpes and S, T € C} such that
(i) g9(t) = g(0) + f(T3) + h(S:) (t >0),
(i) / Lig(ty>0ydh(Se) = 0,
0

(i) S;+ T, =t (t>0).

IThis is my terminology. I do not know if this precise definition has been invented
before, although there is an extensive literature on diffusion processes with sticky reflection.
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If we replace the condition g € C,0s by the weaker condition g € C, then we
say that (g,S,T) is a signed solution to the sticky reflection equation (5.5
Our first result says that sticky reflection equations have solutions, and that
under mild conditions, such solutions are unique. Note that if A is strictly
increasing, then the set H defined below is empty and hence the condition
HN M = is trivially fulfilled.

gt

ﬂ”\n Lo M M?\.Mn

T;

Figure 5.4: Sticky reflected Brownian motion: the solution (g, S,7T) to the
sticky reflection equation ([5.5) in the case that f is a Brownian path and
h(t) :=t (t > 0) is the identity function.

Proposition 5.4 (Sticky reflection) For each ¢g(0) € [0,00), f € Co, and
h € QJ, there ezists a solution (g, S,T) to the sticky reflection equation .
Let f(t) :==g(0) + f(t) (t > 0) and set

H:— {r >0:3ds<t st h(s)=r= h(t)}’

M::{r20:38<t s.t. ms(f):—rzmt(f)}v
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where mt(f) is defined in @ Then solutions to the sticky reflection equa-
tion are unique if and only if H N M = ().

Proof (sketch) Let f(t) := g(0)+ f(t) (t > 0). We claim that (g, S,T") with
g € Cpos and S, T € C} solves the sticky reflection equation (5.5)) if and only
if

(i) g(t) = f(T)) —mg, () (¢t =0),
(i) h(S) = —mz(f) (t>0),
(iii) S, +Ty =t (t>0),

To prove this, assume that (g, .S, T) solves the sticky reflection equation (5.5)).
Set F(t) := f(13) and ¥ (t) := h(S:) (¢t > 0). Conditions (i) and (ii) of the
definition of a solution to the sticky reflection equation then say that (g,1)
solves the Skorohod reflection equation

dg(t) = dF(t) + dv(t) (¢ > 0). (5.6)

Applying Lemma 4.9 to ([5.6]), we see that any solution (g, .S, 7T") to the sticky
reflection equation satisfies (i)’. Combining (i) and (i)’, we see that
moreover (ii)’ holds. Assume, conversely, that (g,5,7) with g € Cpos and
S, T € C§ satisfy conditions (i)', (ii)’, and (iii). Set F(t) := f(T;) and
Y(t) == h(S,) (t > 0). Then (i) implies 1(t) = —mq,(f) (t > 0) and
therefore (i)’ and Lemma [4.9]imply that (g, ) solves the Skorohod reflection
equation (5.6)), which implies that (g, S, T) satisfies conditions (i) and (ii) of
the definition of a solution to the sticky reflection equation.
We see immediately from (i)’ (ii)’, and (iii) that if S € C} satisfies

h(St) +mis,(f) =0 (t=0), (5.7)
then setting
T,:=t—S and g(t):= f(T}) —mr(f)  (£>0)

yields a solution (g,S,T) to the sticky reflection equation (5.5, and each
solution is of this form. This motivates us to define

Sy ==inf {s € [0,t] : h(s) + m,—s(f) = 0},
S i=sup {s € [0,t] : h(s) + mi_s(f) = 0}.
We claim that

(a) S—,S* eCL.
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(b) A function S € Cj satisfies if and only if S; < S < S (¢ >0).

From this, it is not hard to see that solutions to the sticky reflection equation
(5.5) always exist (since we can take S = S~ or = S1), and that they are
unique if and only if S; = S for all ¢ > 0, which is easily seen to be
equivalent to the condition H N M = (). |

Exercise 5.5 Prove the claims (a) and (b) in the proof of Proposition [5.4)

Our next result says that under suitable conditions, the solution (g, S, T)
of a sticky reflection equation of the form depends continuously on the
initial state g(0) and the driving processes f and h. In what follows, we will
see that in applications of this proposition, it will be important that we allow
the approximating solutions to be only signed solutions, i.e., the g, may take
negative values.

Proposition 5.6 (Continuous parameter dependence) Assume that
fn, [ €Co and h,, h € Cf satisfy f,, — f and h, — h locally uniformly. For
each n, let (gn, S™, T™) be a signed solution to the sticky reflection equation

dgn(t) = dfu(T}") + dha(Sy) (> 0).
Assume that

gn(0) — ¢(0) and liminfg,(t) >0 (t>0).

n—oo n—oo

Assume moreover that the sticky reflection equation
dg(t) = df(1;) + dn(S)  (t=0)

has a unique solution (g,S,T) with initial state g(0). Then one has
g —> g, S"—S, and T" —>T

locally uniformly.

The proof of Proposition depends on two lemmas. We first state the
lemmas, then show how they imply Proposition [5.6] and finally prove the
lemmas.

Lemma 5.7 (Precompactness of solutions) Let A C [0,00) x Cy x Cyf .
Define B C C x Cj x C} to be the set of all triples (g,S,T) that are a signed
solution of a sticky reflection equation of the form

dg(t) = df(Ty) + dn(S,)  (t=0)

with (g(0), f,h) € A. If A is a precompact subset of [0,00) x C? (equipped
with the product topology), then B is a precompact subset of C3.
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Lemma 5.8 (Limits of solutions) Assume that f,, f € Co and h,, h € Cf
satisfy fn, — f and h, — h locally uniformly. For each n, let (g,, S™,T™) be
a signed solution to the sticky reflection equation

dgn(t) = dfu(Ty") + dha(S7) (12 0),

and assume that g, — g, S™ — S, and T™ — T locally uniformly for some
9,5, T €C. Then(g,S,T) is a signed solution to the sticky reflection equation

dg(t) = df(T) + dh(S) (£ >0).

Proof of Proposition [5.6] By Lemma 2.2 our assumptions imply that the
set

{(9n(0), fu, hn) : m € N}

is a precompact subset of [0,00) x C?. By Lemma , this implies that the
set

{(gn, 8", T") : n € N}

is a precompact subset of C3. Lemma implies that each subsequential
limit of the sequence (g, S™, T™)nen is a signed solution to the limiting sticky
reflection equation

dg(t) = df(T;) + dh(S,) (¢ >0),

Our condition liminf, . g,(t) > 0 (¢ > 0) implies that g € Cpes, S0 oOur
signed solution is in fact a true, nonnegative solution. By assumption, the
limiting sticky reflection equation has a unique solution (g, S, T"). Therefore,

we can apply Lemma to conclude that (g,,S™,T") — (g,S,T). |

Recall from ([2.16)) that for each T' < oo, the modulus of continuity of a
function f € Cpoc)(R) is given by

mics(f) =sup {[f(s) = f)] : 0< s <t <K, t—5 <0},
and that a set D C Coo0)(R) is equicontinuous if

limsupmgs(f) =0 (K < o0).
6—0 feD

By the Arzela-Ascoli theorem (see Theorem and Lemma [2.27)), a subset
D C Cjp,00)(R) is precompact if and only if

(a) D is equicontinuous,

(b) For each K < oo, there exists a C' < oo such that |f(¢)| < C for all
t €0, K].
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Proof of Lemma [5.7] It suffices to show that each of the sets
{5:(9,5,T)e B}, {T:(9,5T)eB}, and {g:(g,57T) € B}

is equicontinuous and satisfies the compact containment condition (b) above.

For each (g,5,T) € B, since S,T € C; it is clear that {S : (¢,5,T) €
B} and {T : (9,5,T7) € B} are equicontinuous and satisfy the compact
containment condition (b).

Using the fact that S,T € Cj, we see that if 0 < s < t < K satisfy
t—s <9, then0 < S, <S5, < K and S; — 5, <9, and likewise with S
replaced by T. By the definition of a signed solution, each (g,S5,7) € B
solves an equation of the form

9(t) = g(0) + f(T) + h(S)  (£=0), (5.8)

for some (g(0), f,h) € A. Using (5.8) and our previous observations about
S and T, we see that

mrs(9) < mrs(f)+mrs(h) (K < o0, 6 >0). (5.9)

In view of this, the equicontinuity of {g : (¢,S,T) € B} follows from the
equicontinuity of {f : (z, f,g) € A} and {h : (z, f,g) € A}, which is a result
of the Arzela-Ascoli theorem and our assumption that A is precompact.
Using once more, we can estimate

l9(t)] < |9(0)] + w |f(s)] +]h®)]  (E>0).

The precompactness of A implies that {x : (z, f,h) € A} is bounded. By the
Arzela-Ascoli theorem, the precompactness of A also implies that the sets
{f:(z,f,h) € A} and {h : (z, f,h) € A} satisty the compact containment
condition (b) above. Using this and our estimate, we see that {g : (¢, 5,7 €
B} satisfies the compact containment condition (b). |

Proof of Lemma Since S™,T™ € C} for each n, taking the limit, we see
that S, T € C§. Since

gn(t) = gn(0) + fu(T"(1)) + ha(5"(1)) (L = 0)

for all n, taking the limit, we see that (g,.5,T) satisfies condition (i) of the
definition of a signed solution to the sticky reflection equation. Similarly,
since S™(t)+T"(t) =t (¢t > 0) for all n, taking the limit, we see that condi-
tion (iii) is satisfied. It remains to prove that (g, .S,T") satisfies condition (ii).
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For each € > 0, we can find a continuous function p. : [0,00) — [0, 1] such
that p.(0) = 0 and p.(x) =1 for all t > . Then

t [e’s)
/ p6(9n<3))dhn(sg) < / 1{gn(s)>0}dhn<5§) =0
0 0

for all t € [0,00), € > 0, and n. Using Lemma [5.9] below, it follows that

t

[ taants) < [ tao)anis) = tim [ pan(s)anm(sn o

n—oo

for all ¢ € [0,00) and ¢ > 0. Letting first ¢ | 0 and then t 1 oo, using
dominated convergence and monotone convergence, we see that g and S
satisfy condition (ii) of the definition of a solution to the sticky reflection
equation. |

Lemma 5.9 (Convergence of integrals) Let t > 0, let F,,,G,,F,G €
Cioq(R) satisfy F, — F and G,, = G uniformly, and assume that F,,, F are
nondecreasing. Then

t t
/ Gn(s)dF,(s) — [ G(s)dF(s).

0 oo Jo
Proof Let p, = dF, and u = dF, i.e., p is the unique finite measure on [0, t]
such that u([0,s]) = F(s) (s € [0,t]), and similarly F;, is the “distribution
function” of p,. It is well-known that a sequence of finite measures p, on
[0,¢] converge to a limit p if and only if their distribution functions satisfy
F,(t) — F(t) for each continuity point ¢ of F'. In particular, our condition
that F,, — F' uniformly implies that u, = p. It follows that

t

/0 G(s)dF,(s) — [ G(s)dF(s).

Since
/0 G(5) AF,(s) — [IG — Gl Fult) < / Gols) dF(s),
/0 Gols) dF,(s) < / G(s)AF,(5) + IG — GullaoFult).
we see that

t

[ rare) <t [ Go)aro),

s [ () ar o) < | () dF(s).

n—00 0
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5.4 Sticky reflected random walk

In the next section, we will show that pairs of random walks, consisting of one
left path and one right path in arrow configurations satisfying , converge
in the diffusive scaling limit to pairs of drifted Brownian motions with a form
of sticky reflection. In the present section, we give a simpler application of
Propositions [5.4] and This will not be needed in what follows, but serves
as a useful illustration of the main ideas and a warm-up for the next section.

Fix positive constants ¢, tending to zero, and for each n, let (X}')r>0 be
a Markov chain on {—1,0,1,2,...} with transition kernel P, given by

P, (—1,0):=¢,, P.(-1,—-1):=1—¢,,
P,(k,k—1)=P(k,k+1) = % (k> 0).

We extend X" to all real times ¢ > 0 by linear interpolation and define a
diffusively rescaled process X ™ by

XMW (E2t) =, X"(t)  (t>0).

We will prove the following theorem. Note that (5.10) is a special case of
(5.5)) where the function A from (j5.5)) is the identity function h(t) =t (¢t > 0).

Theorem 5.10 (Scaling limit of sticky reflected random walk) As-
sume that X" > 0 is deterministic and X" — o as n — oo. Let
(X¢, St, Ty)e>0 be the a.s. unique solution with initial condition Xy = o of
the sticky reflection equation

dX; = dBp, + dS; (t >0), (5.10)
where (By)i>o is a standard Brownian motion. Then one has
P[(‘X(n)(t))tzo € } Tj; ]P)[(Xt)tzo < '}7
where = denotes weak convergence of probability measures on Cjg o) (R),
equipped with the topology of locally uniform convergence.

Our proof strategy will be to relate X to a solution of a sticky reflection
equation driven by processes F' and H" that have as diffusive scaling limits
Brownian motion and the identity function h(t) =t (¢t > 0). Theorem [5.10)
will then follow as an application of Propositions [5.4] and [5.6]

Let (w;)i>1 be i.i.d. uniformly distributed on {—1,+1} and let (Fj)x>0 be
the random walk defined by

k
Fy ::Zwi (k e N).
i=1
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Fix positive constants ¢,, tending to zero, and for each n, let (H})r>o be a
Markov chain with initial state Hj := 0 and transition kernel )" given by

Q"(k,k+1):=¢, and Q"(k,k):=1—¢, (k € N).
We inductively define a process (X}, Sp, T} k>0 with S = 0 =T by

Xii = Xy + (F(T) = F(TY) + (H™(Si) — H'(S)))
S]?+1 = SZ' + ]-{X,?z—l} and Tl?—l—l = T]? + 1{XI?20}

(k > 0). These definitions are illustrated in Figure [5.5] It is not hard to see
that (X7)k>o is the Markov chain with transition kernel P, defined above.

F(t)

N t t
X"(t)

SNe e N N

Figure 5.5: A sticky reflected random walk X" constructed from a random
walk F' and a reflection process H™.

We interpolate the processes F, H" and X", S™, T™ linearly between inte-
ger times. Then it is easy to see that

(i) X*(t) = X"(0) + F(T7") + H"(S¢) ~ (t=0),
0
(iii) Sp+1 =t (t >0),
e, (X" 8™ T") is a signed solution to the sticky reflection equation

AX"(t) = dF(T") + dH™(ST) (£ > 0).
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We define rescaled processes X ™, S 70 () and H™ by

XMW (E2t) = g, X™(t), F™(2t) =, F"(t), H™(2t) := e, H"(1),
SG) =28, TG = 217

ezt * n e2t n
(t > 0). Note that we rescale the processes diffusively: time is rescaled by
2 and space is rescaled by &,. Here X ) F®M_ and H™ are functions from
time to space, but S™ T™ are functions that map times into times (hence
the at first sight different scaling). It is straightforward to check that the
rescaled processes (X (™, S T™) is a signed solution to the sticky reflection
equation

AX™(t) = dFO(T™) + dHM (™) (> 0).
Proof of Theorem It follows from Donsker’s invariance principle that

P[(F™(®) 5 € -] =2 PI(BY) s € -]

t>0 n—00

where = denotes weak convergence of probability measures on Cjy ) (R),
equipped with the topology of locally uniform convergence, and (B;);>q is a
standard Brownian motion. Using the weak law of large numbers, it is not
hard to show that moreover

P[ sup ’H(")(t)—ﬂ >0 — 0 (K < o0, §>0).

t€[0,K] n—oo

In other words, the process (H™(t));>o converges to the identity function
in probability with respect to the topology of locally uniform convergence.
Equivalently, this says that the law of (H™(t));so converges weakly to the
delta-measure on the identity function I; :=¢ (¢ > 0).

By Skorohod’s representation theorem, we can couple our random vari-
ables such that

(FO0) iz 2 By and (HOO) g =2 (B 2

n—00 120 oo

Using moreover that Xén) — xp, we can apply Proposition to conclude
that almost surely

XM 5B SM 58 and TW T

locally uniformly, where (X,S,T) is the unique solution of (5.10)). Since
almost sure convergence implies convergence in law, the claim of the theorem
follows. |
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5.5 The interaction of left and right paths

In this section, we return to the left and right paths introduced in Section [5.2]
Our aim is to describe the joint law of one left and one right path. We fix a
sequence €, of positive constants, tending to zero, and let w™ be a sequence of
arrow configurations satisfying . We let ! and UE denote the collections
of left and right open paths in w", and for each » € Z2 ., we let L" and R"

denote the unique elements of U} (z) and U:(z), respectively. We fix two
sequences of even integers x!, and 2!, with z!, < 2%, for each n such that

1
n

— ' and g,2%, — 2 (5.11)

n—o0 n—o0

EnT

r some T, . wri
for some 2!, 2" € R. We write

Ln(t> = ?:1:1,0) (t)7 Rn(t) = R?zr,O) (t)u

L0 (e2t) =g, L"(t), R™(eht) =, R"(1). } (t=0). (12

Our aim is to determine the limit as n — oo of the joint law of the diffusively
rescaled left and right paths L and R™,
To this aim, we define processes (S}')r>o and (1T}")r>0 by

k-1 k-1
S]TCL = Z 1{[1;1:3;1} and T]? = Z 1{Lf<R?} (/{7 > O),
i=0 =0
and we inductively define processes (V, Vi, W W)k with initial states
Vg = Vi =Wy = Wi =0 by
(Ti4) )+ Ligemy (B = L)
( ) =" S}:) + ]—{LEZRZ} (LZ+1 - LZ),
W (S) == W(SE) + Logongy (Riys — BE).
( ) T¢) + Yrp<rmy (RZH - RZ);

(k> 0).

These definitions are illustrated in Figure Note that our definitions are
consistent in the sense that in the first line we get V(1)) = V*(TI}) if
Ty, =17, and likewise in the other three lines. We observe that

(VM s0, (V& W)so, and  (W)iso are independent.

Recall from (5.1)) that [,,, r,,, b, are the probabilities that at a point 2 € Z?2

even

there starts only left arrow, only a right arrow, or both types of arrows,
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<

N

wr

Figure 5.6: Decomposition of a left path and a right path (middle picture)
into four random walks V™, V) W™ and W™ . Here V™ and V™ have
a drift to the left while W and W have a drift to the right. The random
walks V™ and W are highly correlated, but V™ and W are independent
of each other and of the pair (V™ W),

respectively. We observe that (V;*)zso and (V;*)i=o are random walks with
transition kernel

Plz,x—1)=1,+b, and Pl(z,x+1)=r,,
while (W;? k>0 and (W]')g>o are random walks with transition kernel
P;;(Slf,l‘—l):ln and Pé(a},x‘—i—l):'rn—’—bn

We interpolate the processes V™, V™, W" W™ and L™, R", S™, T" linearly be-
tween integer times. Then it is easy to see that

(i) L*(t) = L"(0) + V™(T}") + V™(S)) (1 20),

(i) R"(t) = R"(0) + W"(T}") + W"(Sy)  (¢=0),
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(111) / 1{L”(t)+l<R”(t)}dSZL - O,
0
(iv) Sp+ 1T =t (t>0).
We define rescaled processes V" W™ and S™,T" by

V(2¢) i= g,V (t), W (elt) == ¢, Wn(t),
S =g2gr T .= 21

e2t e2t

(t > 0), and we similarly define V™ W™ in terms of V™, W™, The rescaled
processes satisfy conditions similar to (i)—(iv) above, except that in (iii) the
indicator of the set {t > 0: L"(t) + 1 < R"(t)} should of course be replaced
by the indicator of {t > 0: L™ (¢)+¢, < R™(t)}. The following proposition
follows easily from ({5.4) and Donsker’s invariance principle, so we omit the
proof.

Proposition 5.11 (Convergence of the driving noise) Let B!, B, and
B" be three independent Brownian motions. Then one has

P(V(1), V1), W (1), W) - ]
— P[(B! —t,B; —t,B5 +t, B! +1)

n—00 tZO] ’

where = denotes weak convergence of probability measures on C[O,oo)(]R‘l),
equipped with the topology of locally uniform convergence.

Our calculations and observations so far motivate the following definition.
Let 1(0),r(0) € R with 1(0) < r(0) be given, together with v, v, w,w € Cy
which satisfy @ — © € Cg . By definition, a solution to the left-right equation

dl(t) = dv(Ty) + di(S,), } t>0)

A (5.13)
dr(t) = dw(T;) + dw(S,),

is a quadruple (I,7,S,T) where [,r € C and S,T € C] satisfy [ < r and
(i) 1) =10) +o(Ty) +0(S)  (t=0),
(i) r(t) =7r(0) + w(Ty) +w(S)  (t=>0),
(iii) / 1{l(t)<r(t)}dh(5t) =0 with h:=w — @,
0

(iv) Ss+ T, =t  (t>0).
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In analogy with our earlier terminology for sticky reflection equations, if we
drop the condition that | < r, then we say that (I,r,S,T) is a signed solution
to the left-right equation ((5.13)).

Proposition 5.12 (Left-right equation) Assume that [(0),7(0) € R and
v,0,w,w € Cqy satisfy 1(0) < 7(0) and w — v € Cf. Then the left-right
equation has a solution (1,r,S,T). If w— v is strictly increasing, then
this solution is unique.

Proof Let

fr=w—v and h:=w— 0.
We observe that if (g, S,T) solves the sticky reflection equation
dg(t) = df(T) +dh($) (1 >0) (5.14)
with initial state g(0)

r(t) =r(0) + w(T,) + @(5)

yields a solution to the left-right equation . In view of this, existence
of solutions to the sticky reflection equation follows from Proposition [5.4]
We observe that if (I,r,S,T) solves the left-right equation , then
setting g := r — [ yields a solution to the sticky reflection equation ([5.14)).
Proposition[5.4]tells us that solutions to the latter are unique if w—o is strictly
increasing. In particular, in this case, S and T" are uniquely determined, and
hence, by conditions (i) and (ii) of the definition of a solution to left-right
equation, so are [ and 7. |

In view of Proposition we are interested in solutions (L, R, S,T) to
the left-right equation ({5.13])

dL(t)=dV(T}) 4+ dV(S)), } t>0)

(0) —1(0), then setting

! (5.15)
dR(t) =dW(T;) + dW (Sy),

where

(t >0),

V(t):=B —t, V(t):=B—t,
W(t):=Br+t, W(t):= B +t,

and B!, B%, B* are three independent Brownian motions. Using the fact that
Sy + T, = t, we can write

d(By, — T;) + d(By, — S;) = dBj, — dT, + dBy, — dS,, = dBj, + dBY, — dt,

which motivates us to rewrite ((5.15]) in the simpler form (5.16)) below. Below
is the main result of this section.
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Theorem 5.13 (Scaling limit of a left and right path) Let w" be a
sequence of arrow configurations satisfying . Assume and let
(L™ (t))s0 and (R™(t));>0 be defined as in . Let B', BS, B* be three
independent Brownian motions and let (L, R, S,T) be the a.s. unique solution
to the left-right equation

1 s

dL(t)=dB}, + dBg, — dt, } t>0) (5.16)
dR(t) =dBy, +dBg, — dt,

Then one has

P[(L™(t), R™(t)),., - | = P[(L(t), R(?))

n—o0 "20} ’

>0

where = denotes weak convergence of probability measures on C[O,Oo)(R2),
equipped with the topology of locally uniform convergence.

Proof (sketch) The proof is almost identical to the proof of Theorem [5.10)
so we only sketch the main line of the argument. Lemmas and [5.8] that
were formulated for signed solutions to sticky reflection equations, generalise
in a straightforward way to signed solutions to left-right equations, and hence
so does Proposition 5.6 If we slightly change our definition of L™(¢) in (5.12)
by putting L"(t) := L{i () + 1 instead of := L, ; () (t = 0), then for each
n we have that (L™, R™ S (M) is a signed solution to the left-right
equation

AL () =av (T + dV ™ (S),
(t) (T2™) (5:") > 0)

AR (1) =dW(T™) + AW ™ (5™,

By Proposition and Skorohod’s representation theorem, we can couple
our random variables such that almost surely

(V&) 159 =2 (B = 1) (V) 159,72 (B 1)

n—00 >0’ ~ —>00 t>0’
W) 1m0 =2 Bi+8) e (W) g =2 (B +1) g

where — denotes locally uniform convergence. Using the analogon of Propo-
sition for left-right equations, it follows that for this coupling almost
surely

(L) o =2 (E0) e and (R™(1)) o —

n—oo =¥ n—oo

(R(t))tzo'
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Of course, for this last statement it does not matter whether we have defined
Li(t) := L?x170)(t) +1lor:= L?x170)(t) (t > 0). Since almost sure convergence
implies weak convergence in law, this completes the proof of the theorem. B
Remark 1 Our proof of Theorem [5.13| is an adaptation of the proof of
[SSO8, Prop. 5.2]. Our description of the joint law of a left and right path is
based on the left-right equation (5.13). Alternatively, it is shown in [SSOS)]
that subject to the condition that L(t) < R(t) for all t > 0, the following
stochastic differential equation (SDE) has a unique weak solution, that also
describes joint law of a left and right path:

dL(t) = 1{L(t)<R(t)}dBI(t) + 1{L(t):R(t)}dBS(t> — dt,
dR(t) = 1{L(t)<R(t)}dBr(t) + 1{L(t):R(t)}dBS(t) + dt.

Here B!, B*, B® are three independent Brownian motions. Yet another useful
characterisation of the joint law of a left and right path, which is formulated

in terms of the drift, quadratic variation, and cross-variation of L and R, can
be found in [SS19, Prop. 3.2].

Remark 2 Our understanding of sticky reflection is not as good as for Sko-
rohod reflection. Recall that in Section 4.3 we described the conditional law
of a forward path in the Brownian web given a path in the dual web in terms
of Skorohod reflection. Similarly, for two forward paths in the Brownian web,
which are just coalescing Brownian motions, we have a (very easy) descrip-
tion of the conditional law of one path given the other one, which allowed
us to give an easy inductive description of any finite number of coalescing
Brownian motions. By contrast, even though we have a good description of
their joint law, it does not seem easy to give a description of the conditional
law of a right forward path given a left forward path.

Exercise 5.14 (Positive Lebesgue time) Let (L, R, S,T) be a solution of
the left-right equation started in an initial state such that L(0) = R(0).
Prove that

]P)[/ l{L(t):R(t)}dt > O] > 0.
0

Exercise 5.15 (Right-left pair) Let w™ be a sequence of arrow configura-
tions satisfying (5.4)), and let (W™)ezz. and (wi™),ezz. be the collections

of {—1,+1}-valued random wvariables defined in Section . For each n,
define paths (x}, yp)k>o0 starting in xj = 0 =y by the inductive formulas

n Lin P m o on
:L‘k._'_l - wr’
(K

gl el <
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and . .
. Y T Wiy ) if T = vy,
Ye+1 = n 1Ln o on n
Yo T Wiy ) of w <y
Note that this says that when there is a choice, x™ takes the left arrow if
x™ and y" are at the same position, but the right arrow otherwise, and the
other way round for the path y". As a consequence, (z})i>o on its own is
not a Markov chain and neither is (y;)r>0. Nevertheless, the joint process
(X, Y )k>0 s a Markov chain. Describe the diffusive scaling limit of this
Markov chain by means of a left-right equation.

5.6 The left-right Brownian web

Let ¢, be positive constants, tending to zero, let w™ be a sequence of arrow
configurations satisfying (5.4), and let U} and U: be the collections of left
and right paths in w”, respectively. In Theorem [5.3] we have shown that the

diffusivelt rescaled collection of paths 6., (i,,) converges in law to a Brownian
web W! with drift —1, and likewise 6., (I, ) converges in law to a Brownian
web W' with drift +1. In this section, we will show that also the joint law
of 0., (U;,U;) converges, and characterise the joint law of the limit object
(WL Wr). We will call this limit object a left-right Brownian web, and we
will call W! and W" the associated left Brownian web and right Brownian
web, respectively.

Recall that II = II(R) denotes the space of all paths, which may have
finite starting and final times, and II" is the subspace of upward paths, which
have infinite final times. Let A C II" be a collection of upward paths, let
A C R(R) be a closed set, and let int(A) denote its interior. Then we define

the restriction of A to A as

A’A = {rell:m Cint(4), I’ € As.t. 7 C 7'},

where the overbar means that we take the closure in the topology on II. It
is easy to see that if A is compact, then so is A| 4+ In particular, if W is a
Brownian web, then W| 4 1s a random variable taking values in the Polish
space KC(II). Below is a conjecture that is so far unproven.

Conjecture 5.16 (Left-right Brownian web) There ezists a random
variable W', Wr) with values in IC(ITT) x K(IT1), whose law is uniquely char-
acterised by the following properties.

(i) W' is distributed as a Brownian web with drift —1 and W* is distributed
as a Brownian web with drift +1.
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(ii) For each z € R, the joint law of a.s. unique paths 7. € W'(z) and
Tt € W¥(z) is described by the left-right equation (5.16)).

(iii) If Ay, ..., A, C R? are disjoint closed sets, then the random variables
(W1’A1>WY}A1)7---7(W1‘A ,WT|A ) are independent.

The difficult part of Conjecture is the claim that properties (i)—(iii)
uniquely characterise the joint law of (W!, W*). If Conjecture were
proved, then by combining Theorems and it would be possible to
give a very short proof of the following result.

Theorem 5.17 (Convergence to the left-right Brownian web) Let
w™ be a sequence of arrow configurations satisfying , and let U, and U*
be the collections of left and right paths in W™, respectively. There exists a
random variable (W', W¥) with values in IC(IT") x K(IT), called a left-right
Brownian web, such that

B[6., U, U,) € -] = E[W. W) € -],

n—o0

where = denotes weak convergence of probability laws on the space IC(IIT) x

K(II).

Theorem has been proved in [SS0§]. In the remainder of this sec-
tion, we will sketch its proof. In the absence of Conjecture [5.16] we will
need another characterisation of the limit object, the left-right Brownian
web (WL WF). The characterisation will be a bit more complicated than
Conjecture but nevertheless very similar in spirit. Since W' and W*
are Brownian webs, for each deterministic z € R?, there almost surely exist
unique paths 7. and 7% such that 71 € W!(z) and 7% € W*(2). In view of the
characterisation of the Brownian web (Theorem [3.7), in order to characterise
the joint law of W' and W, it suffices to describe the joint law of

Tl T (5.17)
for any deterministic finite collection of points 21, ..., 2, € R? and sequence

qis-- -, qm with q; € {l,r} for all 1 < i < m. Without loss of generality, we
can assume that the time coordinates of z; = (z;,¢;) (1 <i < m) are ordered
ast; < --- <t,. Then it suffices to describe during each of the time intervals
[t1,ta], ..., [ta_1,tm] and [t,,, 00) the joint evolution (which is Markovian) of
the paths whose starting time lies before the initial time of the interval. In
view of this, we can without loss of generality assume that t; = ... =1t,, = 0.

We assume now that t; = ... = t,, = 0. Without loss of generality, we
also assume that 1 < --- < x,,,. We can also assume that x; < x;;1 whenever
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d; = it 1, since paths of the same type (left or right) coalesce as soon as they
meet. We can then group left and right paths that immediately follow after
each other (in this order), leaving the remaining paths as singletons. For
example, if at time zero we have a collection of left and right paths that
ordered from left to right, looks like this LRLLRLRRRLR, then we group
them as follows:

{LRHLHLRHLEH R RI{LR}.

Let 71 denote the first time when a path from one group meets a path from
another group. It may be that multiple paths meet at such a time. However,
it is not hard to see that with probability one, at the time 7, there exist two
consecutive groups so that all paths that meet at time 7; belong to these two
groups.

If at the the time 7y, two left paths meet, then they coalesce, so the total
number of left paths that we have to follow decreases by one. Likewise, if two
right paths meet, they also coalesce. We are now in a similar situation as at
time zero and can again group the remaining paths into singletons and pairs
consisting of one left path and one right path (in this order). We then let
denote the first time when a path of these newly created groups meets a path
of another group. Inductively, we define 73, 74, ... in the same fashion. Then
during each of the random time intervals [0, 7], [r1, T2, ..., we can specify
the joint law of our paths by saying that the groups evolve independently in
such a way that:

e cach group consisting of a single left path evolves as a Brownian motion
with drift —1,

e cach group consisting of a single right path evolves as a Brownian mo-
tion with drift +1,

e cach group consisting of a left and a right path evolves as a solution to
the left-right equation ({5.16]).

Note that at each of the times 7,7y, ..., either two left paths coalesce, or
two right paths coalesce, or a right and left path change their order, in the
sense that the right path was on the left of the left path before, but has to
stay on the right after. This means that there are only finitely many times

T1,...,7Tn, and we can specify the evolution of the left and right paths on
each of the intervals [0, 7], ..., [Tn_1,7n] and [Ty, 00) according to the rules
above.

Filling in the technical details is a bit cumbersome, especially since we
are working with stopping times, but the description above gives the main
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idea. Using this idea, one can give a rigorous definition of a collection of left-
right coalescing Brownian motions. We cite the following result from [SSOS8|
Prop. 5.2]. (This reference is, admittedly, also a bit sketchy on the technical
details.)

Proposition 5.18 (Convergence of finite dimensional distributions)
Let €,, be positive constants, tending to zero and let w™ be a sequence of arrow
configurations satisfying (5.4). Fix z1,...,zm € R? and 2I* € 72, such that
0., (2") = ziasn — oo (1 <i<m). Fixqi,...,qn with q; € {l,r} and
depending on whether q; =1 or =, let 7" denote the unique left or right
path in w™ starting at z'. Then
q1,n m,T m
]P’[ng(wll yeee, MM } @P[(ng,...,wgm) € -],

where = denotes weak convergence of probability measures on (II)™, and
(md, ..., @) s a collection of left-right coalescing Brownian motions start-

mng from zy, ..., Zm.

It is clear that left and right random paths in an arrow configuration
are consistent in the sense of Kolmogorov’s extension theorem, and hence by
Proposition the same must be true for left-right coalescing Brownian
motions. In view of this, if D C R? is a deterministic countable dense
set, then we can construct a collection (7l,7%).ep of left-right coalescing
Brownian motions started from D. By Theorem [3.7] setting

W={rl:2eD} and W':={nl:2¢cD}

then defines two Brownian webs W' and W* with drift —1 and +1, respec-
tively. By definition, we call W W") the left-right Brownian web. We
let Wl, W* denote the dual Brownian webs associated with WL W, Theo-
rem [5.17] is implied by the following theorem, that gives a somewhat more
complete picture.

Theorem 5.19 (Convergence to the left-right Brownian web) Let
€n be positive constants tending to zero and let W™ be a sequence of arrow
configurations satisfying . Let U and UE be the collections of left and
right paths in W™, respectively, and let U and U™ be the collections of dual
left and right paths. Then one has

B[6., (U, U Uy U, € -] = B[OV W W W) € -],

n—oo

where = denotes weak convergence of probability laws on the space K(I1M)2 x
K(ITH2, WL WY s a left-right Brownian web, and W' and W* are the
associated dual webs.
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Proof Convergence of (ﬂiﬂfﬁ) to W, WY and of (U, U, ) to (W, W)
follows from Theorem [3.18 Using Lemma [3.14] it follows that the laws of
the random variables 6., (HL,UZ,H::,UI:) are tight, so by going to a subse-
quence, we may assume that they converge in law to some random variable
(VL Ve,V V). In view of Lemma , it suffices to show that (V', V', V!, Vr)
is equal in law to (W', W*, Wl, Wr) Since a web is a.s. uniquely determined
by its dual, it suffices to show that (V!, V") is equal in law to W', W*). By
Theorem [3.18], V' is a Brownian web with drift —1 and V" is a Brownian web
with drift +1. Therefore, by Theorem [3.7] we know that at each determinis-
tic z € R2, the sets V!(z) and V*(2) almost surely contain a single path. To
show that (V! V") is equal in law to (W', W*), by Theorem , it suffices
to show that (V', V") has the right finite dimensional distributions, i.e., we
must show that the left and right paths started from finitely many points
are distributed as left-right coalescing Brownian motions. This follows from
Proposition so the proof is complete. |

Recall that —m := {(—x,—t) : (z,t) € 7} is our notation for a path m,
rotated over 180 degrees, and that —W := {—7 : # € W}. It is not hard
to see that —W! is equally distributed with W' (both are Brownian webs
with drift —1) and —WF is equally distributed with W*. In fact, a stronger
statement holds.

Lemma 5.20 (Dual left-right Brownian web) Let (W', W") be a left-
right Brownian web and let ){Vl and W be the dual Brownian webs associated
with W' and W*. Then (—W"', —=WF) is equally distributed with (W', W¥).

Proof It is straightforward to check that (—UY, —U**) is equally distributed
with (UL, U"), so the claim follows from finite approximation, using Theo-

rem [5.19)). |

5.7 The hopping and wedge constructions

We continue to assume that ¢, are positive constants tending to zero and
that w™ is a sequence of arrow configurations satisfying . Ultimately, we
are not interested in left and right paths only, but in the scaling limit of the
set U,, of all open paths in the arrow configuration w™. In this section, we
describe a random compact set of paths A that we will call the Brownian
net and that will turn out to be the scaling limit of the sets U,,. We will
obtain A/ as a function of a left-right Brownian web (W', W"). In fact, we
will describe two different ways to construct A" from (W' WF). The fact that
both constructions yield the same object will be important when we prove
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the convergence in law of the collection 6., (U,) of rescaled discrete open
paths to the Brownian net N.

The two constructions we will use are called the hopping construction and
the wedge construction of the Brownian net. They will yield two sets of paths
N_ and NV, that will later be shown to be equal, similar to the statement of
Theorem [3.15] In fact, the wedge construction, which yields AV, is extremely
similar to the definition of W, in Theorem [3.15] We start with the hopping
construction, however, which is a bit more complicated than the construction
of W_ in Theorem [3.15] since it requires a new concept: hopping.

Let W', WF) be a left-right Brownian web and let 7}, 75, 7}, . . . be a finite
sequence of paths that are alternatively taken from W' and W*, such that

O'ﬂ.ll <(77r5 <(77r}3 < .-
and
775(‘7#5) < W%(JWEL 7T;(O-Trlg) < 7TZ13(0-7r13)a S

i.e., the second path, which is a right path, is started on the left of the first
path, which is a left path, and then the third path, which is a left path, is
started on the right of the second path and so on; see Figure [5.7]

Figure 5.7: A path 7 constructed by hopping between left and right paths

1 r 1

Recall that
T(my, 7o) = 1nf{t > op, Vo, () = ma(t)} (w1, Ty € IIT)
denotes the first meeting time of two upward paths my, 7. Let us assume

that

r(my, m) < Orls T(7h, 7)) < O,
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i.e., we start the third path only after the first meeting time of the first two
paths and so on. Then we can define a path 7 with starting time o, := )

by

m(t) := ¢ my(t) (7‘

(
my(t)  (7(my,ms) <t < 7(my, 7)),

and so on, i.e., we start by following the path 7}, then “hop” onto the path
7, at the first time when 7} meets 75, and so on, until we arrive at the last
path in our finite sequence, which we follow till time +o00. We fix a countable
dense set D C R? and let

N_ := the closure of {7T . is obtained by hopping
between paths in (7}).ep and (7%).ep }-

This completes the description of the hopping construction of the Brownian
net. We make one simple observation.

Lemma 5.21 (Compactness of the Brownian net) Almost surely, N_
is a compact subset of IIT.

Proof Let us write N = N, where N” is the set of paths that can be
constructed by hopping between paths in (7).cp and (7%).cp. We need to
show that N’ is almost surely precompact. We apply Proposition . We
need to show that

P[|m(u) — w(t)| > € for some 7 € N and o, <t <

s.t. (n(t),t) € [T, TP, u—t <] —20 VI'<oo, £>0.
_)

(5.18)

Let W!:= {nl : 2 € D} and W* := {7 : z € D} be the left and right Brown-
ian webs constructed from our left and right paths. Paths in N7 cannot cross
paths in W! from right to left and they cannot cross paths in W* from left
to right. Therefore, letting 7.~ and 72" as in Lemma [4.6{ denote the minimal
left and maximal right path starting at a point z, we have

- T
T (W) < m(u) <l o (u)

for all m € N and o, < t < u. In view of this, the fact that N’ satisfies
(5.18) follows from the fact that W' and W? satisfy (5.18)), which in turns

follows from their almost sure compactness and Proposition [2.32} [ |

We next describe the wedge construction. Let (WL WF) be a left-right
Brownian web and let W' W' be the associated dual webs. Recall from
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Section [3.5that W (7, 2) denotes the wedge defined by two downward paths
m and 7. In the same section, we also defined what it means for a forward

path 7 to enter a wedge W (m,72). We again fix a countable dense set
D C R? and define

N = {m € I : 7 does not enter wedges
of the form W (7%, #.) with 21,2 € D}.

AR

This construction is known as the wedge construction of the Brownian net.
See Figure for an illustration. Note that here the left boundary of the
wedge is formed by a dual right path and the right boundary is a dual left
path. Because of the drift, these paths may fail to meet so the wedge may
be infinite in size. In particular, the fact that paths do not enter wedges of
this form implies that paths in A, do not cross dual left paths from right to
left, or dual right paths from left to right.

Figure 5.8: Illustration of the wedge construction of the Brownian net. Paths
7 € N cannot enter wedges W (7%, ') defined by a dual right and left path.

The following theorem, first proved in [SSO8, Lemmas 4.5 and 4.7], is
similar to Theorem [3.17] (and in fact historically predates it). We call the
compact set N := N_ = N, from the following theorem the Brownian net.

Theorem 5.22 (Characterisation of the Brownian net) Let D be a
countable dense subset of R? and let N_ and Ny be defined in terms of a
left-right Brownian web (W', W¥) and its dual as above. Then N_ = N,.

Proof (partial) Here we only prove the inclusion Ay, € N_. The proof of
the other inclusion will be combined with the proof of Theorem below.
The argument is similar to the proof of Theorem We fix 1 € Ny,
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Figure 5.9: Construction showing that each path 7 that does not enter wedges
of the dual left-right Brownian web can be approximated by hopping between
paths in the forward left-right Brownian web. The structure of dual paths
that capture the forward paths is reminiscent of a fish trap (Figure .

or <ty <---<tp, and € > 0. We claim that we can construct a path 7P
by hoppmg finitely often between paths in (7).ep and (77).ep, such that
Or < Omhop <t and |78P(¢;) — w(t;)] < e foralli=1,...,m. To see this, for
each i = 1,...,m, we choose 2. = (2°_,t,) € D such that t'. > t; and

() —e < #_(t) < w(ts) < 7L (L) < 7(t:) + <.

See Figure 5.9, Since 7 does not enter the wedge W (7l T 7!, ), the meeting
+

time of ¥, and 7', must satisfy
zt z4

7—<ﬁ-£iaﬁ-ii) < Ox,

and we have 77, (t) < w(t) < @, ( ) for all t € [o,,t;]. We can now choose
z = (z, s)eDsuchthataW<s<t1 and

A 1 . f ~1

Sup T (t1) <m.(t) < inf 7, (t).

The forward left path 7. cannot cross any of the left downward paths fri , but
+

it can cross the right downward paths 77, . Just before it does so, however,

we can hop onto a cleverly chosen forward right path and continue until it
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Figure 5.10: A fish trap. Picture reused from:
https://commons.wikimedia.org/wiki/File:Stellnetzfischerei_(Reusen).jpg.

threatens to cross one of the left downward paths 7?; . Just before it does,
we can again hop onto a left path, and so on. "

We claim that in this way, we can construct a hopping path that after
a finite number of steps arrives at the last time ¢,,. Indeed, since the dual
left paths on the right of 7 cannot meet the dual right paths on the left of
(since otherwise m would enter a wedge created by two of these paths), there
is some positive d such that the distance between the closest dual left path
on the right of 7 and the closest dual right path on the left of 7 is at least
0 at any time between the time when we started our hopping path and the
last time ¢,,,. We can construct a hopping path so that the position where we
hop from a left to a right path is always less than §/3 from the closest dual
right path on the left, and similarly, the position where we hop from a right
to a left path is always less than 6/3 from the closest dual left path to the
right. The times when we hop are increasing, so either we reach ¢,, in a finite
number of steps, or the times when we hop increase to a limit that is < ¢,,.
But then our hopping path comes infinitely often in the neighbourhood of
two points that lie at least a distance /3 apart. This clearly violates the
equicontinuity of the left and right webs.

Let us write N~ = N_, where N’ is the set of paths that can be con-
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structed by hopping between paths in (7)).ep and (7%).ep. Since our hopping
construction terminates after a finite number of steps, we have shown that
for each m € Ny, e >0, and t; < --- < t,,, there exists a path 7’ € N’ such
that |7(t) — 7'(t)| < e. Using the fact that N_ is compact (Lemma [5.21)), we
can now repeat the arguments at the end of the proof of Theorem to
show that N, C N_. |

5.8 Convergence to the Brownian net

We are finally ready to state and prove the main result of this section.

Theorem 5.23 (Convergence to the Brownian net) Let ¢, be posi-

tive constants tending to zero, let w™ be a sequence of arrow configurations

satisfying , and let U,, be the set of all open upward paths in w™. Then
P[b.,U,) € -] = PN € -],

n—oo

where N := N_ = N is defined as in Theorem[5.23,

Proof This is very similar to the proof of Theorem [3.18, We start by showing
that the laws _
{P[@EH(Z/{n) € } ‘n € N}

are tight. We apply Proposition [2.33] For all 7 € U,,, we can estimate

Tin(s).s) (1) = () < (t) — m(s) < Mgy () — 7(s),

where o and 7 denote the unique element of U (r(s),s) and

U'(e(s), s), respectively. In view of this, the tightness of the laws of . (U.,)
follows easily from the tightness of the laws of 6. (HL) and 6., (U,,) (Propo-

sition .

With tightness proved, in view of Prohorov’s theorem (Theorem and
Lemma [2.2] to prove the theorem, it suffices to prove that if a subsequence
of the 6., (U,) converges in law to a limit A/, then A is a Brownian net. We
assume therefore, from now on, that we are given a subsequence such that
the 6., (U,) converges in law to a limit N. By Skorohod’s representation
theorem, we can couple our random variables such that this convergence is

almost sure:

0.,U,) — N. (5.19)

n—oo
Similar to what we did in the proof of Theorem [3.18] we can extend this to
include also the almost sure convergence of a number of other objects, that
we already know converge in law.
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We fix a deterministic countable dense set D C R2. For each z € D, we
choose z, € Z2,., and 2" € Z?2,, such that 6. (z,) — z and 6., (2") — 2. We

let 7" and 7{™" denote the diffusively rescaled left and right paths started
from 2, and we let #7V" and 7" denote the diffusively rescaled dual left
and right paths started from 2. Then, for a suitable coupling, we have

rmd — mdas. and T(rMa glme) — T(rd, k) as.
for all z, 21,20 € D and q,q1,q2 € {l,r}, and likewise for downward paths,
where

(ﬂi,ﬂi,fr}z,fri)zep

are the forward and dual left and right paths started from D in a left-right
Brownian web. With all this set up, we will show that the limit in (5.19)
satisfies

N_CN cCN,, (5.20)

where N_ and N, are defined in terms of the forward and dual left and right
paths started from D. In particular, this then proves that N_ C N, which
was the missing part of the proof of Theorem [5.22 Since the inclusion N} C
N_ has already been proved with the fish trap argument from Section [5.7]
this then concludes the proofs of both Theorem and [5.23

It therefore remains to prove . We start by proving the inclusion
N_ C N. Since N is closed, it suffices to prove N C N where N is the set
of paths that can be constructed by hopping between paths in (7l).cp and

(mM)li _(n)ra

(7%).ep. The statement now follows from the fact that 7(7z2," ', 72" ) —
n—oo
1

7(m,,,m,) for each 21,2, € D, and the fact that in an arrow configuration,
any path constructed by hopping between left and right paths is an open
upward path.

The inclusion NV C N, follows on the other hand from the fact that

(AN ey (7L, 7L, for each 21,z € D, the fact that in an arrow
n—

configuration, open paths cannot enter wedges, and Lemma [3.12] |

Exercise 5.24 Show that almost surely, there exist no m € N, a* € Wr
and 7 € W' such that = enters the wedge W (7", 7). Note that we do not
assume that the starting points of #* and 7' lie in some fived, deterministic,
countable dense set. Hint: Lemma[{.7]

5.9 The Brownian net with killing

We conclude this chapter with a very crude sketch of the proof of Theo-
rem [5. 1]
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Proof of Theorem (crude idea) We first consider the special case
that « = 0, 8 = 1, and d,, = 0 for all n. In this case, Theorem tells
us that the set 0. (V,,) NIIT converges in law to the Brownian net A. Since
d, = 0, each open path in an arrow configuration w, can be extended to an
upward path, so

V, = {FGHIHT(’EVTZQHT s.b.mC 7'
Using this, Theorem is easily seen to imply (5.3)), where the limit is
N, = {WEH:EIW'ENS.t. 7TC7T'}.

It is not hard to generalise this to arbitrary o € R and 5 > 0. We just need
to generalise our earlier definition of a left-right Brownian web in such a way
that the left Brownian web W' has drift o — 3 and the right Brownian web
W' has drift « 4+ , and all arguments go through in a trivial way. We can
even allow for the case 5 = 0, where now the limit is the Brownian web.
Indeed, if g = 0, then Theorem m (convergence to the left-right Brownian
web) remains true, where now the left and right Brownian webs are a.s. equal.
This can be seen by adapting Theorem m (scaling limit of a left and right
path), where now one does not need the left-right equation but simply uses
that L™ (t) < RM™(t) while E[R™(t) — L™ (¢)] — 0 as n — oo, for each
t>0.

In view of this, the real challenge is to prove Theorem when the death
probability d,, may be positive. Clearly, in this case we can no longer work
with half-infinite paths. Nevertheless, in each arrow configuration w,,, at each
z € 72, there start a unique mazimal left path 77! and right path 7",
which are defined by the fact that at branching points, they always choose the
left or right arrow, respectively, and they only stop once they reach a death
point, i.e., a point with no outgoing arrows. It is easy to check that under
the conditions , diffusively rescaled left (resp. right) paths converge to
Brownian motions with drift a« — 8 (resp. a+ ) and an exponential life time
with parameter 3 (i.e., with mean 371).

In view of this, one can still prove an analogon of Theorem (con-
vergence to the left-right Brownian web). Using the hopping construction,
one can also still prove a lower bound N_ on the scaling limit of the set of
all open paths. The most difficult part of the proof is to get a matching
upper bound. We can naturally couple our arrow configurations to arrow
configurations that have no deaths. These then give rise to a limiting left-
right Brownian web that can be used to define wedges. Naturally, even with
deaths, open paths cannot enter these wedges. To get a good upper bound,
one needs to add one more condition that takes into account the deaths. It
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turns out that the right condition is that paths cannot pass through points
where other paths have died. Proving this requires a better understanding of
the Brownian net (such as density calculations and the concept of meshes).
We cite [NRS15] for those who want to know more. |
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Chapter 6

Properties of the Brownian net

6.1 The continuum biased voter model

We recall that in (4.1)) we constructed collections of random maps (X;;)s<
and (Vst)s<¢ that could be interpreted as scaling limits of the stochastic
flows associated with a voter model and its associated dual system of coa-
lescing random walks, constructed from their graphical representations. In
the present section, we study the analogue objects for the scaling limits of
biased voter models and their associated systems of branching and coalescing
random walks. We start with a useful lemma, that is a direct consequence
of the hopping and wedge constructions of the Brownian net. This lemma is
illustrated in Figure 6.1}

Lemma 6.1 (Connections in the Brownian net) Let N be a standard
Brownian net. Then almost surely, for all a,b,s,t € R with a < b and s < t,
if some m € N (R x {s}) satisfies w(t) € [a,]], then

T(ﬁat),fréj’t)) <s and T, <7< frézt) on [s, t]. (6.1)
Conversely, almost surely, for all a,b,s,t € R with a < b and s <t, if there
exist 77 € W¥(a,t) and 7' € W\(b,t) such that #* < &' on (s,t), then for
each x € [7*(s), 7'(s)], there exists a path m € N(x,s) such that #* < m < 7!
on [s, t].

Proof By the wedge characterisation of the Brownian net, if 7 € M(R x
{s}) satisfies 7(t) € [a,b], then by the fact that m does not enter wedges
(Exercise , for each £ > 0, paths #* € W'(a —e,t) and #' € W'(b+ ¢, 1)
must satisfy

T(ﬁ'r,ﬁ'l) <s and #<7w<# on [s, ]

147
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Figure 6.1: Tllustration of Lemma[6.1} If 7,5 > 0, then no path in A starting
at time 0 can pass through [a,b] at time ¢. On the other hand, if 7,;, < 0,
then at any point (z,s) with 7, ,(0) < z < ﬁ%;rt)(O) there starts a path
m € N with 7 (t) € [a,b].

Letting € — 0, we see that fr( ST 7r(b p O [ t]. Using Lemma , we

moreover see that 7‘( o) T, t)) < s, proving

Conversely, if for some a, b, s,t € R with a § b and s < t, there exist
7 e Wr(a,t) and 7' € Wl(b, t) such that 7° < 7! on [s,#], then by the fish-
trap argument in the proof of Theorem [5.22] for each z € [#"(s), 7'(s)], we
can construct a path 7 € N (z,s) such that #* < 7 < 7! on [s,#]. Using the
compactness of A, we can relax the condition that #* < @' on [s,] to the
weaker condition #* < 7! on (s,t). |

The following lemma is similar to Lemma [3.8] We leave its proof as an
exercise to the reader.

Lemma 6.2 (Trivial paths) Let N be a Brownian net. Then I, C N

triv
a.s. and each m € N\II! . satisfies 7(t) € R for all o, < t < .

triv

Exercise 6.3 Prove Lemmal6.2.

It is easy to see that a Brownian net N almost surely uniquely determines
its associated left-right Brownian web (W', W), and hence also their assoc-
tiated dual Brownian webs W' and W*. In Lemma , we have seen that
(=W, —WV") is equally distributed with (W', Wr). It follows that we can con-
struct a random collection of downward paths A associated with (VVl Wr)
so that the triple (Wl, Wr, N ) is equally distributed with (=W, —W* —N).
We call N the dual Brownian net associated with A
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In analogy with the definitions in (4.1]), we define

X, (A -:{xeﬁ-afremx t) s.t. 7(s) € A,
VoilA):={n(t) : m € N(A x {s})},

(6.2)
X, 4(A ':{xER'EIWEN(a: s) s.t. m(t) € A},

VialA)i={#(s) : # € N(A x {t})}.

We can think of the maps (X;+)s<; as a continuum analogue of the stocéastic
flow (X;+)s<t defined in Section . Let us fix closed sets A, B C R and
define, in analogy with ((1.5)),

Ay =X (A) and By := Yo+(B) (t >0). (6.3)

Then we can think of the process (A;):>o as of some sort of continuum version
of the biased voter model and similarly, we can think of (B;);>0 as a contin-
uum version of branching and coalescing random walks. We call (A¢);>o the
continuum biased voter model and (By)i>o the branching-coalescing point set.

Informally, we can think of the branching-coalescing point set as branch-
ing and coalescing Brownian motions. This informal description is a bit too
simplistic, however, since we cannot simply construct the process by letting
coalescing Brownian motions branch with a finite rate. Indeed, such a de-
scription would not make sense, since whenever the branching would create
two Brownian motions on the same positions, the two would coalesce imme-
diately. We should think of the branching-coalescing point set as coalescing
Brownian motions which in addition branch with “infinite” rate. However,
since most of the particles created due to the branching disappear immedi-
ately due to the coalescence, on macroscopis scales, we see only finitely many
successful branchings.

Lemma 6.4 (Basic properties) One has X;;(A) € K(R) for each A €
K(R) and s <t. Moreover,

X,:(AUB) = X, ,(A) U X,,(B) (A,Be KR), s <t). (6.4)

Analogue statements hold with X, replaced by Y,,. For each A, B € /C(R)
and s,t € R with s <t, one has

Y )nB #£0 = Yand,.B) £ 0} (6:5)

Proof This follows from the same proofs as Lemmas [£.1] and [4.2] |
Lemma implies in particular that (compare Lemma [4.27))
- r4 r4
T o), (1) ifu<7(m, 0Ty
Xs,u([x,y]) _ [ (z5) (y5) } ( f ) (v, ))
0 if u > T(?T( ’/TEJS)).

z,s)’

(6.6)
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Note that as a consequence, the continuum biased voter model (A;);> defined
in , started in an initial state of the form Ay = [z, y], has left- but not
right-continuous sample paths. When we combine with , we see
that the continuum biased voter model, started from a finite union of compact
real intervals, has a rather simple description. At each time, it consists of
a finite union of compact real intervals, whose boundaries evolve as drifted
Brownian motions.

It is sometimes useful to view the continuum biased voter model and
the branching-coalescing point set as taking values in the space of all closed
subsets of the real line, instead of the space of all compact subsets of the
extended real line. We observe that

K':={A €K, (R):{—00,00} C A}

is a closed subset of K, (R), and hence compact, by the compactness of the
latter. We let C1(R) denote the set of all closed subsets of the real line. We
observe that the map A — ANR is a bijection from X' to CI(R), which allows
us to identify these two spaces. We equip CI(R) with the topology that comes
from its identification with K’, making it into a compact metrisable space.
It follows from Lemma that Ay € K’ implies A; € K’ for all ¢ > 0 and
similarly for (B;):>0, so we can view these processes as processes with state
space CI(R) instead of K(R).

As a consequence of , the continuum biased voter model and the
branching-coalescing point set started in deterministic initial states satisfy a
duality relation of the form

P[AgN By #0] =P[A,NBy #0] (Ao, Bo € CI(R)).  (6.7)

One can prove that knowing this expression for all Ag that are finite unions
of compact intervals uniquely determines the law of By, viewed as a random
variable with values in the space CI(R). Thus, using duality, we can uniquely
characterise the transition probabilities of the branching-coalescing point set
in terms of the simpler continuum biased voter model.

It is possible to show that the operators (X;:)s<; and (Vs:)s<: have the
stochastic flow property, similar to what we proved in the unbiased case
(Lemma , and using this one can also show that the continuum bi-
ased voter model (A;);>o and the branching-coalescing point set (B;);>o are
Markov processes, similar to our earlier Proposition [4.24] For brevity, we
skip the details.

For the branching-coalescing point set, more is known. It has been proved
in [SSO8, Thm 1.11] that the branching-coalescing point set is a Feller process
with continuous sample paths. Abstract Hille-Yosida theory tells us that each
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Feller process is uniquely characterised by its generator, so in principle it
should be possible to give a description of the branching-coalescing point set
in terms of its generator. It is an open problem to give an explicit description
of this generator. Perhaps the duality relation is a good starting point
to get an idea what sort of functions the domain of the generator should
contain.

6.2 The branching-coalescing point set

The following proposition is similar to Proposition but its proof is a bit
more involved.

Proposition 6.5 (Density of the branching-coalescing point set) The
branching-coalescing point set satisfies

—1

[0 ® 0 o)) = 6 - (=

(a,b €R, a<b, t>0), where ®(x) := \/% [¥_e¥'2dy is the distribution
function of the normal distribution.

Let

+20(v20)) (6.8)

U(t) = \/% +20(V2t)  (t>0) (6.9)

denote the function on the right-hand side of . We observe that

1
Ut)~ — ast—0 and Y(t) — 2.
0~ = (t) —

This shows that for small times, the density of the branching-coalescing point
set is asymptotically the same as for the coalescing point set, but for large
times, it is quite different since the density does not go to zero but tends to
a positive limit.

Proof of Proposition [6.5] For ¢,¢ > 0, set
Fe(t) :=P[7(#p 4 F(ey) > 0]
Then Lemma [6.1] tells us that
PVou(R)N[0,e] #0] =1—F.(t)  (e,t>0),

and the claim of the proposition will follow from the argument used in the
proof of Proposition provided we show that

lime '(1— F.(t)) =¥(t)  (t>0), (6.10)

e—0
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s
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Figure 6.2: The reflection principle: P[r < ¢, B; > y| = P[B; < —2x — y].

where U is the function defined in (6.9). The difference of a right and left
path is a Brownian motion with drift 2 and twice the quadratic variation of
a standard Brownian motion. Therefore, we can express the probability we
are interested in in terms of a standard Brownian motion (B;);>o as

F.(t)=P[ inf (V2B,+2s) < —¢]

0<s<t

=P[ inf (Bi+V2s) <—¢/V2]  (e,t>0).

In line with notation introduced in (4.6)), let us set

B, := B +V2t, my(B) = inf By, and m(B'):= inf B, (t>0).

0<s 0<s<t

Using the reflection principle (see Figure , we see that
P[—m(B) >, B, >y =P[B, >2x+y] (¢>0, y>—z, t>0)

Differentiating the normal distribution, we see that the joint density of the
law of (—my(B), B;) on the set {(z,y) € R? : x >0, y > —x} is given by

2 o8] _
V 2t ax&y 2x+y V 27t ax

1 _1 2,1
= —202x+y)t e 3 (22 + )"t Hi(z,y).

\ 27t
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By Girsanov’s formula, the law of (B.)p<s<; has a density with respect to the
law of (By)o<s<t, as follows:

P[(B)o<s<t € df] = eV2fi—t P[(Bs)o<s<t € df] (f € Cpu(R)).

As a consequence, we obtain that

P[ —my(B')) € dz, B, € dy] = 6\/§y - th(x,y) dz dy
=: H/(z,y) dz dy.

This allows us to express the probability we are interested in as

F(t) =P[ - m(B) > ¢/v/2] = ;;dm/_oodyﬂg(m,y)

oo oo —e/V2 9]
:/ dy/ d:z:Hé(x,y)—l—/ dy/ dz H{(z,y) .
\75/\& 5/\/5 . \700 —y

g

1 =11

We calculate

—t 0o 1 24—1
1= ¢ / dy e\/_y/ dz2(2x + y)t~te 220 +y)°t
12

vt J-.
=l " e Va BB
Vart J_cva
:e‘%/ dy —— e 2+ V2e = V20)%
—e/V2 \/2_71't

— e 2 P[VIN — \/_5+\/_t>—€/\/_]
N>

where N denotes a standard normally distributed random variable and in
the second step we have used that

—t+ V2 — L(V2e +y)t Tt = =3 (y + V2e) + 2 — V21y]
= — 17 (y + V2e)? + 2t2 — V2t(y + V2e) + 2¢t]
= L7 (y + V2e — V21)? + 2et] = —2c — Ly + V2e — V21)% 7N
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In a similar way, we calculate

\/§ o0 1 _
dy 6\/§y/ dz 2(2z + y)t_1€—§(2x oyt
-y

dy e\/ﬁye_%(_Qy +y)itt

- \ 27t

ot 732/\/5
—\/27rt\[_oo
—e/V2 _
e R
V2rt

—P[VIN + V2t < —¢/V2] = o - V2 - %).

Putting everything together, we find that

F(t) = e~ %o (Var - %) +o( - vai- %)

It follows that
2E(t)=—2e" %0 <\/2_t

—\/%cb’(—\/z_—i),

and
U(t) = —ZF(t)]__,=2®(V2t) + —='(V2) + —='( - V2t)

_ 2 Lt
_2c1>(\/2_)+\/_\/% :

which agrees with . [ |

Although Proposition shows that the branching-coalescing point set
comes down from infinity, in is not true that Yy (R) is a locally finite point
set for all ¢ > 0. Indeed, it has been shown in [SSS09, Prop 3.14] that there
exists a dense set of random times at which ), ;(R) does not contain any
isolated points. Similarly, the set of times ¢ when |)p:({0})| = oo is dense in
[0,00). This is a consequence of the “infinite” branching rate, which makes
the number of particles explode immediately. To prove these results, one
first needs to show that the set of times when a sticky reflected Brownian
motion is at the origin is nowhere dense, which is quite easy to do. The
consequence is that for the branching-coalescing point set started with a
single particle, within each time interval of positive length, one can find a
shorter time interval during which there are at least two particles. By the
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same principle, within such a shorter interval, one can find an even shorter
time interval during which one of these particles has split and hence there
are at least three particles, and so on, ad infinitum.

We conclude this section with two useful consequences of Proposition [6.5]
Before we do so, we state the following lemma, that is similar to Lemma[4.18]

Lemma 6.6 (Independent increments) Let N be a Brownian net and
let —o0 < tg < ---<t, <oo. Then the restricted Brownian nets

N‘[to,tl]""7N|[t

71,717tn}

are independent.

Proof Same as the proof of Lemma [4.18] except that instead of Theorem[3.18
we now need to use (or rather slightly generalise) Theorem m |

We recall from Section {4.4| that a path 7 € II" enters a point 2 = (z,u) €
R?if o, < uwand 7(u) = x. We denote the set of Brownian net paths entering
z by

Nin(z) := {7 € N : 7 enters z}.

Similar notation applies to the dual Brownian net A/

Lemma 6.7 (Forward and dual paths) Let N be a Brownian net and let
N its associated dual Brownian net. Then for each deterministict € R, there
almost surely do not exist © € R such that Niy(z,t) # 0 and Nin(z,t) # 0.
Moreover, for each m € N and 7 € ./V, the set

{t € [o5, 7] : 7(t) = 7(t) € R}

has Lebesque measure zero.

Proof We write Vs (R) := {n(t) : m € N(R x {s})} = Vs:(R) NR and use
similar notation for j/m. By Proposition , for each deterministic s < t < wu,
the sets YV, (R) and Y, (R) are locally finite. By Lemma , they are also
independent. Using also that their laws are translation invariant, it follows
that V,;(R) N Vus(R) = 0 a.s. In particular, this holds for all s,u € Q with
s < t < u, proving the first claim.

To prove also the second claim, fix deterministic a, b, s,u € R with a < b
and s < u, and let C' be the random subset of [s, u] defined by

C:={tes,ul: Ir e N[Rx{s}), # € N([Rx{u}) s.t. 7(t) = #(t) € [a, 8]}
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Using the fact that A" and N are compact, it is easy to see that C' is closed,
so it is certainly measurable. By Fubini and what we have just proved

]E[/Sulc(t)dt] :/:]P’[teC]dt:O.

Now if 7 € A and # € N are arbitrary, then by what we have just proved,
for each a, b, s,u € Q such that s < o, < 7: < u, the set

{t€ls,u]: m(t) = #(t) € [a,b]}

has Lebesgue measure zero. Letting s | o, u T 74, a — —o0, and b — 00,
the claim follows. [ |

Lemma 6.8 (Bounding left and right paths) Let N be a Brownian
net and let (W', W) be its associated left-right Brownian web. Lett € R be
deterministic. Then almost surely, for each x € R and for each 7 € Ny (z,t),
there exist an s € R with o, < s < t, as well as 7 € W/ (z,t) and 7" €
WE (2, ) with o V o < s, such that 7 < 7 < 7 on [s,00).

Proof Let S < t be deterministic, let 7 € N satisfy o, < S, and let
b := m(t). By Proposition [6.5 the set Vs, C R is locally finite, so there
exists an a € Vg, with a < b such that (a,b) N Vs, = . By Lemma for
each £ > 0, we have
AT— ~1
T(W@+aﬂ’walaﬂ) > 5

Taking the limit, we conclude that
AT Al—
T(?T(;r’t),ﬂ'(b’t)) > S.

Let D C R? be a deterministic countable dense set. By the remark below
Lemma , if some 7! € W! and 7 € W' meet in a point (z,5), then there
must be skeletal paths 7' € W!(D) and @ € W*(D) that also meet in (z,.5).
Therefore, since S is deterministic and since left and right paths started from
deterministic points do not meet at deterministic times, we conclude that

T = T(ﬁf;ft),frgt)) > S.

By Lemma [6.7] there exists a time s € R with 7 < s < ¢t and = € R such
that ﬁ};’t)(s) <z < m(s). Now any 7! € W!(z, s) must satisfy ﬁ};t) < 7! on
[s,t] and 7' < 7 on [s,00). It follows that 7' € W! (x,t). By symmetry, we
see that there must also exist an s’ < ¢t and 7" € WY (x,t) such that 7 < 7"

on [¢',00). Since S < t is arbitrary, the claim of the lemma follows. |
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6.3 The backbone

The fact that the density W(t) tends to a positive limit as ¢ — oo suggests
that the branching-coalescing point set should have an invariant law, and
also, that the Brownian net should contain bi-infinite paths (contrary to the
Brownian web, see Lemma . The following proposition confirms this.
Note that according to our notation, N (%, —o00) is the set of all paths 7 € N
with starting point (¥, —o0), i.e., N(¥, —00) = N NII}. The set of paths
N (%, —0) is called the backbone of the Brownian net. See Figure [6.3] for an
illustration.

Proposition 6.9 (Backbone of the Brownian net) The set
{m(0) : m € N(*,—0)} NR

is a Poisson point process with intensity 2. Moreover, N (x, —00) is equal in
law to —N (x, —00).

Remark This proposition shows that the law of a Poisson point process
with intensity 2 is an invariant law for the branching-coalescing point set.
Moreover, since N (%, —00) is equal in law to —N (*, —o00), this invariant law
is reversible.

Figure 6.3: The backbone of the Brownian net.

We will first prove an analogue of Proposition [6.9|for the set of open paths
in an arrow configuration, and then prove the statement about the Brownian
net by finite approximation.
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Proposition 6.10 (Backbone of an arrow configuration) Let U be the
set of open upward paths in an arrow configuration w = (w,),ezz.  with

even

Plo. = {-1}] =1, Plw. = {+1}] =7,
Plw, = {-1,41}] =b, Plw.=0] =0,

where l+7r+b=1 and b > 0. Set
Xy ={n(t) : m € U(x,—00)} (teZ). (6.11)

Then for each t € Zeyen (T€sp. t € Zoaa) the events {x € Xi}rezown (TSP
{x € Xi}oez,,,) are independent with

b

Plz € X,] = ()

((z,t) € Z2

even) .

(6.12)

Moreover, U(x, —00) is equal in law to —U (%, —o0).

Proof We will write w := (W(zt))2e Zoven if T 18 even and 1= (W(g ) )oczoq if t
is odd. Fix 8 € Zeven and p € [0, 1]. Let X! be a random subset of Zeye, such
that the events {z € X!}.cz.... are independent and have probability p, and
X! is independent of w,. Let X[, ; be the random subset of Zyqq defined by

Xog={z-1:zeX], -1cwyn}U{z+1l:zeX,, +1 €wuo}
We will show that it is possible to choose p such that the events

Apy ={re X andy — 1 € wy.,
Y { . Y ( 7)} (6.13)
with = € Zeyen, Y € Zoaa, |t —y| =1

are all independent. Clearly, A, , is independent of A,/ . if  # 2, so it
suffices to choose p such that A, ,_; is independent of A, ,; for each z. We
calculate

]P)<A:c,x—1) = p(b—f- l)7 P(Ax,a:—I—l) = p(b+T), and P(Aac,ac—l N A:L’,:v—i-l) = pb;

so we need
p*(b+1)(b+71) = pb,

which is trivially satisfied for p = 0 and less trivially for

b

p= it (6.14)
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From now on, we fix p as in (6.14). We also fix s € Zeyen and let X be
a random subset of Zeye, such that the events {z € X!},ez.... are i.i.d. with
probability p and independent of (w;);>s. For each ¢t € Z with ¢t > s define

={7(t) : 7 €eU(X. x {s})} (t >s).

By our earlier remarks, for each t € Zgyen With t > s, we have that the events
{z € X]}iez, are i.i.d. with probability p and independent of (wy)y>¢. It
follows that the joint laws of (X[);>s and (wy)s>s for different values of s
are consistent, so by Kolmogorov’s extension theorem we can couple w to a
stationary process (X/);ez such that

(i) For each s € Zeyen, the events {z € X!},cz.... are i.i.d. with probability
p and independent of (wy)s>s.

= {n(t): m €eU(X] x {s})} for each t € Z with t > s.

Recall from Section [3.1] that each arrow configuration w defines a random
directed graph (Z2,, E) by

E = {(z,t), (x + wep, t + 1)) : (2,1) € 22, }.
We let E’ be the subset of arrows defined by
E = {(z,t),(y,t+1)) € E:zec X/},

and we let U’ be the subset of U consisting of all open upward paths 7 such
that 7(t) € X] for all t € I(7) NZ. Equivalently, this says that U’ is the set
of all upward paths 7 such that

((w(t),t), (r(t+1),t+1)) € ' (t€I(n)NL),

with linear interpolation between integer times. It follows from the indepen—
dence of the events in that if we rotate the oriented graph (Z2,.., E')
over 180 degrees and reverse the direction of all arrows, then the new graph
obtained in this way is equal in law to the original one. We call this the
rotational symmetry of E.

Using this, we see immediately that each (z,t) € Z2,, with x € X] is
not only the starting point of a forward open path, but also the endpoint of
an open path with starting time —oo. As a consequence, for each t € Z, we
have X C X;, where X; is defined in . We claim that this is in fact an
equality.

It suffices to prove this for ¢ = 0. We start by noting that for each
Y € ZLeyen, we can find x, 2 € Xo with x < y < z. The right open path starting
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from (x,0) and the left open path starting from (z,0) a.s. meet eventually,
say in the point (y/,¢). These are paths in the oriented graph (Z2.., E'), so
using rotational symmetry, we see that similarly, for each y € Zeyen, there a.s.
exists a point (y', —t) € Z2,,, at which there start paths in the oriented graph
(Z2,.,, E' ) that pass at time zero on the left and right of y, respectively.
We now prove that Xo C X{. Let y € X,. By our previous argument,
there a.s. exists a point (y', —t) € Z2,., such that y’ € X', and such that
there exist open paths that start at (y’, —t) and that pass at time zero on
the left and right of y, respectively. By the definition of X, there also exists
an open path m € U(x, —oo) with y = 7(0). Since this open path must cross
the two open paths starting from (y’, —t), there must also exist an open path
from (y', —t) to (y,0), proving that y € X{,.

From the fact that X; = X/ and our construction of the latter, we see
that for each ¢t € Zeyen (resp. t € Zoaa) the events {z € X;},ez.... (resp.
{z € Xi}iez,,,) are independent with probabilities given in (6.12). The fact
that U(x, —o00) is equal in law to —U(*, —oo) follows from the rotational

symmetry of E. |

Proof of Proposition Let ¢, be positive constants tending to zero, let
w™ be a sequence of arrow configurations satisfying (5.4)), and let U,, be the
set of all open upward paths in w™. Then Theorem tells us that

]P)[esn(an) € ] H?EOP[NG ':|a

where N is the Brownian net. Since U, (x, —00) is a closed subset of U,,, it
is compact. In view of Lemma E, the tightness of the laws P [Qan U,) € - }
means that for each > 0, there exists a compact set C C II" such that
inf, P[0.,(U,) C C] > 1 —n. Since U, (x, —o0) C U, it immediatey follows
that the laws P[6., (U, (%, —o0)) € -] are also tight. Thus, by going to a
subsequence, we can assume that

P[0, (U, Un(x,—0)) € | = P[(N,N") € -],

n—oo

where A is a Brownian net and A’ is a random compact subset of IIT.

Since limits of bi-infinite paths are bi-infinite we have N’ C II¥, and since

U, (%, —o0) C U, for all n we have N/ C N. Proposition tells us that for

each t € Zgyen, the set X; in is an i.i.d. subset of Zeyen With intensity
by, En

= ~ ~ de,.
P o+ 1) (b + 1) Gt

Taking the scaling limit, using ([5.4)), we see that
{r(t): 7 e N'}NR
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is a Poisson point set with intensity 2. (Note that the limiting intensity
is 2 and not 4 since X; is an i.i.d. subset of Zeye, not Z.) The fact that
N’ is equal in distribution with —N” follows from the rotational symmetry
of U, (%, —00). Therefore, to complete the proof, it suffices to prove that
N’ = N (%, —00). The inclusion N’ C N (*, —00) is clear since N’ C [T and
N’ C N. The opposite inclusion can be proved in almost exactly the same
way as the inclusion X, C X in the proof of Proposition [6.10} so we omit
the details and only sketch the main line of the argument.

First, one needs to prove that if a path 7 € A crosses a path 7’ € N, then
the path constructed by first following n’ and then hopping onto 7 at their
first meeting time is also a path in N’. The approximating backbones clearly
have this property and since crossing of the limiting paths means that also all
except finitely many of the approximating paths must cross, this property is
preserved in the limit. (Compare Exercise below.) Next, similar to what
we did in the proof of Proposition [6.10} one can use rotational symmetry to
show that each path m € N (%, —00)\II],,, must cross a path in A" at some
time s and hence, by our earlier remark, there must exist a path 7’ € N’
such that 7(t) = 7'(t) for all ¢ > s. It is then not hard to see that the
crossing time s can be chosen arbitrarily small, so taking the limit, using the
compactness of N, one obtains that 7 € N”. |

Exercise 6.11 (Hopping in the net) Let N be a Brownian net and let
m, 7" € N satisfy w(s) < 7'(s) and ©'(u) < w(u) for some o,V o < s < u.
Define 7 :=inf{t > 0, Vo : w(t) = 7'(t)} and let 1" be the path defined by
O 1= 0O, ©'(t) :=w(t) for on <t <7, and 7" (t) := 7'(t) for t > 7. Show
that 7 € N'. Hint: use finite approximation.

6.4 Law of a forward and dual path

In Section [5.5], we described the scaling limit of the joint law of a left and
right path in an arrow configuration, which was then used in Section
to describe the law of the left-right Brownian web. This approach closely
follows the original introduction of the left-right Brownian web in [SS0§|. In
the present section, we will described the scaling limit of the joint law of a
forward left and dual right path in an arrow configuration. Since a Brownian
web is almost surely uniquely determined by its dual, this approach can be
used to give an alternative characterisation of the left-right Brownian web
which, as we will see, has certain advantages over the characterisation given
in Section [5.6

Let €, be positive constants tending to zero and let w™ be a sequence of
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arrow configurations satisfying . As in Section , we let wb™ and w™
denote the left and right arrow configurations associated with w™ and we let
@b and "™ denote the corresponding dual arrow configurations. We denote
the set of open upward paths in W' and w™" by U} and U* and we denote
the set of open downward paths in ' and "™ by U and U**.

We now proceed very similarly to what we did in the proof of Theo-
rem . We fix (yn,un) € Z%, and let R, be the unique element of
U™ (Yn, ). We also fix (x,, s,) € Z2,., and let (X2)j>,, 11 beiid. {—1,+1}-
valued random variables, independent of R, such that PX} =—-1]=1,+b,
and P[X} = +1] = [,. We let L, be the random walk that is defined for

integer times by

t
Lo(t) =z, + > Xp  (t>sy),

k=s,+1

and then for general ¢ > s, by linear interpolation. We can then define
a reflected random walk L! = (L!(t));>s, started at L/ (s,) = x, first for
integer times by

I,n : »
L (t) + Wirr #).) if t <w,and R,(t+1) =L (1),
L (t) + X[, otherwise,

L (t+1):= {

(6.15)

and then for general ¢ > s, by linear interpolation. Then it is easy to see

that the conditional law of L/ given R, is precisely the conditional law of
the the unique element of U!(z,, s,) given R,.

We write L/ (t) = L,(t) + U, (t), where ¥, is a reflection function. We
now distinguish two cases. If z, < fin(sn), then we observe that precisely
as in the proof of Theorem L is the path L, reflected to the left off
(Rn(t) — 1);<y, in the sense of Lemma [4.14 In the opposite case, when
R, (sn) < an, the evolution of L, is initially equal to the evolution of the the
path L, reflected to the right off (R, (t) 4 1)<y, in the sense of Lemma ,

but L/ starts to behave differently after the random time

Tnh +— inf {t 2 Sn - t < U, Rn(t + 1) = L;’L(t)’
Wiy = -1 +1}, Xy = —1},

because when (L;,(t),t) is a branching point and R, (t+1) = L' (t), the path
L can cross R,. After crossing, L] starts to evolve as the path L, reflected

to the left off (R, (t) — 1)<y, in the sense of Lemma [4.14] See Figure [6.4| for

an illustration.
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Figure 6.4: A forward left path reflected to the right off a dual right path
R,,. The reflected path is L/ (t) = L, (t) + W, (t), where L, is an independent
random walk and W, is a reflection term. The steps where reflection takes
place are indicated with a greater line thickness.

We observe that for all times ¢t < 7,,, we have that U, (¢) is twice the
number of times ¢’ € {s,,...,t—1} when R, (t'+1) = L’ () and Xiq=-1,
i.e., the number of time when L/, has attempted to cross R,,. Bach attempt is
succesful with probability b,, so the maximal height that ¥, will reach before
it starts to decrease again is a random variable of the form H, = 2(G, — 1),
where G,, is geometrically disctributed with success probability b,,. In the
diffusive scaling limit, we have b, ~ &, while we rescale ¥, by a factor ¢,,
which means the maximal height the reflection term ¥ in the scaling limit
will reach is exponentially distributed with mean 2.

Recall the reflection map ® defined in (4.14)), that takes as its input a pair
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(m,7) € II" x IT+ and produces as its output a pair (7, 1) where 7’ is the path
7 reflected off 7, and v is a reflection function. Our previous considerations
motivate us to define a modified map ®’ of the form

I x T % [0,00) 3 (1, 7,T) -2 (2, =, wt) € I x C(R),  (6.16)

with the following description: we first calculate (7', 1) := ®(m, ), where ®

is the reflection map defined in (4.14]). Let S be the random time defined by
inf{t >o,:0t)=T if o, < 7 and 7(o,) < w(0o,),
S::{ {t> 0 0(t) =T) (o) <o) o

0 otherwise,

with the convention that inf () := co. In the case when S < oo, we define a
modified forward path 7 by

oz =S and 7(t):=n(t)+7(S)—m(S) (t>29),

and we set (7%,¢*) := ®(7,7), where ® is the reflection map in (4.14]). We
then define the map ®’ by setting

(7(£),0,9:(1)) (t<9),
(v (1), 0" (0. 0(5)) (S <)

Note that here the precise way we have defined the reflection map in (4.14)
when the forward path starts on the position of the dual path becomes im-
portant. In Section [£.3] we used the convention that in such a case, the
reflected path is reflected to the left off the dual path, which is what we need
here. Note also that as a result of our definitions

() =7(t) + T =P (t)  (t=0n), (6.18)

so that the difference ¥t — 1~ of the two reflection functions corresponds
to the reflection function ¥, that we introduced earlier in the context of
reflected left paths in arrow configurations. In the light of our previous
considerations, the following theorem should not come as a surprise.

Theorem 6.12 (Law of forward left and dual right path) Assume that
(WI,WT,WI,WT) 1s a left-right Brownian web together with its associated
dual Brownian webs. Let (z,s), (y,u) € R%, and let ', 7" be the almost surely
unique paths such that @ € W'(x,s) and #* € W' (y,u). Let B = (By)i>0 be
a standard Brownian motion, independent of w, and let T' be an exponentially
distributed random variable with mean 2, independent of © and B. Let L =
(Lt)i>s be defined by Leyy == x+ By —t (t > 0) and let (7', ") =
(L, #,T), where ® is the map in (6.16). Then (w,7) is equal in law to
(', 7).

("), 0~ (1), " (1)) = {
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The proof of Theorem [6.12] uses finite approximation and is very similar
to the proof of Theorem [£.16 We will use the following lemma, that plays the
same role as Lemma . Recall that we equipped the space C(R) with the
topology of uniform convergence. By definition, a point of continuity of &' is a
triple (m, 7, T) € II" x I+ x [0, 00) with the property that if (7,,, 7, T},) € 11" x
[T+ x [0, 00) converge to (m, 7, T), then (7, 7, Ty,) converges to @' (7,7, T)
(in the topology on IIT x C(R)?).

Lemma 6.13 (Almost sure points of continuity) Let 7 € II" and
7 € II* be deterministic paths that satisfy either o, > T+ or o, < T; and
7(ox) # m(ox), and let T be a [0, 00)-valued random variable with an atom-
less distribution. Then (m,m,T) is almost surely a point of continuity of ®’.

Proof Let (m,7,T) € I x II* x [0,00) be deterministic and assume that
(T, 7in, Tp) € TIT x I+ x [0,00) converge to (m,7,T). Assume also that
either o, > 7z or o, < 7z and 7(0,) # m(0,). Then Lemma tells us
that ®(m,, ,) — ®(m, 7). Let us write (7, 1,) := ®(m,,T,) and (7', ¢)) :=
O (7, 7), and let us define S,, and S in terms of v, and T,,, respectively ¢ and
T, as in . Provided that S,, — S, we can then again apply Lemmam
as well as the remark below it to conclude that ®'(rw,, 7,,T,) converges to
' (m, 7, T).

What is complicating matters is that according to our definition, S does
not depend continuously on ¢ and T'. Indeed, if ¢,, — ¥ (uniformly on R) and
T,, — T, then S,, may fail to converge to S precisely when inf{t > o, : ¥ (t) =
T} differs from sup{t > o, : ¢(t) = T'}, i.e., when the nondecreasing function
v has a plateau precisely at the level T. However, each nondecreasing real
function can have only countably many plateaus, so if T" is random with an
atomless distribution, then this problem almost surely does not occur. |

Proof of Theorem Most of the work has already been done. We use
finite approxiation. We fix (z,, s,) € Z2 ., and (yn, u,) € Z24, such that

even

0., (zn, sn) — (x,s) and 0., (yn,u,) — (y,u).
If u < s, then we can choose u, < s, and the statement of the theorem
follows easily from Theorem [5.19} so we assume from now on that s < u. We
then choose also s,, < u,, for all n.

We let w"™ be arrow configurations satisfying and let R, be the
unique element of U™ (y,, u,). We let L,, be an independent drifted random
walk started from (z,,s,) as before, and we define a reflected path L/, as in
. Then the conditional law of L, given R,, is precisely the conditional
law of the the unique element of U(z,, s,) given R,.
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For our present purposes, it will be convenient to construct L in a slightly
different way. We define a shifted random walk L, by L,(t) := L,(t) + 1
(t > $,) if Ly (8n) < Rn(sp) and Ly (t) == Ly, ()—1 (t > ) if Rp(5n) < Ln(sn)
and let GG,, be a geometrically distributed random variable, independent of
everything else, such that

PG, =kl=(1—¢e)" e, (k>1).

We then set ) o

(L, Wy, ) = & (L, Ry, 2G), (6.19)
where @' is the map in (6.16)). Let

S, = inf {t > 5, UT(t) = 2Gn}.

Then it is not hard to check (see Figure that the reflected random walk
L/, above is equal in law to the path defined at integer times t > s,, by

YIS R IOR R CE T ]
G L) -1 (S.<t),

and then by linear interpolation for all £ > s,,. We denote diffusively rescaled
paths and functions by

(R(n)vf’(n%f’,(n)’[/(n)a\lj_ w ) = Hen(Rmf’mE:wL/m\Dr_mqjj;)'

(n)> = (n)
It is easy to see that as a consequence of (6.19)), we have

(E'(n), /NNy ) = CI)/(E(,L), R(n), 2€nGn).

(n)? = (n)

Theorem |5.19| tells us that (L’ini, }A%(n)) converges in law to (m, 7), the forward

and dual path from Theorem Since L], and f/n differ at most by one, the
last statement remains true if we replace L’(n) by L'(n). On the other hand, the

A

triple (E(n), Ry, 2¢,Gy,) converges in law to (L, 7,T'), where 7 is the same
as before, L is an independent Brownian motion with drift —1, started from
(x,s), and T is an independent exponentially distributed random variable
with mean 2. Using Skorohod’s representation theorem, we can couple our
random variables such that the convergence is almost sure. The claim of the
theorem then follows from Lemma [6.13] |

Remark Since a Brownian web is almost surely uniquely determined by its
dual, instead of characterising the law of a left-right Brownian web using
the joint law of a left forward path and a right forward path as we did in
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Section one could also try characterisation based on the joint law of a left
forward path and a right dual path. This approach has the advantage that
we also have a good understanding of the conditional law of a left forward
path given a right dual path. As we mentioned in Section [5.5] we are lacking
a good description of the conditional law of a left forward path given a right
forward path.

6.5 Relevant separation points

Let A be a Brownian net and let (W', W) be its associated left-right Brow-
nian web. We say that a left path 7' and a right path 7* separate in a point
z = (z,t) if ' € WL (2), ¥ € WE (2), and there exists a U > t such that
m'(u) < 7" (u) for all w € (t,U). A separation point of the Brownian net N is
any point z € R? for which there exist left and right paths that separate in
z. Separation points of the dual Brownian net A" are defined analogously.

Separation points can be viewed as the continuous analogue of branching
points in an arrow configuration, in the sense that at a separation point (z,t),
a path in the Brownian net with starting time S < ¢ can choose whether to
turn left or right. Such a choice may or may not have a big influence on
how the path in the Brownian net continues. If the left and right path that
separate at (x,t) meet again very soon after ¢, then whether one turns left
or right at (x,t) does not make a big difference. This is the idea behind the
following definition.

Let S,U € R satisfy S < U. By definition, an (S, U)-relevant separation
point of the Brownian net A is a point z = (z,t) € R? with S < ¢t < U such
that:

(i) there exist 7' € W (2) and 7" € WE (2) such that ©' < 7" on (¢, U),
(ii) there exists a path 7 € N (R x {S}) such that m(t) = z.

Clearly, each separation point is (S, U)-relevant for some S and U, since for
the path 7 in point (ii) we can take either of the paths 7! and 7.

By the remark below Lemma , if D C R? is a countable dense set,
then for each separation point z, there exists skeletal paths 7! € W!(D) and
7" € W'(D) that separate in z. Since two skeletal paths separate in at most
countably many points, it follows that the set of all separation points of a
Brownian net is a.s. countable. In fact, a much stronger statement holds.
Recall that a set R C R? is called locally finite if RN K is a finite set for all
compact K C R2.
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Proposition 6.14 (Set of relevant separation points) For each S,U €
R with S < U, the set of (S,U)-relevant separation points of the Brownian
net is a locally finite subset of R2.

The proof of Proposition needs some preparations. We start with a
simple observation.

Lemma 6.15 (Deterministic times) For each deterministict € R, the set
R x {t} almost surely does not contain any separation points of the Brownian
net.

Proof Let z = (z,t) € R? and assume that 7' € W) (2) and 7" € WX (2)
satisfy 7! < 7 on (t U) for some U > t. Then by Lemma [6.1| applied to the
dual Brownian net AV, there exists a # € N(R x {U such that 7(t) = x.
Thus WL (2) # 0 and Ny (2) # 0, which by Lemma 6.7 a.s. does not occur if
t is deterministic. [

We now start preparing for the proof of Proposition 6.14] in earnest. The
proof will be based on a density argument, that uses a sort of “approximate
relevant separation points. Fix deterministic S,U € R with S < U, and let
(Ys+)e>s and (Yyt)i<y be defined by

Yop={r(t):meN, o, =8} (t>89),
Vog={#(t): 7 €N, = =U}  (t<U).

Let s,u € R be deterministic times such that S < s < u < U. By Lemmal6.8|
almost surely, for each v € Yg there exist 7' € W] (v, s) and 7" € WE (v, 5).
Using notation first introduced in Exercise 4.30] we let

It

rt
T(v,5)

and o)
denote the unique paths in W!(v,s) and W'(v,s) that are continuations
of each path in W/ (v,s) or in WE (v, s), respectively. Similarly, for each

Yy < YU7u7 we let
A1

rl
T(yu)

and 7T(y7 )
denote the unique paths in Wl(y, u) and W*(y, u) that are continuations of
cach path in WL (y,u) or in ]/VAr (y,u), respectively. We claim that almost
surely, for all v € Y5, and y € Yy, the following statements are equivalent:

(i) }15)<y<77(T) and (i) (¢)<v<ﬁ%)

By the symmetry between the forward and dual Brownian net, it suffices to
prove the implication (i)=-(ii), and by the symmetry between left and right
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it suffices to prove that y < WEZ ;) implies fr(ri » < v. But this follows from the

fact that forward and dual right paths do not cross, and (by Theorem ,
points with both an incoming forward and dual right path do not occur at
deterministic times.

The considerations above motivate us to define, for each deterministic
S, UeRand s,u e Rwith S < s <u<U,

Qsu(s,u):= {(v,y) cv€VYsy, yE )A/Um 7'('2)75) <y < sz,’s)}a
= {(v,y) cv€VYsy, yE )A/Um frgu) <v< ﬁ}tu)}

When s and u are close together, we can view elements of Qgy(s,u) as
“approximate (S, U)-relevant separation points”. This idea will be made
more precise in the proof of Proposition We first prove the following
lemma.

Lemma 6.16 (Approximate separation points) Let S,U € R and s,u €
R satisfy S < s <u < U, and let a,b € R satisfy a < b. Then

E[[{(v,y) € Qsu(s,u) : v € [a,b]}] (6.20)

=2(u—s)(b—a)¥(s— )V U — u). '
where VU(t) denotes the density of the branching-coalescing point set, defined
in ([6.9), and we use the convention ¥(oco) := 2.

Proof By Lemma , the sets Yy and }A/U,u are independent of each other
and of the restriction of A to the time interval [s,u]. By Propositions

and [6.9]
E[|Vs,s N [a,b]|] = (b—a)¥(s — 9).

Now if we condition on Yg, then under the conditional law, for each v €
Ys.s, the sets W!(v, s) and W' (v, s) almost surely contain unique paths W%w)
and Tly.5)> and these are distributed as the solution to left-right equation

(5.16]) started from (v, v). In particular, individually, they are just Brownian
motions with drift —1 and +1, so

E[vavs)(u) — W%v’s) (u) ‘ Ys,s} =2(u — s).

Finally, if we condition both on Yss and the restriction of A to the time
interval [a, b], then for each v € Yy, under the conditional law, the random

variable {)A/Uu N [7‘(‘%1}75) (u), 7

) T 0,5) (U)H has expectation

(qu,s) (u) — 7-[.%1)75) (U))‘I’(U —u).



170 CHAPTER 6. PROPERTIES OF THE BROWNIAN NET

Putting everything together, we arrive at (/6.20]). |

Proof of Proposition We will prove the claim under the additional
assumption that S,U € R. The more general claim then follows since for
S" < S < U < U’ we have that {(z,t) € Reyr : S <t < U} is a subset of
Rsy. For each n > 1, we choose S' = s < --- < s = U in such a way that

sup {|sf,; —s!'|:0<i<n—1} — 0, (6.21)

n—o0

and we define

Rgpy = {(U,y,i) 0<i<n—1, (v,y) € QS,U(S?,S?H)}.

We define a relation ~ between Rgy and R as follows. By definition,
elements (z,t) € Rsy and (v,y,i) € Rgy satisfy (z,t) ~ (v,y,4) if s} <
t < 57, and there exist 7 € N(R x {S}) and 7 € N(R x {U}) such that

n(s}) =wv, w(t) = o =7(t), and y = 7(s},,). We claim that for each n,

V(z,t) € Rsp 3(v,3.1) € Riy st (a,6) ~ (v,y,0).  (6.22)

To prove this, fix 2 = (z,t) € Rsy and choose 7',7%, and 7 are as in

points (i) and (ii) of the definition of an (S, U)-relevant separation point.
By Lemma applied to the dual Brownian net N, there exists a dual path
# € N with 7» = U such that 7' < # < 7 on [t,U]. We fix such a dual
path 7. By Lemma [6.15] at deterministic times there a.s. are no separation
points. Therefore, for each n, there is a unique 0 < 7 < n — 1 such that
sp <t < s Set s:= s and u := s},;. We claim that setting v := 7(s)
and y := 7(u), we have that (v,y) € Qsu(s,u) and hence (v,y,i) € Rg,;.
Clearly v € Y5 and y € SA/U,U, so it remains to prove that

1 r
7'('(175) (u) <y< 7T(278)(S).

To see this, we observe that 71%178) < 7 on [s,00) and hence 71%175) (t) < 7(t) =
ml(t). Since left paths cannot cross each other and coalesce if they meet at any
time after their starting times (Lemma, using the fact that 7! € W} (1),
we see that W}Z ou) < ml(u). We already saw that 7'(u) < #(u) = y, and
since u is deteﬁninistic, this inequality must be strict by Lemma [6.7] This
proves that W};s) (u) < y. A similar argument applies to ﬂ{j}’s). This completes
the proof that (v,y) € Qsu(s!, s,). The fact that (z,t) ~ (v,y,1) is
immediate from the definition of (v,y,1), so is proved.

Fix a,b,s,u € R with a < band S < s <wu < U. Let O denote the open
set

O = (a,b) x (s,u).
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We claim that

|RsyNO| < lirginf [{(v,y,1) € Ry : (v,s) € O}, (6.23)

where we allow for the case that both sides of the inequality are infinite. To
see this, let A be any finite subset of RgyNO. By , for each (z,t) € A
and for each n, we can choose (vp, Yn,in) € Rgy such that (2,t) ~ (Un, Yn, in).
Recall that the latter implies that s? < ¢ < s?,, and there exists a 7 € N
with 7(s?) = v, and 7(t) = . Using and the equicontinuity of NV, this
implies that (v,,4,) — (x,t) as n — oo. Since the set O is open, it follows
that (v, i,) € O for all n large enough. Thus,

liminf |{(v,y,1) € Rgy i (v,s7) € O}! > |A

n—oo

for each finite subset A of Rsy N O, which implies (6.23)).
By Fatou’s lemma, (6.23)) implies that

E[|Rsy N OJ] < liﬂngH{(v,y,i) € RSy (v, s) € O}].

Using Lemma |6.16| and Riemann sum approximation of the integral, we see
that

lim E[[{(v,y,1) € R&y : (v,s7) € O}|] =2(b—a) /U\Il(t — S)U(U — t)dt.

n—0o0

This proves
E[|Rsu N ((a,b) x (s,u))]] <2(b— a) /u U(t — S)U(U —t)dt  (6.24)

for all a < b and S < s < u < U. By monotone convergence, we can relax
the conditions S < s <u < U to S < s <wu <U. We observe that by
we have that W(t) ~ ct~'/2 as t — 0 for some ¢ > 0, so

/U W(t — S)U(U — t)dt < oo,

Inserting this into our previous formula, we see that Rgy is a locally finite
subset of R?, as claimed. |

The following theorem says that the inequality in (6.24) is in fact an
equality.
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Theorem 6.17 (Density of relevant separation points) Assume that
S,s,u,U € R and a,b € R satisfy S < s <u < U and a < b. Let N be
a Brownian net and let Rgy be its set of (S, U)-relevant separation points.
Then

E[|Rsv N ([a,b] x [s,u])|] =2(b— a) /u U(t— S)U(U —t)dt, (6.25)

where V(t) denotes the density of the branching-coalescing point set, defined
in (6.9), and ¥(c0) := 2.

Proof (crude sketch) The first step of the proof is to show that
V(v,y,1) € Rgy Az, t) € Ry s.t. (x,t) ~ (v,y,1). (6.26)

Note that formulas and together say that the relation ~ is a
correspondence between Rgy and Rg; in the sense defined in Section .

To prove , fix deterministic S < s < u < U and let (v,y) €
Qsu(s,u). By the definition of Qg p (s, u), there exist 7 € N (R x {S}) and
7€ N(R x {U}) such that n(s) = v, #(u) = y, and W%I]’S)(u) <y< WELS)(U).
Since s is deterministic, Lemma tells us that there exist 7* € WE (v, s)
such that 7' < 7 < 7" on [s,00). Since s is deterministic, Theorem m
now tells us that (v, s) is of type (1,1) both in W' and W*, so we must have
71'};8) = 7! and W{IS) = 7" on [s,00). Since u is deterministic, Lemma [6.7|tells
us that 7'(u) # #(u) # 7 (u) a.s., so we must have 7'(u) < 7(u) < 7*(u).
By Lemma the existence of the path 7 implies that 7! < 7 on [u, U).
Together with the fact that 7'(s) = 7"(s), this allows us to define t € (s, u)
by

t=sup{t' € (s,U):7'(t) =7"()}.

Since 7' <7 < 7" on [s,00) and 7' < 7" on (¢, U), we see that z := (w(t),)
is an (S, U)-relevant separation point. Applying this to s = s} and u = s, |,
we obtain (6.26)).

With formula proved, we know that the relation ~ is a corre-
spondence between Rgy and R§;;. The remainder of the proof is rather
technical, so we only sketch the details. Let O := (a,b) x (s,u) and let

5u(0) = {(v,y,1) € Ry : (v,s7) € O}. The main idea is to show that for
large enough n the relation ~ is a bijection between Rgy N O and R (O).

Since ~ is a correspondence, for each (z,t) € Rgy, we can choose
(Uns Yn,in) € Ry such that (z,t) ~ (vn,¥n,in). Using the equicontinuity
of the Brownian net, one can show that this implies that (v,,s!') — (z,t).
Using this and the fact that O is open and Rg s is locally finite, it is not hard
to show that for large enough n, the relation ~ is a correspondence between
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RsyNO and Rg;(0), and each element of Rg;(O) corresponds to at most
one element of Rgy N O.

To see that conversely, for large enough n, each element of Rgy N O
corresponds to at most one element of Rj§;(O), one can use that the sets
Qsv(s,u) are unlikely to contain two points (v,y) and (v,y") for which v
and v’ lie very close to each other. In the proof of [SSS09, Prop. 2.9], this is
done by showing that one can change the definition of Qg (s, u) so that it
does not contain such points without changing the density in by much.
This part of the proof is a bit technical.

After showing that for large enough n the relation ~ is a bijection between
Rsy MO and R ;;(0), one obtains in particular that

|Rs,y N O| > limsup |R%;(0)].
n—oo

The idea is now to take expectations on both sides and apply Lemma [6.16
to obtain a matching upper bound for (6.24). To justify interchanging the
limit superior and the expectation, one still needs to do some technical work.
Since we will never actually use Theorem [6.17]but be satisfied with the weaker
Proposition [6.14] we refer to [SSS09, Prop. 2.9] for the details. |

6.6 Structure of separation points

We recall from Section that points z € R? are distinguished into dif-
ferent types according to the local structure of the Brownian web at these
points. For a left-right Brownian web (W!, W), one can wonder what com-
binations of types in W' and W" are possible. This question has completely
been answered in [SSS09]. The main result of that paper is summarised in
Figure [6.5]

In this section, we will only be interested in separation points. The fol-
lowing proposition identifies their position in the table Figure [6.5 Indeed,
they are precisely the points that are these are of type (1,2); in W' and of
type (1,2), in W".

Proposition 6.18 (Structure of separation points) Let N be a Brown-
ian net, let W', W") be its associated left-right Brownian web, let (W', W) be
their associated dual Brownian webs, and let N be the associated dual Brow-
nian net. Then almost surely, for all (z,t) € R?, the following statements
are equivalent.

(i) (z,t) is a separation point of the Brownian net N,
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Wr
(0’1) (171) (072) (1a2)1 (172)1“ (271) (073)
01 X | X | X | X
1,1 | X | X X
0,2) | X X | X
wh (1,2), X X
1,2, X | X | X X
2.1) X
(0,3) X

Figure 6.5: Possible combinations of types of points in W' and W"*.

(ii) (z,t) is a separation point of the dual Brownian net N,
(iii) (z,t) is of type (1,2); in W' and of type (1,2), in W*.

(iv) There exist ™ € W' and 7' € W' with o < t < Ta such that 7° < 7'
on (o, t] and 7t < 7 on [t, T4

Proof We start by proving the implication (iv)=-(i). Let (z,t) be as in
point (iv). Choose S,U € Q such that o+ < S <t < Utu]. By Proposi-
tion [6.14] for each S,U € Q, the set of (S, U)-relevant separation points is
locally finite, so there must exist an s € (5,t) such that the set {(w(s'),s') :
s < &' <t} contains no (S, U)-relevant separation points.

Choose u € (s,t)NQ. By Lemmal6.8] there exists a path 7}, € W (7" (u), u)
such that 7! < 77 on [u, 00). Let

T=sup{t' € [u,U]:7'(t) =7"(t)}.

Since left paths and dual left paths do not cross, we must have 7' < 7.
By Lemma [6.7, at deterministic times, there are no points with both and
incoming forward and dual path, so we must have 7!(U) < #(U). It follows
that 7' < 7% on (¢, U], since otherwise they would create a wedge that is
entered by 7. This shows that 7 < ¢t. On the other hand, we cannot have
7 < t since that would contradict our assumption that {(7(s'),s’) : s < s’ <
t} contains no (S, U)-relevant separation points. We conclude that 7' and 7*
separate in (z,1).

We next prove the implication (i)=-(iii). Assume that z = (z,t) is a sep-
aration point of the Brownian net N'. Then, by the definition of a separation
point, there exist 7! € W (2) and 7* € WE () such that 7! < 7% on (s, U]
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for some U > s. There must exist S € Q satisfying o1 < .S < s. By Propo-
sition , for each such S, the set of (S, U)-relevant separation points is lo-
cally finite, so there must exist a u > s such that the set {(7(¢),t) : s <t < u}
contains no (S, U)-relevant separation points.

Choose t, € QN (t,u) with ¢, — ¢. By Lemma [6.8] for each n, there
exists a path 7%, € WE (7'(t,),t,) such that 7! < 7% on [t,,00). For each n,
there must be some time u, € [u,U] such that '(u,) = 7% (u,), for if that
would not be the case, then setting

Ti=sup{t € [s,u): 7' (t) = mh(t)},

we would have that (7(7),7) is an (S, U)-relevant separation point with
s < T < wu, which contradicts our choice of u. Letting n — oo, using
the compactness of W* to select a convergent subsequence, we see that there
must exist a path #* € WE (2) such that 7' < 7" on [s,00) and 7!(t) = 7"(t)
for some ¢ € [u,U]. In particular, this implies that 7" < 7 on (s, u], since
otherwise 7" would by Lemma have to coalesce with 7" which would
contradict the fact that 7' < 7% on (s, U].

This shows that WW"(z) contains apart from the path 7" € W}, (z) another
path 7" that lies on the left of 7*. By Theorem [4.17] it follows that z is of
type (1,2), in W*. By symmetry, the same argument shows that z is of type
(1,2); in WL By Lemma and the fact that forward paths in a Brownian
web cannot cross dual paths, it follows that z is of type (1,2); in W' and of
type (1,2), in W

We next prove the implication (iii)=(iv). Assume that z = (x,t) is of
type (1,2); in W' and of type (1,2), in W'. Let 7 € WE (2) and 7' € WL (2).
Since right forward paths cannot cross left dual paths from right to left, one
of the following three statements must be true.

[ There exists a u € (t, 7] such that 7* < 7' on [0, ul.
I There exists a s € [0, t) such that 7' < 77 on [s, 7:1].
I 7* < 7l on [0, t] and 7' < 7% on [t, T4].

We will rule out I and II, which leaves III as the only remaining possibility.
By Lemma forward and dual paths in the Brownian net spend zero
Lebesgue time together, so if I holds, then there must exist a dense set
of times ¢ € [0, u] such that 77(¢) < #l(#'). This allows us to choose
(2/,t') € R? with t < ¢/ < wand 7°(t)) < z < #\(t'). Let 7% € Wr(z/, ).
Then 7* is contained between 7*(#') and 7!(#') and hence must pass through
(z,t). However, this implies that (z,t) is of type (1,2); in W*, contradicting
our assumption.
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To also rule out II, we use arguments similar to those we have already
seen. Since dual right paths cannot cross forward left paths from left to
right, using the compactness of W*, we see that there must exist a path
71 € Wr(x,t) such that 77 < 7' on [0, ¢]. Similarly, there must exist a path
7L € Wr(x,t) such that 7' < #% on [0+, ¢]. Now if II holds, then using the
local finiteness of relevant separation points, we see that there must exist a
third path 7§ € W*(z,t) that does not separate from the path #' € W} (x, t)
on some interval [s,t] of positive length. By Theorem the existence
of such a third path contradicts the existence of an incoming right path at
(x,t).

We have now proved (iv)=-(i)=-(iii)=-(iv), showing that all these condi-
tions are equivalent. By Theorem condition (iii) is equivalent to (x,t)
being of type (1,2); in W' and of type (1,2), in W, which by what we have
already proved is equivalent to (ii). |
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", [54 Brownian local time,
I+, |86 Brownian net, [139]
Il ... 165 Brownian web,
T}, 1T, |78 double, [74]
U(t),[151 dual, [68]
7%, 168 with drift,
w (arrow configuration), 53|
w (graphical representation), cadlag function, 49
& (dual arrow configuration), [67] [[14] cadlag path, [9
@ (dual graphical representation), Cauchy sequence,
Wwh w113 closed
ohor, (114 set, 22]
W', closure,
w, cluster point,
7., [61] coalescing
rl, wt, [133 Brownian motions,
7,75, 18 point set, [83]
7o, 7+, [104 random walks,
ﬂ}[s a 09 coming down from infinity,
7T(t—7|—), T(t—), compact cont:;ilinmeilt, 43
T compact topological space,
;Zri compactification,
7(my, m2), [T} onejpoint, 29
7, 0] compatible
T(#1, ), partial order with topology,
0., complete metric space,
completion,
annihilating continuum voter model,
random walks, biased,
arrow configuration, correspondence,
dual, [67] monotone, [50]

Arzela-Ascoli theorem,
dense set,

backbone of the Brownian net, diffusive scaling, [50]

basis of topology, Donsker’s invariance principle,

biased voter model double Brownian web, [74]
continuum, [T49) downward

Bolzano-Weierstrass theorem, Brownian motion,

Borel-o-field, path, [67]

branching-coalescing dual

point set, [149] Brownian net, [I4§]
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Brownian web,
stochastic flow,
duality

of arrow configurations, [67]

of Brownian web,

of coalescing random walks, [67]
(S

of continuum voter model,
149

of voter model,

endpoint,

equicontinuity, 3], [120]
Skorohod,

even sublattice,

Feller semigroup, [7]

final time,

first countable,

fish trap argument,

flow

Arratia, [105]
stochastic, [0}

fundamental system
of neighbourhoods,

generalised inverse, [105
generator, [7]
graphical representation, [J|

Hausdorff
metric, 30]

property, [2]]
topological space,
topology,

hopping construction,

independent increments, [L06
induced
metric, 23]

topology,
interior, 22]

INDEX

inverse, generalised,

left
Brownian web,
open path,

left-right
Brownian web,
coalescing Brownian motions, [135
equation, [12§|

local time, Brownian,

locally

compact, 25
uniform convergence,

locally finite set,

metric, [23]
space, [23]
metrisable topology,
modulus of continuity,
Skorohod,
monotone real function, |105

nearest-neighbour
kernel,
voter model,
neighbourhood,

occupation local measure,
odd sublattice,
one-point
compactification,
open downward path,
open path,
in an arrow configuration,
open set, [2]]
open upward path,

path

downward, [67}
in path space,

upward,

point of continuity
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of modified reflection map, [I65]  starting point, [I5] [6§]

Polish space, sticky reflection, [116
Potts model, equation, [T16]
precompactness, [24] stochastic flow, [6]
Prohorov metric, dual,
Prohorov’s theorem, subsequence,
supremumnorm, [26]

reflected

Brownian motion, Tanaka’s formula,

left path in Brownian net, tightness,

path in Brownian web, topological space,
reflection principle, topology,
restriction total boundedness,

of a Brownian net, type

of a Brownian web, of point in Brownian web,

. of a path, voter model,

right

continuum, [83]

Brownian web, nearest-neighbour,

open path,

running minimum, 89 weak convergence,
wedge,

second countable, [22] construction, [[37} [[39]

separable

topological space,
separation point, [167]

relevant,
skeleton of the Brownian web,

Skorohod
equicontinuity, [51]
modulus of continuity,
reflection,
equation, [89
representation theorem,
topology,
special points, [97]
of Brownian net, [174]
of Brownian web,
squeezed space,
starting
point, [54]
time,
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