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Abstract

This survey article gives an elementary introduction to the algebraic
approach to Markov process duality, as opposed to the pathwise ap-
proach. In the algebraic approach, a Markov generator is written as
the sum of products of simpler operators, which each have a dual with
respect to some duality function. We discuss at length the recent sug-
gestion by Giardinà, Redig, and others, that it may be a good idea
to choose these simpler operators in such a way that they form an
irreducible representation of some known Lie algebra. In particular,
we collect the necessary background on representations of Lie algebras
that is crucial for this approach. We also discuss older work by Lloyd
and Sudbury on duality functions of product form and the relation
between intertwining and duality.
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1 Introduction

1.1 Outline

The aim of the present text is to give an introduction to the algebraic ap-
proach to the theory of duality of Markov processes. In particular, we present
some of the pioneering work done by Lloyd and Sudbury [LS95, LS97, Sud00]
and spend a lot of time explaining the more recent work of Giardinà, Redig,
and others [GKRV09, CGGR15]. The algebraic approach differs fundamen-
tally from the pathwise approach propagated in e.g., [JK14, SS16]. In prin-
ciple, the algebraic approach is able to find a wider class of dualities, but the
price we pay for this is that it may suggest dual operators that turn out not
to be Markov generators.

In the remainder of this section, we quickly introduce the basic ideas
behind the algebraic approach. In Subsection 1.2, we explain how Markov
process duality can algebraically be viewed as an intertwining relation be-
tween the generator of one Markov process and the adjoint of the generator
of another Markov process. As explained in Subsection 1.3, it is then natural
to view a Markov generator as being built up out of sums and products of
other, simpler operators. If all these building blocks have duals with respect
to a duality function, then so has the original Markov generator.

A central idea of of Giardinà, Redig, et al. [GKRV09, CGGR15] is to
choose these building blocks so that they form a representation of a Lie
algebra. To understand why that may be a good idea, one needs quite a bit
of background on Lie algebras. Since probabilists may not be familiar with
this, after a small detour to pathwise duality in Subsection 1.4, we devote all
of Section 2 to providing this background.

The study of Lie algebras and their representations is a huge subject with
a venerable history. Although there exist good introductory texts, we will
need some theory that is considered too advanced for the usual textbooks. In
particular, this refers to the representation theory of non-compact Lie groups
like SU(1,1) or the Heisenberg group. In order to squeeze the essential facts
that we need for our purposes into little over 10 pages, we had to cut some
corners and in some cases resign on full mathematical rigour. We also leave
out a lot of background material (e.g., Lie groups, as opposed to Lie algebras,
stay almost completely out of the picture). To partly compensate for this,
we have added Appendix A which gives a somewhat more complete, but still
sketchy picture.

After our little excursion into Lie algebras, in Section 3, we come to
the core of our text. In Subsections 3.1, 3.3, and 3.4 we demonstrate the
approach via Lie algebras on three examples, which are based on representa-
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tion theory for the Heisenberg algebra, SU(2), and SU(1,1), respectively. In
Subsection 3.1, we formulate a general principle and apply it to discover a
self-duality of the Wright-Fisher diffusion from (1.8). After Subsection 3.2,
which is needed to deal with infinite state spaces, in Subsection 3.3, we use
the well-known representation theory of SU(2) to derive a duality for the
symmetric exclusion process. This duality is not very interesting on its own,
but serves as a preparation for the symmetric inclusion process in Section 3.4
which turns out to be very similar to the former, except that SU(2) is replaced
by SU(1,1).

In Sections 3.5–3.7 we present results of Lloyd and Sudbury [LS95, LS97,
Sud00] that do not require knowledge of Lie algebras, but do use some facts
about tensor products from Section 2.6. In particular, in Section 3.5 we
discuss duality functions of product form, including q-duality, while in Sec-
tion 3.6 we discuss intertwining of Markov processes, and in particular thin-
ning relations which are closely connected to q-duality.

In Sections 3.8 and 3.9, finally, we discuss another observation from
[GKRV09], who show that nontrivial dualities can sometimes be found by
starting from a “trivial” duality which is based on reversibility, and then
using a symmetry of the model to transform such a duality into a nontrivial
one. Although Lie algebras are not strictly needed in this approach, writing
generators in terms of the basis elements of a representation of a Lie algebra
can help finding suitable symmetries.

1.2 Markov duality and intertwining

In Section 1, for technical simplicity, we mostly restrict ourselves to Markov
processes with finite state spaces. As we will see in Section 3, many of the
basic ideas discussed here can with some care be made to work also in infinite
dimensional settings. How to do this is in part discussed in Section 3.2, but
for brevity, we will not always go into the technical details and sometimes
use the calculations of the present section merely as an inspiration.

The generator of a continuous-time Markov process with finite state space
Ω is a matrix L such that

L(x, y) ≥ 0 (x 6= y) and
∑
y

L(x, y) = 0. (1.1)

Equivalently, we can identify L with the linear operator L : RΩ → RΩ defined
by

Lf(x) :=
∑
y∈Ω

L(x, y)f(y) (x ∈ Ω). (1.2)
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A linear operator L : RΩ → RΩ is a Markov generator (i.e., satisfies (1.1)) if
and only if the semigroup1 of operators (Pt)t≥0 defined by

Pt := etL =
∞∑
n=0

1

n!
tnLn

is a Markov semigroup, i.e., Pt is a probability kernel for each t ≥ 0. If L is
a Markov generator, then (Pt)t≥0 are the transition kernels of some Ω-valued
Markov process (Xt)t≥0.

Let Ω and Ω̂ be finite sets. We can view a function D : Ω× Ω̂→ R as a
matrix

(D(x, y))x∈Ω, y∈Ω̂

that as in (1.2) corresponds to a linear operator D : RΩ̂ → RΩ.
Let L and L̂ be generators of Markov processes (Xt)t≥0 and (Yt)t≥0 with

state spaces Ω and Ω̂ and semigroups (Pt)t≥0 and (P̂t)t≥0, and let D : Ω×Ω̂→
R be a function. We make the following simple observation. Below, we let
A†(x, y) := A(y, x) (or A†(x, y) := A(y, x) for matrices over the complex
numbers) denote the adjoint of a matrix A.2

Lemma 1 (Duality) The following conditions are equivalent.

(i) LD = DL̂†,

(ii) PtD = DP̂ †t for all t ≥ 0,

(iii) Ex[D(Xt, y)] = Ey[D(x, Yt)] for all x ∈ Ω, y ∈ Ω̂, and t ≥ 0.

Proof If (i) holds for L, then it also holds for any linear combination of
powers of L. In particular, filling in the definition of Pt, we see that (i)
implies (ii). Conversely, differentiating with respect to t, we see that (ii)
implies (i). Condition (iii) is just a rewrite of (ii).

If the conditions of Lemma 1 are satisfied, then we say that (Xt)t≥0 and

(Yt)t≥0 are dual with duality function D. If L = L̂, then we speak of self-
duality. Condition (i) can also be written as

LD( · , y)(x) = L̂D(x, · )(y) (x ∈ Ω, y ∈ Ω̂). (1.3)

Under suitable assumptions, the equivalence of (iii) and (1.3) can often also
be established for Markov processes with infinite state space.

1The semigroup property says that P0 = I and PsPt = Ps+t.
2In other words, 〈A†f |g〉 := 〈f |Ag〉 where 〈f |g〉 :=

∑
x∈Ω f(x)g(x) denotes the usual

inner product on CΩ. For adjoints with respect to a general inner product on finite or
infinite dimensional spaces we write A∗.
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An algebraic relation of the form AB = BC is called an intertwining
relation between operatorsA and C. The operatorB is called the intertwiner.
Thus, Lemma 1 says that two Markov processes are dual if and only if there
exists an intertwiner between the generator of one Markov process, and the
adjoint of the generator of another Markov process. Note that if L is dual
to L̂ with duality function D, then L̂ is dual to L with duality function D†.
Thus, duality is a symmetric concept.

Closely related to Markov process duality is the concept of intertwining
of Markov processes, which has a more narrow meaning than the algebraic
concept of intertwining. Let, again, L and L̂ be generators of Markov pro-
cesses (Xt)t≥0 and (Yt)t≥0 with state spaces Ω and Ω̂ and semigroups (Pt)t≥0

and (P̂t)t≥0. Let K : Ω× Ω̂→ R be a function. In what follows, we assume
that K is a probability kernel, i.e., K(x, y) ≥ 0 ∀x, y and

∑
yK(x, y) = 1 for

each x.

Lemma 2 (Intertwining of Markov processes) The the following con-
ditions are equivalent.

(i) LK = KL̂.

(ii) PtK = KP̂t (t ≥ 0).

(iii) µ0K = ν0 implies µ0PtK = ν0P̂t (t ≥ 0).

Proof The equivalence of (i) and (ii) follows by the same argument as in
Lemma 1. Condition (ii) implies µ0PtK = (µ0K)P̂t (t ≥ 0). Setting µ0 = δx
we see that (iii) implies (ii).

In condition (iii), note that µ0Pt and ν0P̂t describe the laws at time t of
the Markov processes (Xt)t≥0 and (Yt)t≥0 started in initial laws µ0 and ν0,
respectively. If the conditions of Lemma 2 are satisfied, then we say that the
Markov processes (Xt)t≥0 and (Yt)t≥0 are intertwined.

If K is invertible as a matrix, then LK = KL̂ implies L̂K−1 = K−1L;
however, K−1 will in general not be a probability kernel. In view of this,
in an intertwining relation between Markov processes, the two processes do
not play symmetric roles. To stress the different roles of X and Y , following
[Swa13], it is convenient to say that Y is an intertwined Markov process on
top of X.

If the conditions of Lemma 2 are satisfied, then the Markov processes X
and Y can actually be coupled such that (Xt, Yt)t≥0 is a Markov process and

P[Yt ∈ · |(Xs)0≤s≤t] = K(Xs, · ) a.s. (t ≥ 0),

see [Fil92, Swa13]. Note that this strengthens condition (iii) of Lemma 2.
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1.3 The algebraic approach

We make the following simple observation. Below, RΩ denotes the space of
all functions f : Ω→ R.

Lemma 3 (Duality of building blocks) Let Ω, Ω̂ be finite spaces and let

Ai : RΩ → RΩ, Bi : RΩ̂ → RΩ̂ (i = 1, 2), and D : RΩ̂ → RΩ be linear
operators such that

AiD = DB†i (i = 1, 2). (1.4)

Then

(r1A1 + r2A2)D = D(r1B1 + r2B2)† and (A1A2)D = D(B2B1)†. (1.5)

Lemma 3 implies that if we can write a Markov generator L as a linear
combination of products of “simpler” operators Ai, for example, (denoting
the identity operator by I),

L = r∅I + r1A1 + r23A2A3 + r113A
2
1A3, (1.6)

and these “building blocks” satisfy AiD = DB†i for some duality function D,
the L will be dual to the operator

L̂ = r∅I + r1B1 + r23B3B2 + r113B3B
2
1 . (1.7)

Note that in each term, we have not only replaced Ai by Bi but also reversed
the order of the factors. If we are lucky, L̂ is a Markov generator and we
have discovered a Markov duality.

We demonstrate this approach on the Wright-Fisher diffusion with selec-
tion parameter s ∈ R, which is the diffusion in [0, 1] with generator

Lf(x) = x(1− x) ∂2

∂x2
+ sx(1− x) ∂

∂x
. (1.8)

We are immediately cheating here, since L is not a linear operator acting on
a finite dimensional space. Ignoring the difficulties associated with infinite
dimension, we can write L in terms of simpler “building blocks” as follows.
We set

A−f(x) := (1− x)f(x) and A+f(x) := ∂
∂x
f(x), (1.9)

and we write L in terms of these building blocks as

L = A−(I − A−)A+(sI + A+). (1.10)

As our dual space, we choose N = {0, 1, . . .} and as our duality function we
choose the function D : [0, 1]× N→ R given by

D(x, n) := (1− x)n (x ∈ [0, 1], n ∈ N). (1.11)
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Let B± be operators acting on functions f : N→ R as

B−f(n) := f(n+ 1) and B+f(n) := −nf(n− 1). (1.12)

Then B± are dual to A± in the sense of (1.3), i.e.,

A±D( · , n)(x) = B±D(x, · )(n) (x ∈ [0, 1], n ∈ N). (1.13)

Therefore, in view of Lemma 3, the following operator should be dual to L:

L̂ = (sI +B+)B+(I −B−)B−. (1.14)

(Note that we have replaced A± by B± and reversed the order of the factors.)
A little calculation reveals that

L̂f(n) = n(n− 1)
{
f(n− 1)− f(n)}+ sn

{
f(n+ 1)− f(n)

}
. (1.15)

This is not, in general, a Markov generator. For s ≥ 0, however, it is the
generator of a Markov process in N that jumps from n to n − 1 with rate
n(n− 1) and from n to n+ 1 with rate sn.

Recall that the commutator of two operators A,B is defined as [A,B] :=
AB −BA. For our operators A±, it is easy to check that

[A−, A+] = I. (1.16)

This is similar to the commutation relation between the position and momen-
tum operators in quantum physics. Indeed, the operators A± can be used to
define a representation of the Heisenberg algebra, which is a particular Lie
algebra. The connection to Lie algebras can help us to choose good building
blocks and can sometimes also suggest duality functions. To explain this,
we need some theory about representations of Lie algebras, which will be
presented in the next section.

1.4 The pathwise approach

In the remainder of this section, we point out some differences and similarities
between the algebraic and pathwise approaches to Markov process duality. A
random mapping representation of a probability kernel K is a random map
M such that

K(x, dy) = P[M(x) ∈ dy]. (1.17)

A stochastic flow is a collection (Xs,u)s≤u of random maps Xs,u : Ω→ Ω such
that Xs,s = I and Xt,u ◦Xs,t = Xs,u. We say that (Xs,u)s≤u has independent
increments if

Xt1,t2 , . . . ,Xtn−1,tn (1.18)
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are independent for any t1 < · · · < tn. If (Xs,u)s≤u is a stochastic flow
with independent increments such that the law of Xs,u depends only on the
difference u − s, and X0 is an independent Ω-valued random variable, then
setting

Xt := X0,t(X0) (t ≥ 0) (1.19)

defines a Markov process with transition kernels

Pu−s(x, dy) := P[Xs,u(x) ∈ dy] (s ≤ u). (1.20)

Note that this formula says that Xs,u is a random mapping representation of
Pu−s.

Markov processes can often be constructed from stochastic flows. For
example, if a stochastic differential equation has unique strong solutions,
then these solutions (for different initial states) define a stochastic flow with
independent increments that can be used to construct a diffusion process. If
L is the generator of a Markov process with finite state space Ω, then L can
always be written in the form

Lf(x) =
∑
m∈G

rm
{
f
(
m(x)

)
− f

(
x
)}
, (1.21)

where G is a finite collection of maps m : Ω → Ω. We say that two maps
m, m̂ are dual with respect to a duality function D if

D
(
m(x), y

)
= D

(
x, m̂(y)

)
(x ∈ Ω, y ∈ Ω̂). (1.22)

Two stochastic flows (Xs,u)s≤u and (Ys,u)s≤u are dual3 if for each s ≤ u, a.s.,
Y−u,−s is dual to Xs,u. If two stochastic flows are dual, then we say that
their associated Markov processes are pathwise dual. It is easy to see that
this implies Markov process duality.

We recall that in the algebraic approach, there may be many ways in
which a given Markov generator can be written in terms of more elementary
“building blocks” as in (1.6). Similarly, in the pathwise approach, there are
usually many different ways in which a Markov generator can be written in
terms of maps as in (1.21). In the algebraic approach we have seen that
if all building blocks have duals with respect to a given duality function,
then a Markov generator built up from these building blocks also has a dual
L̂. Similarly, in the pathwise approach, if all maps m occurring in (1.21)

3The definition of duality for stochastic flows that we give here is a weak one. It is
often natural to give a somewhat stronger definition, see [SS16].
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have duals m̂ with respect to some duality function D, then the process with
generator L is pathwise dual to the process with generator

L̂f(x) :=
∑
m∈G

rm
{
f
(
m̂(x)

)
− f

(
x
)}
. (1.23)

An advantage of the pathwise approach is that an operator L̂ of this form is
guaranteed to me a Markov generator. On the other hand, not all dualities
can be constructed as pathwise dualities, so the algebraic approach is more
general. Nevertheless, many known dualities, including the duality for the
Wright-Fisher diffusion discussed in the previous subsection, can be obtained
in a pathwise way or as limits of such pathwise dualities, see [Swa06, AH07].

There are more analogies between the algebraic and pathwise approaches.
In Subsection 3.8, we will see that in the algebraic approach, nontrivial du-
alities can sometimes be found by starting with a “trivial” duality obtained
from reversibility and then applying a symmetry transformation. In [SS16],
it is shown that nontrivial pathwise dualities can be found by starting with
a “trivial” duality to the inverse image map and then looking for invariant
subspaces of the dual process.

2 Representations of Lie algebras

2.1 Lie algebras

A complex4 (resp. real) Lie algebra is a finite-dimensional linear space g over
C (resp. R) together with a map [ · , · ] : g × g → g called Lie bracket such
that

(i) (x,y) 7→ [x,y] is bilinear,

(ii) [x,y] = −[y,x] (skew symmetry),

(iii) [x, [y, z]] + [y, [z,x]] + [z, [x,y]] = 0 (Jacobi identity).

An adjoint operation on a Lie algebra g is a map x 7→ x∗ such that

(i) x 7→ x∗ is conjugate linear,

(ii) (x∗)∗ = x,

4In this section, we mostly focus on complex Lie algebras. Some results stated in the
present section (in particular, part (b) of Schur’s lemma) are true for complex Lie algebras
only. See Appendix A for a more detailed discussion.
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(iii) [x∗,y∗] = [y,x]∗.

If g is a complex Lie algebra, then the space of its skew symmetric elements
h := {x ∈ g : x∗ = −x} forms a real Lie algebra. Conversely, starting from a
real Lie algebra h, we can always find a complex Lie algebra g equipped with
a adjoint operation such that h is the space of skew symmetric elements of
g. Then g is called the complexification of h.

If {x1, . . . ,xn} is a basis for g, then the Lie bracket on g is uniquely
characterized by the commutation relations

[xi,xj] =
n∑
k=1

cijkxk (i < j).

The constants cijk are called the structure constants. If g is equipped with
an adjoint operation, then the latter is uniquely characterized by the adjoint
relations

x∗i =
∑
j

dijxj.

Example Let V be a finite dimensional complex linear space, let L(V ) denote
the space of all linear operators A : V → V , and let tr(A) denote the trace
of an operator A. Then

g := {A ∈ L(V ) : tr(A) = 0} with [A,B] := AB −BA

is a Lie algebra. Note that tr([A,B]) = tr(AB) − tr(BA) = 0 by the basic
property of the trace, which shows that [A,B] ∈ g for all A,B ∈ g. Note also
that g is in general not an algebra, i.e., A,B ∈ g does not imply AB ∈ g. If
V is equipped with an inner product 〈 · | · 〉 (which we always take conjugate
linear in its first argument and linear in its second argument) and A∗ denotes
the adjoint of A with respect to this inner product, i.e.,

〈A∗v|w〉 := 〈v|Aw〉,

then one can check that A 7→ A∗ is an adjoint operation on g.

By definition, a Lie algebra homomorphism is a map φ : g→ h from one
Lie algebra into another that preserves the structure of the Lie algebra, i.e.,
φ is linear and

φ([A,B]) = [φ(A), φ(B)].

If φ is invertible, then its inverse is also a Lie algebra homomorphism. In
this case we call φ a Lie algebra isomorphism. We say that a Lie algebra
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homomorphism φ is unitary if it moreover preserves the structure of the
adjoint operation, i.e.,

φ(A∗) = φ(A)∗.

If g is a Lie algebra, then we can define a conjugate of g, which is a Lie
algebra g together with a conjugate linear bijection g 3 x 7→ x ∈ g such that

[x,y] = [y,x].

It is easy to see that such a conjugate Lie algebra is unique up to natural
isomorphisms, and that the g is naturally isomorphic to g. If g is equipped
with an adjoint operation, then we can define an adjoint operation on g by
x∗ := (x∗).

Example Let V be a complex linear space on which an inner product is
defined and let g ⊂ L(V ) be a linear subspace such that A,B ∈ g implies
[A,B] ∈ g. Then g is a sub-Lie-algebra of L(V ). Now g := {A∗ : A ∈ g},
together with the map A := A∗ is a realization of the conjugate Lie algebra
of g.

2.2 Representations

If V is a finite dimensional linear space, then the space L(V ) of linear oper-
ators A : V → V , equipped with the commutator

[A,B] := AB −BA

is a Lie algebra. By definition, a representation of a complex Lie algebra g is
a pair (V, π) where V is a complex linear space of dimension dim(V ) ≥ 1 and
π : g → L(V ) is a Lie algebra homomorphism. A representation is unitary
if this homomorphism is unitary and faithful if π is an isomorphism to its
image π(g) := {π(x) : x ∈ g}.

There is another way of looking at representations that is often useful. If
(V, π) is a representation, then we can define a map

g× V 3 (x, v) 7→ xv ∈ V

by xv := π(x)v. Such a map satisfies

(i) (x, v) 7→ Av is bilinear (i.e., linear in both arguments),

(ii) [x,y]v = x(yv)− y(xv).
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Any map with these properties is called a left action of g on V . It is easy
to see that if V is a complex linear space that is equipped with a left action
of g, then setting π(x)v := xv defines a Lie algebra homomorphism from g
to L(V ). Thus, we can view representations as linear spaces on which a left
action of g is defined.

Example For any Lie algebra, we may set V := g. Then, using the Jacobi
identity, one can verify that the map (x,y) 7→ [x,y] is a left action of g on
V . (See Lemma 15 in the appendix.) In this way, every Lie algebra can be
represented on itself. This representation is not always faithful, but for many
Lie algebras of interest, it is.

Yet another way to look at representations is in terms of commutation
relations. Let g be a Lie algebra with basis elements x1, . . . ,xn, which satisfy
the commutation relations

[xi,xj] =
n∑
k=1

cijkxk (i < j).

Let V be a complex linear space with dim(V ) ≥ 1 and let X1, . . . , Xn ∈ L(V )
satisfy

[Xi, Xj] =
n∑
k=1

cijkXk (i < j).

Then there exists a unique Lie algebra homomorphism π : g → L(V ) such
that π(xi) = Xi (i = 1, . . . , n). Thus, any collection of linear operators that
satisfies the commutation relations of g defines a representation of g. Such a
representation is faithful if and only if X1, . . . , Xn are linearly independent.
If g is equipped with an adjoint operation and V is equipped with an inner
product, then the representation (V, π) is unitary if and only if X1, . . . , Xn

satisfy the adjoint relations of g, i.e.,

x∗i =
∑
j

dijxj and X∗i =
∑
j

dijXj.

Let V be a representation of a Lie algebra g. By definition, an invariant
subspace of V is a linear subspace W ⊂ V such that xw ∈ W for all w ∈ W
and x ∈ g. A representation is irreducible if its only invariant subspaces are
W = {0} and W = V .

Let V,W be two representations of the same Lie algebra g. By definition,
an intertwiner of representations is a linear map φ : V → W that preserves
the structure of a representation, i.e.,

φ(xv) = xφ(v).

13



If φ is a bijection then its inverse is also an intertwiner. In this case we
call φ an isomorphism and say that the representations are equivalent (or
isomorphic).

The following result can be found in, e.g., [Hal03, Thm 4.29]. Below and
in what follows, we let I ∈ L(V ) denote the identity operator Iv := v.

Proposition 4 (Schur’s lemma)

(a) Let V and W be irreducible representations of the same Lie algebra
and let φ : V → W be an intertwiner. Then either φ = 0 or φ is an
isomorphism.

(b) Let V be an irreducible representation of a Lie algebra and let φ : V →
V be an intertwiner. Then φ = λI for some λ ∈ C.

For us, the following simple consequence of Schur’s lemma will be impor-
tant.

Corollary 5 (Unique intertwiner) Let (V, πV ) and (W,πW ) be equiva-
lent irreducible representations of some Lie algebra. Then there exists an
intertwiner φ : V → W that is unique up to a multiplicative constant, such
that

φπV (x) = πW (x)φ.

Proof By assumption, V and W are equivalent, so there exists an isomor-
phism φ : V → W . Assume that ψ : V → W is another intertwiner. Then
φ−1 ◦ψ is an intertwiner from V into itself, so by part (b) of Schur’s lemma,
φ−1 ◦ ψ = λI and hence ψ = λφ.

If V is a complex linear space, then we can define a conjugate of V , which
is a complex linear space V together with a conjugate linear bijection φ 7→ φ.

Example Let V be a complex linear space with inner product 〈 · | · 〉. Let V ′

denote the dual space of V , i.e., the space of all linear forms l : V → C. For
any v ∈ V , we can define a linear form 〈v| ∈ V ′ by 〈v|w := 〈v|w〉. Then V ′,
together with the map v 7→ 〈v|, is a realization of the conjugate of V .

If (V, π) is a representation of a Lie algebra g, then we can equip the
conjugate space V with the structure of a representation of the conjugate
Lie algebra g by putting

x v := xv.

It is easy to see that this defines a left action of g on V . We call V , equipped
with this left action of g, the conjugate of the representation V .

There is a close relation between Lie algebras and Lie groups. Roughly
speaking, a Lie group is a smooth differentiable manifold that is equipped
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with a group structure. In particular, a matrix Lie group G is a group whose
elements are invertible linear operators acting on some finite dimensional
linear space V . The Lie algebra of G is then defined as

h := {A ∈ L(V ) : etA ∈ G ∀t ≥ 0}.

In general, this is a real Lie algebra. More generally, one can associate a
Lie algebra to each Lie group (not necessarily a matrix Lie group) and prove
that each Lie algebra is the Lie algebra of some Lie group. Under a certain
condition (simple connectedness), the Lie algebra determines its associated
Lie group uniquely. A finite dimensional representation of a Lie group G is
a pair (V,Π) where V is a finite dimensional linear space and Π : G→ L(V )
is a group homomorphism. Each representation (V, π) of a real Lie algebra
h gives rise to a representation (V,Π) of the associated Lie group such that
Π(etA) = etπ(A). If g is the complexification of h and (V, π) is a unitary
representation of g, then (V,Π) is a unitary representation of G in the sense
that Π(A) is a unitary operator for each A ∈ G. All his is explained in more
detail in Appendix A.

2.3 The Lie algebra SU(2)

The Lie algebra su(2) is the three dimensional complex Lie algebra defined
by the commutation relations between its basis elements

[sx, sy] = 2isz, [sy, sz] = 2isx, [sz, sx] = 2isy. (2.1)

It is customary to equip su(2) with an adjoint operation that is defined by

s∗x = sx, s∗y = sy, s∗z = sz. (2.2)

A faithful unitary representation of su(2) is defined by the Pauli matrices

Sx :=

(
0 1
1 0

)
, Sy :=

(
0 −i
i 0

)
, and Sz :=

(
1 0
0 −1

)
. (2.3)

It is straightforward to check that these matrices are linearly independent and
satisfy the commutation and adjoint relations (2.1) and (2.2). In particular,
this shows that su(2) is well-defined.5

5Not every set of commutation relations that one can write down defines a bona fide Lie
algebra. By linearity and skew symmetry, specifying [xi,xj ] for all i < j uniquely defines
a bilinear map [ · , · ], but such a map may fail to satisfy the Jacobi identity. Similarly, it is
not a priori clear that (2.2) defines a bona fide adjoint operation, but the faithful unitary
representation defined by the Pauli matrices shows that it does.
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In general, if Sx, Sy, Sz are linear operators on some complex linear space
V that satisfy the commutation relations (2.1), and hence define a represen-
tation (V, π) of su(2), then the so-called Casimir operator is defined as

C := S2
x + S2

y + S2
z .

The operator C is in general not an element of {π(x) : x ∈ su(2)}, i.e., C does
not correspond to an element of the Lie algebra su(2). It does correspond,
however, to an element of the so-called universal enveloping algebra of su(2);
see Appendix A.4 below.

The finite-dimensional irreducible representations of su(2) are well un-
derstood. Part (a) of the following proposition follows from Theorem 22
in the appendix, using the compactness of the Lie group SU(2). Parts (b)
and (c), and also Proposition 7 below, follow from [Hal03, Thm 4.32] and a
calculation of the Casimir operator for the representation in Proposition 7.

Proposition 6 (Irreducible representations of su(2)) Let Sx, Sy, Sz be
linear operators on a finite dimensional complex linear space V , that satisfy
the commutation relations (2.1) and hence define a representation (V, π) of
su(2). Then:

(a) There exists an inner product 〈 · | · 〉 on V , which is unique up to a
multiplicative constant, such that with respect to this inner product the
representation (V, π) is unitary.

(b) If the representation (V, π) is irreducible, then there exists an integer
n ≥ 1, which we call the index of (V, π), such that the Casimir operator
C is given by C = n(n+ 2)I.

(c) Two irreducible representations V,W of su(2) are equivalent if and only
if they have the same index.

Proposition 6 says that the finite dimensional irreducible representations
of su(2), up to isomorphism, can be labeled by their index n, which is a natu-
ral number n ≥ 1. We next describe what an irreducible representation with
index n looks like. In spite of the beautiful symmetry of the commutation
relations (2.1), it will be useful to work with a different, less symmetric basis
{j−, j+, j0} defined as

j− := 1
2
(sx − isy), j+ := 1

2
(sx + isy), and j0 := 1

2
sz, (2.4)

which satisfies the commutation and adjoint relations:

[j0, j±] = ±j±, [j−, j+] = −2j0, (j−)∗ = j+, (j0)∗ = j0. (2.5)

The next proposition describes what an irreducible representation of su(2)
with index n looks like.
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Proposition 7 (Raising and lowering operators) Let V be a finite di-
mensional complex linear space that is equipped with an inner product and
let J±, J0 be linear operators on V that satisfy the commutation and adjoint
relations (2.5) and hence define a unitary representation (V, π) of su(2). As-
sume that (V, π) is irreducible and has index n. Then V has dimension n+ 1
and there exists an orthonormal basis

{φ(−n/2), φ(−n/2 + 1), . . . , φ(n/2)}

such that
J0φ(k) = kφ(k),

J−φ(k) =
√

(n/2− k + 1)(n/2 + k)φ(k − 1),

J+φ(k) =
√

(n/2− k)(n/2 + k + 1)φ(k + 1)

(2.6)

for k = −n/2,−n/2 + 1, . . . , n/2, with the conventions J−φ(−n/2) := 0 and
J+φ(n/2) := 0.

We see from (2.6) that φ(k) is an eigenvector of J0 with eigenvalue k,
and that the operators J± maps such an eigenvector into an eigenvector
with eigenvalue k ± 1, respectively. In view of this, J± are called raising
and lowering operators, or also creation and annihilation operators. It is
instructive to see how this property of J± follows rather easily from the
commutation relations (2.5). Indeed, if φ(k) is an eigenvector of J0 with
eigenvalue k, then the commutation relations imply that

J0J+φ(k) =
(
J+J0 + [J0, J+]

)
φ(k) =

(
J+J0 + J+

)
φ(k) = (k + 1)J+φ(k),

which shows that J+φ(k) is a (possibly zero) multiple of φ(k + 1). The
concept of raising and lowering operators can be generalized to other Lie
algebras.

2.4 The Lie algebra SU(1,1)

The Lie algebra su(1, 1) is defined by the commutation relations

[tx, ty] = 2itz, [ty, tz] = −2itx, [tz, tx] = 2ity. (2.7)

Note that this is the same as (2.1) except for the minus sign in the second
equality. A faithful representation is defined by the matrices

Tx :=

(
0 1
−1 0

)
, Ty :=

(
0 i
i 0

)
, Tz :=

(
1 0
0 −1

)
. (2.8)
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It is customary to equip su(1, 1) with an adjoint operation such that

t∗x = tx, t∗y = ty, t∗z = tz. (2.9)

Note however, that the matrices in (2.8) are not self-adjoint and hence do not
define a unitary representation of su(1, 1). In fact, all unitary irreducible rep-
resentations of su(1, 1) are infinite dimensional. 6 In a given representation
of su(1, 1), the Casimir operator is defined as

C := (1
2
Tx)2 − (1

2
Ty)2 − (1

2
Tz)

2. (2.10)

Again, it is useful to introduce raising and lowering operators, defined as

k0 := 1
2
tx and k± := 1

2
(ty ± itz),

which satisfy the commutation and adjoint relations

[k0,k±] = ±k±, [k−,k+] = 2k0, (k−)∗ = k+, (k0)∗ = k0, (2.11)

The following proposition is rewritten from [Nov04, formulas (8) and (9)],
where this is stated without proof or reference. The constant r > 0 below is
called the Bargmann index [Bar47, Bar61].

Proposition 8 (Representations of su(1, 1)) For each real constant r >
0, there exists an irreducible unitary representation of su(1, 1) on a Hilbert
space with orthonormal basis {φ(0), φ(1), . . .} on which the operators K0, K±

act as
K0φ(k) = (k + r)φ(k),

K−φ(k) = 1{k≥1}
√
k(k − 1 + 2r)φ(k − 1),

K+φ(k) =
√

(k + 1)(k + 2r)φ(k + 1).

(2.12)

In this representation, the Casimir operator is given by C = r(r − 1)I.

In what follows, we will need one more representation of su(1, 1), as well
as a representation of its conjugate Lie algebra. Fix α > 0 and consider the
following operators acting on smooth functions f : [0,∞)→ R:

K−f(z) = z ∂2

∂z2
f(z) + α ∂

∂z
f(z),

K+f(z) = zf(z),

K0f(z) = z ∂
∂z
f(z) + 1

2
αf(z).

(2.13)

6Since su(1, 1) is simple, all representations are faithful. As explained in Subsection A.3,
each Lie algebra is the Lie algebra of a unique simply connected Lie group. In the case of
su(1, 1), this is the universal cover H of the Lie group SU(1, 1) (the latter itself not being
simply connected). By Theorem 18 in the appendix, each representation of su(1, 1) gives
rise to a representation of H. Since H is not compact, the existence of a finite dimensional
unitary representation would now contradict Lemma 23 in the appendix.
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One can check that these operators satisfy the commutation relations (2.11)
of the Lie algebra su(1, 1)C, i.e.,

[K0,K±] = ±K± and [K−,K+] = 2K0, (2.14)

and hence define a representation of su(1, 1). One can check that the Casimir
operator (2.10) for this representation is C = α

2
(α

2
− 1)I and hence the

Bargmann index is r = α/2.
Next, fix again α > 0 and consider the following operators acting on

functions f : N→ R:

K−f(x) =xf(x− 1),

K+f(x) = (α + x)f(x+ 1),

K0f(x) = (1
2
α + x)f(x).

(2.15)

One can check that these operators satisfy the commutation relations

[K±, K0] = ±K± and [K+, K−] = 2K0. (2.16)

This is similar to (2.11), except that the order of the elements inside the
commutator is reversed. In view of the remarks at the end of Section 2.1,
this means that the operators K0, K± define a representation of the conjugate
Lie algebra associated with su(1, 1). We will see in Section 3.4 below that the
conjugate of the representation in (2.15) is equivalent to the representation
in (2.13), provided we choose for both the same α.

A complete classification of all irreducible representations of su(1, 1), in-
cluding infinite dimensional ones, is described in the book [VK91].7

2.5 The Heisenberg algebra

The Heisenberg algebra h is the three dimensional complex Lie algebra defined
by the commutation relations

[a−, a+] = a0, [a−, a0] = 0, [a+, a0] = 0. (2.17)

It is customary to equip h with an adjoint operation that is defined by

(a±)∗ = ±a±, (a0)∗ = a0. (2.18)

7The monumental encyclopedic book [VK91] is written in a style that some readers
may need to get used to, since it does not use the usual theorem-proof layout but rather
states an enormous amount of facts in the main text while leaving a lot of detail to be
filled in by the reader.
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The Schrödinger representation of h is defined by

A−f(x) = ∂
∂x
f(x), A+f(x) = xf(x), A0f(x) = f(x), (2.19)

which are interpreted as operators on the Hilbert space L2(R, dx) of com-
plex functions on R that are square integrable with respect to the Lebesgue
measure. Note in this representation, A0 is the identity operator. Any rep-
resentation of h with this property is called a central representation.8 The
Schrödinger representation is a unitary representation, i.e., A− is skew sym-
metric and A+ and A0 are self-adjoint, viewed as linear operators on the
Hilbert space L2(R, dx).

Since iA− and A+ are self-adjoint, by Stone’s theorem, one can define
collections of unitary operators (U−t )t∈R and (U+

t )t∈R by

U−s := e tA
−

and U+
t := e itA

+
. (2.20)

These operators form one-parameter groups in the sense that U±0 = I and
U±s U

±
t = U±s+t (s, t ∈ R). Note that we have a factor i in the definition of U+

t

but not in the definition of U−s , because A+ is self-adjoint but A− is skew
symmetric. The commutation relations (2.17) lead, at least formally, to the
following commutation relation between U−s and U+

t

U−s U
+
t = eistU+

t U
−
s (s, t ∈ R). (2.21)

Indeed, for small ε, we have

U−εsU
+
εt

=
(
I + εsA− + 1

2
ε2s2(A−)2 +O(ε3)

)(
I + iεtA+ − 1

2
ε2t2(A+)2 +O(ε3)

)
= I + εsA− + 1

2
ε2s2(A−)2 + iεtA+ − 1

2
ε2t2(A+)2 + iε2stA−A+ +O(ε3)

= I + εsA− + 1
2
ε2s2(A−)2 + iεtA+ − 1

2
ε2t2(A+)2 + iε2stA+A−

+iε2st[A−, A+] +O(ε3)
=
(
1 + iε2st+O(ε3)

)
U+
εtU

−
εs +O(ε3).

(2.22)
The commutation relation (2.21) then follows formally by writing

U−s U
+
t = (U−s/n)n(U+

t/n)n

=
(
1 + in−2st+O(n−3)

)n2

(U+
t/n)n(U−s/n)n −→

n→∞
eistU+

t U
−
s .

(2.23)

8More generally, the center of a Lie algebra g is the linear space c := {c ∈ g : [x, c] =
0 ∀x ∈ g}. A central representation of a Lie algebra is then a representation (V, π)
such that for each c ∈ c, there exists a c ∈ C such that π(c) = cI. Note that with this
definition, if (V, π) is a faithful central representation of h, then we can always “normalize”
it by multiplying π with a constant so that π(a0) = I.
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The Stone-von Neumann theorem states that all unitary, central representa-
tions of the Heisenberg algebra that satisfy (2.21) are equivalent [Ros04].

2.6 The direct sum and the tensor product

If V is a linear space and V1, . . . , Vn are linear subspaces of V such that every
element v ∈ V can uniquely be written as

v = v1 + · · ·+ vn

with vi ∈ Vi, then we say that V is the direct sum of V1, . . . , Vn and write
V = V1 ⊕ · · · ⊕ Vn. If Ω1,Ω2 are finite sets and CΩ1 denotes the linear space
of all functions f : Ωi → C, then we have the natural isomorphism

CΩ1]Ω2 ∼= CΩ1 ⊕ CΩ2 ,

where Ω1 ] Ω2 denotes the disjoint union of Ω1 and Ω2.
If g1, . . . , gn are Lie algebras, then we equip g1⊕· · ·⊕gn with the structure

of a Lie algebra by putting, for xi,yi ∈ gi,[
x1 + · · ·+ xn,y1 + · · ·+ yn

]
:= [xi,yi] + · · ·+ [xn,yn]. (2.24)

Note that this has the effect that elements of diffent Lie algebras g1, . . . , gn
mutually commute. In particular, if {x1

1,x
2
1,x

3
1} and {x1

2,x
2
2,x

3
2} are bases

for g1 and g2, respectively, then

{x1
1,x

2
1,x

3
1,x

1
2,x

2
2,x

3
2}

is a basis for g1 ⊕ g2 and [xki ,x
l
j] = 0 whenever i 6= j.

By definition, a bilinear map of two variables is a function that is linear
in each of its arguments. If V and W are finite dimensional linear spaces,
then their tensor product is a linear space V ⊗W together with a bilinear
map

V ×W 3 (v, w) 7→ v ⊗ w ∈ V ⊗W

that has the property:

If F is another linear space and b : V ×W → F is bilinear, then
there exists a unique linear map b : V ⊗W → F such that

b(v ⊗ w) = b(v, w) (v ∈ V, w ∈ W ).

21



The tensor product of three or more spaces is defined similarly. One can
show that all realizations of the tensor product are naturally isomorphic. If
{e(1), . . . , e(n)} and {f(1), . . . , f(m)} are bases for V and W , then one can
prove that {

e(i)⊗ f(j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m
}

(2.25)

is a basis for V ⊗ W . In particular, this means that one has the natural
isomorphism

CΩ1×Ω2 ∼= CΩ1 ⊗ CΩ2 . (2.26)

If A ∈ L(V ) and B ∈ L(V ), then one defines A⊗B ∈ L(V ⊗W ) by

(A⊗B)(v ⊗ w) := (Av)⊗ (Bw). (2.27)

We note that not every element of V ⊗W is of the form v⊗w for some v ∈ V
and w ∈ W . Nevertheless, since the right-hand side of (2.27) is bilinear in v
and w, the defining property of the tensor product tells us that this formula
unambiguously defines a linear operator on V ⊗W .

One can check that the notation A⊗B is good notation in the sense that
the space L(V ⊗W ) together with the bilinear map (A,B) 7→ A ⊗ B is a
realization of the tensor product L(V ) ⊗ L(W ). Thus, one has the natural
isomorphism

L(V ⊗W ) ∼= L(V )⊗ L(W ).

If V and W are equipped with inner products, then we equip V ⊗W with
an inner product by putting

〈v ⊗ w|η ⊗ ξ〉 := 〈v|η〉〈w|ξ〉, (2.28)

which has the effect that if {e(1), . . . , e(n)} and {f(1), . . . , f(m)} are or-
thonormal bases for V and W , then the basis for V ⊗W in (2.25) is also
orthonormal. Again, one needs the defining property of the tensor product
to see that (2.28) is a good definition.

If V,W are representations of Lie algebras g, h, respectively, then we can
naturally equip the tensor product V ⊗W with the structure of a represen-
tation of g⊕ h by putting

(x + y)(v ⊗ w) := (xv)⊗ (yw). (2.29)

Again, since the right-hand side is bilinear, using the defining property of
the tensor product, one can see that this is a good definition.

Let V1, V2 be representations of some Lie algebra g, and let W1,W2 be
representations of another Lie algebra h. Let φ : V1 → V2 and ψ : W1 → W2

be intertwiners. Then one can check that

φ⊗ ψ : V1 ⊗W1 → V2 ⊗W2 (2.30)
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is also an intertwiner.
If h1, . . . , hn are n copies of the Heisenberg algebra, and a−i , a

+
i , a

0
i are

basis elements of hi that satisfy the commutation relations (2.17), then a
basis for h1⊕ · · · ⊕ hn is formed by all elements a±i , a

0
i with i = 1, . . . , n, and

these satisfy
[a−i a+

j ] = δija
0
i and [a±i , a

0
j ] = 0.

Since the center of h1⊕· · ·⊕hn is spanned by the elements a0
i with i = 1, . . . , n,

a central representation of h1 ⊕ · · · ⊕ hn must map all these elements to
multiples of the identity. In particular, a central representation of h1⊕· · ·⊕hn
is never faithful (unless n = 1). The Lie algebra h(n) is the 2n+1 dimensional
Lie algebra with basis elements a±i (i = 1, . . . , n) and a0, which satisfy the
commutation relations

[a−i a+
j ] = δija

0 and [a±i , a
0] = 0.

A central representation of h(n) is a representation (V, π) such that π(a0) =
I. The Schrödinger representation of the “n-dimensional” Heisenberg algebra
is the central representation of h(n) on L2(Rn, dx) given by

A−f(x) = ∂
∂xi
f(x) and A+f(x) := xif(x). (2.31)

3 The algebraic approach to duality

After our excursion into the theory of Lie algebras, we return to our main
topic, which is the algebraic approach to Markov process duality. We recall
from Lemma 3 that if a Markov generator L can be written in terms of
“building blocks” Ai that each have a dual Bi with respect to some duality
function D, then also L has a dual L̂ with respect to D. As mentioned at
the end of Section 1.3, it may be a good idea to choose the Ai’s so that they
define a representation of some Lie algebra. The next proposition says that
in such a situation, other, equivalent representations of the same Lie algebra
may lead to dual Markov processes.

Recall the definition of a conjugate Lie algebra g from Section 2.1. If
Y1, . . . , Yn are matrices that define a representation of g, then their adjoints
Y †1 , . . . , Y

†
n define a representation of the original Lie algebra g.

Proposition 9 (Intertwiners as duality functions) Let L be the gener-
ator of a Markov process with finite state space Ω. Let X1, . . . , Xn be linear
operators on CΩ that form a representation of some Lie algebra g. Assume
that L can be written as a linear combination of products of the operators
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X1, . . . , Xn

L =
∑

(i1,...,ik)∈I

ri1,...,ikXi1 · · ·Xik , (3.1)

where I is some finite set whose elements are sequences (i1, . . . , ik) with k ≥ 0
and 1 ≤ im ≤ n for each m. Assume that Y1, . . . , Yn are linear operators on
CΩ̂ that define a representation of the conjugate Lie algebra g. Assume that
the representations of g defined by Y †1 , . . . , Y

†
n and X1, . . . , Xn are equivalent.

Then there is a bijective intertwiner D, i.e., XiD = DY †i for each i, and L
is dual w.r.t. the duality function D to the operator

L̂ :=
∑

(i1,...,ik)∈I

ri1,...,ikYik · · ·Yi1 . (3.2)

Proof By definition, two representations are equivalent if and only if there
exists a bijective intertwiner. The fact that L is dual to the operator in (3.2)
is then immediate from Lemma 3.

At first sight, it may seem unlikely that Proposition 9 could be of much
use. Even if we can write a generator in terms of a basis of a representation
of some Lie algebra g, and we also find some representation of the conjugate
Lie algebra g, we still have to be lucky in the sense that the representations
of g defined by Y †1 , . . . , Y

†
n and X1, . . . , Xn are equivalent, and there is no

guarantee that the operator in (3.2) is a Markov generator. Nevertheless,
in what follows, we will see that Proposition 9 can help us find nontrivial
dualities. In the next subsection, we demonstrate this on the operator L
from (1.8), which is the generator of a Wright-Fisher diffusion with selection.

3.1 Self-duality of the Wright-Fisher diffusion

In Subsection 1.3, we have seen that the operator L from (1.8) can as in
(1.10) be written in terms of the “building blocks” A± from (1.9). As we
have seen in (1.16), these operators satisfy

[A−, A+] = I, (3.3)

and hence define a central representation of the Heisenberg algebra h, as
defined in Subsection 2.5.

It will be convenient to find a way of writing L in a more symmetric way
than in (1.10). To this aim, we change the definitions of A± to

A−f(x) :=
−1√
s
∂
∂x
f(x) and A+f(x) :=

√
sxf(x), (3.4)
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which again satisfy (3.3), and we write L in terms of these new building
blocks as

L = −A+(
√
s− A+)A−(

√
s− A−). (3.5)

We observe from (3.3) that settingB− := A+ andB+ := A− defines operators
such that [B−, B+] = −I, i.e., B−, B+ define a central representation of the
conjugate Heisenberg algebra h.

We recall from Section 2.5 that the Stone-von Neumann theorem states
that, more or less, all central representations of the Heisenberg algebra are
equivalent. In view of this and Proposition 9, we may expect that the oper-
ator

L̂ = −(
√
s−B−)B−(

√
s−B+)B+ (3.6)

is dual to L with respect to some (so far unknown) duality function D.
(Here (3.6) is obtained from (3.5) by replacing A± by B± and reversing the
order of the factors.) Since B± = A∓, we observe that in fact L̂ = L, so our
calculations lead us to suspect that the Wright-Fisher diffusion with selection
parameter s > 0 should be self-dual.

We still need to find the duality function D. This function must satisfy

−1√
s
∂
∂x
D(x, y) = A−D( · , y)(x) = B−D(x, · )(y) =

√
syD(x, y), (3.7)

which says that ∂
∂x
D(x, y) = −syD(x, y) and leads to the requirement that

D(x, y) = D(0, y)e−syx. In a similar way, the requirement A+D = DB+

yields D(x, y) = D(x, 0)e−syx and in particular D(0, y) = D(0, 0). Thus, we
find that up to a multiplicative constant, there is a unique duality function,
which is given by

D(x, y) = e−sxy
(
x, y ∈ [0, 1]

)
, (3.8)

and we conclude that the Wright-Fisher diffusion with selection parameter
s > 0 is self-dual with this duality function.

The argument above was heuristic, but quite smooth. What is remarkable
about it is that while usually, the discovery of a duality starts with a clever
choice for the duality function, here, the duality function came at the very
end. Hidden behind this is the Stone-von Neumann theorem which says that
two “good” representations of the Heisenberg algebra must necessarily be
equivalent. We did not check the conditions of this theorem in detail (this is
why the argument is only heuristic), but rather used it as an inspiration. A
priori, there was no guarantee that the operator in (3.6) would be a Markov
generator, but since L̂ = L and L is a Markov generator, this turned out
right as well.
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Remark It is possible to “discover” the moment dual (1.15) of the Wright-
Fisher duality along similar lines as we have discovered its self-duality here,
by considering a suitable representation of the conjugate Heisenberg algebra
h on functions f : N → R and applying Propositions 9 and 10. Such a
derivation is less natural, however, since it requires choosing a rather peculiar
representation of h that more or less has the duality function from (1.11)
tacitly built into it.

3.2 Intertwiners and duality functions

In the previous subsection, just before (3.6) we appealed to Proposition 9.
In doing so, we cheated in the sense that the operators A± from (3.4) do not
act on a finite-dimensional space. The most obvious consequence of this is
that it is not clear how the adjoint operators B†i from Proposition 9 should
be defined. Closely related to this is that in the infinite dimensional setting,
it is not immediately clear that duality functions define intertwiners and vice
versa. In this subsection we show that these difficulties can be resolved by
introducing a suitable inner product on the spaces of complex functions on
Ω and Ω̂, respectively.

Assume that X1, . . . , Xn and Y1, . . . , Yn are linear operators on L2-spaces
L2(Ω, µ) and L2(Ω̂, ν), respectively, that define representations of a Lie al-
gebra g and its conjugate g. Let Y ∗i denote the adjoint of Yi with respect
to the inner product on L2(Ω̂, ν). Assume that Φ : L2(Ω̂, ν)→ L2(Ω, µ) is a
linear operator of the form

Φg(x) =

∫
g(y)D(x, y)ν(dy), (3.9)

for some function D : Ω× Ω̂ → C such that the expressions in (3.10) below
are well-defined.

Proposition 10 (Intertwiners and duality functions) The operator Φ
is an intertwiner of the representations defined by X1, . . . , Xn and Y ∗1 , . . . , Y

∗
n ,

i.e.,
XiΦ = ΦY ∗i (i = 1, . . . , n),

if and only if D is a duality function, in the sense that

XiD( · , y)(x) = YiD(x, · )(y) (i = 1, . . . , n) (3.10)

for a.e. x, y with respect to the product measure µ⊗ ν.
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Proof We observe that∫
f(x)µ(dx)

∫
g(y)ν(dy)XiD( · , y)(x) =

∫
g(y)ν(dy)〈f |XiD( · , y)〉µ

=

∫
g(y)ν(dy)〈X∗i f |D( · , y)〉µ =

∫
X∗i f(x)µ(dx)

∫
g(y)ν(dy)D(x, y)

= 〈X∗i f |Φg〉µ = 〈f |XiΦg〉µ

and∫
f(x)µ(dx)

∫
g(y)ν(dy)YiD(x, · )(y) =

∫
f(x)µ(dx)〈g|YiD(x, · )〉ν

=

∫
f(x)µ(dx)〈Y ∗i g|D(x, · )〉ν =

∫
f(x)µ(dx)

∫
Y ∗i g(y)ν(dy)D(x, y)

= 〈f |ΦY ∗i g〉µ.

Since this holds for all f, g, the statement follows.

Remark Proposition 10 allows us to obtain an intertwiner from a duality
function. Conversely, if Φ : L2(Ω̂, ν)→ L2(Ω, µ) is a bounded linear operator,
then setting

∆(f ⊗ g) :=

∫
f(x)Φg(x)µ(dx)

defines a linear form on the linear span of all functions of the form f ⊗ g. If
∆ is bounded,9 then it can uniquely be extended to a bounded linear form
on

L2(Ω, µ)⊗ L2(Ω̂, ν) ∼= L2(Ω× Ω̂, µ⊗ ν),

so that by the Riesz representation theorem there exists a D ∈ L2(Ω× Ω̂, µ⊗
ν) such that

∆(f ⊗ g) :=

∫
f(x)D(x, y)g(x)µ(dx)ν(dy),

proving that Φ is of the form (3.9) (although there is no guarantee that
D( · , y) and D(x, · ) are in the domains of Xi and Yi, resp., if these are
unbounded operators).

9Using Cauchy-Schwarz, it is easy to see that |∆(f ⊗ g)| ≤ ‖Φ‖ ‖f ⊗ g‖, proving that
∆ is bounded on functions of the form f ⊗ g. Nevertheless, ∆ may fail to be bounded on
the linear span of such functions. A counterexample is Ω = Ω̂ = [0, 1], µ = ν = Lebesgue

measure, and Φ the identity map, which gives ∆(F ) =
∫ 1

0
F (x, x) dx. Since the Lebesgue

measure on the diagonal {(x, y) : x = y} does not have a density w.r.t. µ ⊗ ν, this does
not correspond to a bounded linear form on L2(Ω× Ω̂, µ⊗ ν).

27



3.3 The symmetric exclusion process

In this subsection, we demonstrate Proposition 9 on a simple example, which
involves the simple exclusion process and the Lie algebra su(2). In the end,
we find a self-duality that is not entirely trivial, but also not very useful. The
present subsection serves mainly as a warm-up for Subsection 3.4 where we
will replace su(2) by su(1, 1).

Let S be a finite set and let r : S × S → [0,∞) be a function that is
symmetric in the sense that r(i, j) = r(j, i). Consider the Markov process
with state space Ω = {0, 1}S and generator

Lf(x) :=
∑
ij

r(i, j)1{(xi,xj)=(1,0)}
{
f(x− δi + δj)− f(x)

}
, (3.11)

where δi ∈ Ω is defined as δi(j) := 1{i=j}. Then L is the generator of a
symmetric exclusion process or SEP. We define operators J±i and J0

i by

J−i f(x) := 1{xi=0}f(x+ δi), J+
i f(x) := 1{xi=1}f(x− δi),

and J0
i f(x) := (xi − 1

2
)f(x).

(3.12)

It is straightforward to check that

[J0
i , J

±
j ] = ±δijJ±i and [J−i , J

+
j ] = −2δijJ

0
i . (3.13)

It follows that the operators J±i and J0
i define a representation of a Lie

algebra that consists of a direct sum of copies of su(2), with one copy for
each site i ∈ S. We can write the generator L of the symmetric exclusion
process in terms of the operators J±i and J0

i as

L =
∑
{i,j}

r(i, j)
[
J−i J

+
j + J−j J

+
i + 2J0

i J
0
j − 1

2
I
]
, (3.14)

where we are summing over all unordered pairs {i, j}. We observe that the
operators

K±i := J±i , and K0
i := −J0

i (3.15)

satisfy the same commutation relations as J±i and J0
i , except that each com-

mutation relation gets an extra minus sign. This shows that the operators
K±i and K0

i define a representation of the conjugate Lie algebra su(2). More-
over, we can alternatively write the generator in (3.14) as

L =
∑
{i,j}

r(i, j)
[
K+
j K

−
i +K+

i K
−
j + 2K0

jK
0
i − 1

2
I
]
. (3.16)
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We recall from Subsection 2.3 that two irreducible representations of su(2)
with the same dimension are necessarily equivalent. In view of this, we con-
jecture that there should exist an intertwiner D, unique up to a multiplicative
constant, such that J±i D = D(K±i )† and J0

i D = D(K0
i )† for all i. By the gen-

eral principle in Proposition 9, such an intertwiner is a self-duality function
for the symmetric exclusion process.

We observe that all our operators act on the space of all complex functions
on {0, 1}S, which in view of (2.26) is given by

C{0, 1}
S ∼=

⊗
i∈S

C{0,1}. (3.17)

For example, if S = {1, 2, 3} consists of only three sites, then in line with
(2.29),

J0
1 = J0 ⊗ I ⊗ I, J0

2 = I ⊗ J0 ⊗ I, and J0
3 = I ⊗ I ⊗ J0,

and similarly for J±1 , J
±
2 , and J±3 . Here

J−f =

(
0 0
1 0

)(
f(1)
f(0)

)
=

(
0

f(1)

)
,

J+f =

(
0 1
0 0

)(
f(1)
f(0)

)
=

(
f(0)

0

)
,

J0f =

(
1
2

0
0 −1

2

)(
f(1)
f(0)

)
=

(
1
2
f(1)
−1

2
f(0)

)
.

(3.18)

We equip C{0,1} and the space in (3.17) with the standard inner product,
which has the consequence that A∗ = A† and

(J−i )∗ = J+
i , (J+

i )∗ = J−i , and (J0
i )∗ = J0

i ,

showing that the operators J±i and J0
i define a unitary representation of our

Lie algebra.
According to the general principle (2.30), to find an intertwiner D which

acts on the product space (3.17), it suffices to find an intertwiner for the two-
dimensional space corresponding to a single site, and then take the product
over all sites. Setting

Q :=

(
0 1
1 0

)
,

it is straightforward to check that

J±Q = QJ∓ = Q(K±)† and J0Q = Q(−J0) = Q(K0)†.
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Now, for example, if S = {1, 2, 3} consists of only three sites, then in view
of (2.30)

D := Q⊗Q⊗Q satisfies J±i D = D(K±i )† and J0
i D = D(K0

i )†

(i = 1, 2, 3). In terms of matrix elements, we have Q(xi, yj) = 1{xi 6=yi} and
hence the self-duality function of the symmetric exclusion process that we
have found is

D(x, y) =
∏
i∈S

1{xi 6= yi}
(
x, y ∈ {0, 1}S

)
.

3.4 The symmetric inclusion process

Let S be a finite set and let α : S → (0,∞) and q : S × S → [0,∞)
be functions such that q(i, j) = q(j, i) and q(i, i) = 0 for each i ∈ S. By
definition, the Brownian energy process or BEP with parameters α, q is the
diffusion process (Zt)t≥0 with state space [0,∞)S and generator

L := 1
2

∑
i,j∈S

q(i, j)
[
(αjzi − αizj)( ∂

∂zj
− ∂

∂zi
) + zizj(

∂
∂zj
− ∂

∂zi
)2
]
. (3.19)

This diffusion has the property that
∑

i Zt(i) is a preserved quantity. The
drift part of the generator is zero if zi = λαi for some λ > 0. If zi/αi > zj/αj,
then the drift has the tendency to make zi smaller and zj larger.

In analogy with (2.13), we define operators acting on smooth functions
f : [0,∞)S → R by:

K−i f(z) = zi
∂2

∂zi
2f(z) + αi

∂
∂zi
f(z),

K+
i f(z) = zif(z),

K0
i f(z) = zi

∂
∂zi
f(z) + 1

2
αif(z).

(3.20)

By (2.14), these operators satisfy the commutation relations

[K0
i ,K±j ] = ±δijK±i and [K−i ,K+

j ] = 2δijK0
i .

It follows that these operators define a representation of the Lie algebra⊕
i∈S

gi,

where each gi is a copy of su(1, 1), on the product space

C[0,∞)S ∼= (C[0,∞))⊗S,
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which is the tensor product of |S| copies of C[0,∞).
We can express the generator (3.19) of the Brownian energy process in

terms of the operators from (3.20) as

L = 1
2

∑
i,j∈S

q(i, j)
[
K+
i K−j +K−i K+

j − 2K0
iK0

j + 1
2
αiαj

]
. (3.21)

Note that this is very similar to the expression for the symmetric exclusion
process in (3.14).

We define operators acting on functions f : NS → R by

K−i f(x) =xif(x− δi),
K+
i f(x) = (αi + xi)f(x+ δi),

K0
i f(x) = (1

2
αi + xi)f(x).

(3.22)

In view of (2.16), these operators define a representation of the conjugate
of our Lie algebra. It turns out that the conjugate of this representation is
equivalent to the representation defined by the operators in (3.20). This is a
nontrivial statement that depends crucially on the fact that the parameters
αi are the same in both expressions. Indeed, we have seen in Subsection 2.4
that α is twice the Bargmann index and that representations with a different
Bargmann index have a different Casimir operator and hence are not equiv-
alent. Letting Φ denote the intertwiner of K±i and (K±i )†, we can write Φ in
the form (3.9), where by Proposition 10 D is a duality function. Similar to
what we did at the end of Subsection 3.3, we will choose a duality function
of product form:

D(z, x) =
∏
i∈S

Q(zi, xi) (z ∈ [0,∞)S, x ∈ NS), (3.23)

where Q is a duality function for the single-site operators, i.e.,

K±Q( · , x)(z) = K±Q(z, · )(x), K0Q( · , x)(z) = K0Q(z, · )(x) (3.24)

(z ∈ [0,∞), x ∈ N). It turns out that

Q(z, x) :=
Γ(α + x)

Γ(α)
zx = zx

x−1∏
k=0

(α + k). (3.25)

does the trick. This may look a bit complicated but the form of this duality
function can in fact quite easily be guessed from the inductive relation

zQ(z, x) = K+Q( · , x)(z) = K+Q(z, · )(x) = (α + x)Q(z, x+ 1).
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Our calculations so far imply that the generator in (3.21) is dual with
respect to the duality function in (3.23)–(3.25) to the generator

L̂ = 1
2

∑
i,j∈S

q(i, j)
[
K−j K

+
i +K+

j K
−
i − 2K0

jK
0
i + 1

2
αjαi

]
. (3.26)

It turns out that we are lucky in the sense that this is a Markov generator. In
view of the similarity with (3.14) (with the role of su(2) replaced by su(1, 1)),
in [GRV10], the corresponding process has been called the symmetric inclu-
sion process or SIP. The fact that L̂ is a Markov generator can be seen by
rewriting it as

L̂ :=
∑
i,j∈S

q(i, j)
[
αjxi

{
f
(
x− δi + δj

)
− f

(
x
)}

+xixj
{
f
(
x− δi + δj

)
− f

(
x
)}]

.

(3.27)

The Markov process (Xt)t≥0 with generator L̂ has the property that
∑

iXt(i)
is a preserved quantity. The terms in the generator involving the constants
αj describe a system of independent random walks, where each particle at i
jumps with rate αj to the site j. A reversible law for this part of the dynamics
is a Poisson field with local intensity λαi for some λ > 0. The remaining
terms in the generator describe a dynamics where particles at i jump to j
with a rate that is proportional to the number x(j) of particles at j. This
part of the dynamics causes an attraction between particles.

3.5 Duality functions of product form

In the previous two subsections, we have seen that for a Markov process
whose state space is a Carthesian product of other spaces, it is often natural
to choose duality functions of product form as in (3.23). This idea does not
depend on Lie algebras and is in fact older than the use of Lie algebras in
duality theory.

In a series of papers [LS95, LS97, Sud00], Lloyd and Sudbury have system-
atically searched for dualities in a large class of interacting particle systems,
which contains many well-known systems such as the voter model, contact
process, and symmetric exclusion process. Let S be a finite set and let
q : S2 → [0,∞) be a function such that q(i, j) = q(j, i) and q(i, i) = 0 for all
i ∈ S. Let L = L(a, b, c, d, e) be the Markov generator, acting on functions
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f : {0, 1}S → R, as

Lf(x) =
∑
i,j∈S

q(i, j)
[

1
2
a1{(x(i),x(j))=(1,1)}

{
f(x− δi − δj)− f(x)

}
b1{(x(i),x(j))=(0,1)}

{
f(x+ δi)− f(x)

}
c1{(x(i),x(j))=(1,1)}

{
f(x− δi)− f(x)

}
d1{(x(i),x(j))=(0,1)}

{
f(x− δj)− f(x)

}
e1{(x(i),x(j))=(0,1)}

{
f(x+ δi − δj)− f(x)

}]
.

(3.28)

The dynamics of the Markov process with generator L can be described by
saying that for each pair of sites i, j, the configuration of the process at these
sites makes the following transitions with the following rates:

11 7→ 00 with rate aq(i, j) (annihilation),

01 7→ 11 with rate bq(i, j) (branching),

11 7→ 01 with rate cq(i, j) (coalecence),

01 7→ 00 with rate dq(i, j) (death),

01 7→ 10 with rate eq(i, j) (exclusion dynamics).

Note that the factor 1
2

in front of a disappears since the total rate of this
transition is 1

2
a(q(i, j) + q(j, i)) = aq(i, j). A lot of well-known interacting

particle systems fall into this class. For example

voter model b = d = 1, other parameters 0,

contact process b = λ, c = d = 1, other parameters 0,

symmetric exclusion e = 1, other parameters 0.

As we have already seen in (3.17), the class of all functions f : {0, 1}S → R
can be written as the tensor product

R{0, 1}
S ∼=

⊗
i∈S

R{0, 1},

with one ‘factor’ R{0, 1} for each site i ∈ S. Moreover, duality functions D
on the space {0, 1}S × {0, 1}S can be viewed as matrices corresponding to
linear operators that act on R{0,1}S . Based on various arguments that are not
very important at this point, Lloyd and Sudbury decided to look for duality
functions of product form

D(x, y) =
∏
i∈S

Q(xi, yi), (3.29)
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where Q is a 2×2 matrix. After a more or less systematic search for suitable
matrices Q, Lloyd and Sudbury find a rich class of dualities for matrices of
the form (

Qq(0, 0) Qq(0, 1)
Qq(1, 0) Qq(1, 1)

)
=

(
1 1
1 q

)
, (3.30)

where q ∈ R\{1} is a constant. This choice of Q yields the duality function

Dq(x, y) :=
∏
i∈S

Qq(xi, yi) = q
∑

i∈S xiyj
(
x, y ∈ {0, 1}S

)
. (3.31)

In particular, setting q = 0 yields

D0(x, y) = 1{∑i∈S xiyj=0},

which corresponds to the well-known additive systems duality, while q = −1
is known as cancellative systems duality. For these special values of q, the
duality can in fact be upgraded to a pathwise duality as in Subsection 1.4,
using a construction in terms of open paths in a graphical representation. In-
terestingly, for other values of q, there seems to be no pathwise interpretation
of the duality with duality function Dq.

We cite the following theorem from [LS95, Sud00]. A somewhat more gen-
eral version of this theorem which drops the symmetry assumption q(i, j) =
q(j, i) at the cost of replacing (3.32) by a somewhat more complicated set of
conditions can be found in [Swa06, Appendix A in the version on the ArXiv].

Theorem 11 (q-duality) The generators L(a, b, c, d, e) and L(a′, b′, c′, d′, e′)
from (3.28) are dual with respect to the duality function Dq from (3.31) if
and only if

a′ = a+2qγ, b′ = b+γ, c′ = c−(1+q)γ, d′ = d+γ, e′ = e−γ, (3.32)

where γ := (a+ c− d+ qb)/(1− q).

3.6 Intertwining and thinning

In Subsection 1.2, when we introduced Markov process duality, we also de-
fined the similar concept of intertwining of Markov processes. So far, we have
not discussed this second concept very much, but it turns out that the two
are closely related. In particular, as Lloyd and Sudbury already observed
[LS95, Sud00], there is a close connection between q-duality and thinning
relations. To explain this, we start with a general principle, that says that if
two Markov processes are both dual to a third Markov process, then we can
expect an intertwining relation between the first two processes.
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Lemma 12 (Duality and intertwining) Let Ω and Ω̂ be finite sets, and

let Li : RΩ → RΩ, L̂ : RΩ̂ → RΩ̂, and Di : RΩ̂ → RΩ be linear operators such
that

LiDi = DiL̂
† (i = 1, 2). (3.33)

Assume that D1 and D2 are invertible. Then

L1(D1D
−1
2 ) = (D1D

−1
2 )L2. (3.34)

Proof This follows by writing D−1
1 L1D1 = L̂† = D−1

2 L2D2.

We have seen that for interacting particle systems, there are good reasons
to look for duality functions of product form as in (3.29). Likewise, it is
natural to look for intertwining probability kernels of product form. If the
state space is of the form {0, 1}S, this means that we are looking for kernels
of the form

K(x, y) =
∏
i∈S

M(xi, yi)
(
x, y ∈ {0, 1}S

)
,

where M is a probability kernel on {0, 1}. If we moreover require that
M(0, 0) = 1 (which is natural for interacting particle systems for which the
all zero state is a trap), then there is only a one-parameter family of such
kernels. For p ∈ [0, 1], let Mp be the probability kernel on {0, 1} given by

Mp =

(
Mp(0, 0) Mp(0, 1)
Mp(1, 0) Mp(1, 1)

)
:=

(
1 0

1− p p

)
, (3.35)

and let
Kp(x, y) :=

∏
i∈S

Mp(xi, yi)
(
x, y ∈ {0, 1}S

)
(3.36)

the corresponding kernel on {0, 1}S of product form. We can interpret a
configuration of particles, where xi = 1 if the site i is occupied by a particle,
and xi = 0 otherwise. Then Kp is a thinning kernel that independently for
each site throws away particles with probability 1 − p or keeps them with
probability p. It is easy to see that

KpKp′ = Kpp′ ,

i.e., first thinning with p and then with p′ is the same as thinning with pp′.
There is a close relation between Lloyd and Sudbury’s duality function Dq

from (3.31) and thinning kernels of the form (3.36). We claim that

DqD
−1
q′ = Kp with p =

1− q
1− q′

(q, q′ ∈ R, q′ 6= 1). (3.37)
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Since both Dq and Kp are of product form, i.e.,

Dq =
⊗
i∈S

Qq and Kp =
⊗
i∈S

Mp

with Qq and Mp as in (3.30) and (3.35), it suffices to check that

QqQ
−1
q′ = Mp with p =

1− q
1− q′

.

Indeed, one can check that

Q−1
q =

(
1 1
1 q

)−1

= (1− q)−1

(
−q 1
1 −1

)
(q 6= 1),

and that

QqQ
−1
q′ = (1− q′)−1

(
1 1
1 q

)(
−q′ 1
1 −1

)
=

(
1 0

q−q′
1−q′

1−q
1−q′

)
= Mp,

as claimed.

Proposition 13 (Thinning and q-duality) Let L1 and L2 be generators
of Markov processes with state space {0, 1}S. Assume that there exists an
operator L̂ such that

LiDqi = DqiL̂
† (i = 1, 2) (3.38)

for some q1, q2 ∈ R such that q2 6= 1 and p := (1− q1)/(1− q2) ∈ [0, 1]. Then

L1Kp = KpL2. (3.39)

Proof This follows from (3.37) and Lemma 12. Note that in general, there
is no guarantee that the operator D1D

−1
2 from Lemma 12 is a probability

kernel. In a way, Proposition 13 explains why the q-duality function Dq is
natural, because it is closely linked to the natural concept of thinning.

3.7 The biased voter model

In this section, we demonstrate Lloyd-Sudbury theory on the example of the
biased voter model with selection parameter s > 0, which is the interacting
particle system with generator

L(a, b, c, d, e) = L(0, 1 + s, 0, 1, 0) =: Lbias.
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We apply Theorem 11 to find q-duals of the biased voter model. For simplic-
ity, we restrict ourselves here to dual generators of the form L(a′, b′, c′, d′, e′)
with a′ = 0, which means that we must choose the parameter q as

q = 0 or q = (1 + s)−1.

For q = 0 we find the dual generator

L(a′, b′, c′, d′, e′) = L(0, s, 1, 0, 1) =: Lbraco,

which describes a system of branching and coalescing random walks with
branching parameter s. For q = (1 + s)−1, we find a self-duality, i.e., in this
case L(a′, b′, c′, d′, e′) = L(a, b, c, d, e) = Lbias.

Since Lbias and Lbraco are both q-dual to L̂ = Lbias, Proposition 13 tells
us that there is a thinning relation between biased voter models and systems
of branching and coalescing random walks of the form

LbiasKp = KpLbraco with p =
1− (1 + s)−1

1− 0
=

s

1 + s
.

As explained in Subsection 3.6, this implies that if we start a biased voter
model (Xt)t≥0 and a system of branching and coalescing random walks (Yt)t≥0

in initial states µbias
t and µbraco

t denote the laws of Xt and Yt, then

µbias
0 Kp = µbraco

0 implies µbias
t Kp = µbraco

t (t ≥ 0).

In other words, the following two procedures are equivalent:

(i) Evolve a particle configuration for time t according to biased voter
model dynamics, then thin with p.

(ii) Thin a particle configuration with p, then evolve for time t according
to branching coalescing random walk dynamics.

In particular, if we start X in the initial state X0(i) = 1 for all i ∈ S, then
because of the nature of the voter model, we will have Xt(i) = 1 for all i ∈ S
and t ≥ 0. Applying the thinning relation now shows that product measure
with intensity p is an invariant law for branching coalescing random walk
dynamics. Thus, there is a close connection between:

I. q-duality,

II. thinning relations,

III. invariant laws of product form.

Although Lloyd-Sudbury theory is restricted to Markov processes with state
space of the form {0, 1}S, many other dualities, including the self-duality
of the Wright-Fisher diffusion from Section 3.1, can be derived from Lloyd-
Sudbury duals by taking a suitable limit [Swa06].
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3.8 Time-reversal and symmetry

In this subsection we present an idea from [GKRV09], which says that non-
trivial dualities can sometimes be found by starting from a “trivial” duality
which is based on time reversal, and then using a symmetry of the model
to transform such a duality into a nontrivial one. Although Lie algebras
are not strictly needed in this approach, writing generators in terms of the
basis elements of a representation of a Lie algebra can help finding suitable
symmetries.

Each irreducible Markov process with finite state space Ω has a unique
invariant measure, i.e., a probability measure µ such that

µL = 0 or equivalently µPt = µ (t ≥ 0),

where L denotes the generator and (Pt)t≥0 the semigroup of the Markov
process. Irreducibility implies that µ(x) > 0 for all x ∈ Ω. Letting (Xt)t∈R
denote the stationary process, we see that the semigroup (P̃t)t≥0 of the time-
reversed process is given by

P̃t(x, y) =
P[X0 = y, Xt = x]

P[Xt = x]

=
µ(y)Pt(y, x)

µ(x)
= µ(y)Pt(y, x)µ(x)−1 (t ≥ 0).

Differentiating shows that the generator L̃ of the time-reversed process is
given by10

L̃(x, y) = µ(y)L(y, x)µ(x)−1.

Let R denote the diagonal matrix

R(x, y) := δx,yµ(x)−1.

Then L(y, x)µ(x)−1 = L̃(x, y)µ(y)−1 = µ(y)−1L̃†(y, x) can be rewritten as

LR = RL̃†,

which shows that L̃ is dual to L with duality function R. In particular,
reversible processes (for which L̃ = L) are always self-dual with duality
function R(x, y). Note that since R is diagonal, it is invertible with

R−1(x, y) := δx,yµ(x) (x, y ∈ Ω).

10This formula is wrong in [GKRV09, below (12)].
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Let V be a finite dimensional complex linear space and let L : V → V be
any linear operator (not necessarily a Markov generator). Then it is known
that there exists an invertible matrix Q ∈ L(V ) such that

LQ = QL† or equivalently L†Q−1 = Q−1L (3.40)

Thus, every finite dimensional linear operator is self-dual and the self-duality
function Q can be chosen such that it is invertible, viewed as a matrix. Let

CL := {A ∈ L(V ) : AL = LA}

be the algebra of all elements of L(V ) that commute with L. We call this
the space of symmetries of L. In [GKRV09, Thm 2.6], the following simple
observation is made.

Lemma 14 (Self-duality functions) Let L be a linear operator on some
finite dimensional linear space V . Fix some Q as in (3.40). Then the set of
all self-duality functions of L is given by

{SQ : S ∈ CL}.

Proof Clearly, if S ∈ CL, then

LSQ = SLQ = SQL†,

showing that SQ is a self-duality function. Conversely, if D is a self-duality
function, then we can write D = SQ with S = DQ−1. Now, since D is a
self-duality function,

SL = DQ−1L = DL†Q−1 = LDQ−1 = LS,

which shows that S ∈ CL.

For dualities, we can play a similar game. Once we have two operators
L, L̂ that are dual with duality function D, i.e.,

LD = DL̂†,

we have that for any S ∈ CL, the operators L, L̂ are also dual with duality
function SD, as follows by writing

LSD = SLD = SDL̂†.

If D is invertible, then every duality function of L and L̂ is of this form.
Indeed, if D̃ is any duality function, then we can write D̃ = SD with S =
D̃D−1. Now

SL = D̃D−1L = D̃L†D−1 = LD̃D−1 = LS,

proving that S ∈ CL. See also [GKRV09, Thm 2.10].

39



3.9 The symmetric exclusion process revisited

Following [GKRV09, Sect. 3.1], we demonstrate the principles explained in
the previous subsections to derive a self-duality of the symmetric exclusion
process. Our starting point is formula (3.14), which expresses the generator
L in terms of operators J±i , J

0
i that define a representation (V, π) of a Lie

algebra g that is the direct sum of finitely many copies of the Lie algebra
su(2), with one copy for each site i ∈ S. Since r(i, j) = r(j, i), we can rewrite
this formula as

L = 1
2

∑
i,j

r(i, j)
[
J−i J

+
j + J−j J

+
i + 2J0

i J
0
j − 1

2
I
]
. (3.41)

A straightforward calculation shows that∑
k

[J±k , L] = 0 and
∑
k

[J0
k , L] = 0 (k ∈ S). (3.42)

We need a bit of general theory. If U, V,W are representations of the
same Lie algebra g, then we can equip their tensor product U ⊗ V ⊗W with
the structure of a representation of g by putting

A(u⊗ v⊗w) := Au⊗ v⊗w+u⊗Av⊗w+u⊗ v⊗Aw (A ∈ g), (3.43)

and similar for the tensor product of any finite number of representations,
see formula (A.13) in the appendix. This definition also naturally equips
U⊗V ⊗W with the structure of a representation of the Lie group G associated
with g, in such a way that

etA(u⊗ v ⊗ w) = etAu⊗ etAv ⊗ etAw (A ∈ g, t ≥ 0),

where for each A ∈ g, the operator etA is an element of the Lie group G
associated with g. Thus, the representation (3.43) corresponds to letting the
Lie group act in the same way on each space in the tensor product.

In our specific set-up, this means that the operators K−, K+, K0 defined
by

K− :=
∑
k

J−k , K+ :=
∑
k

J+
k , K0 :=

∑
k

J0
k (3.44)

define a representation of su(2) on the product space

C{0,1}S ∼=
⊗
i∈S

C{0,1}.
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(Indeed, one can check that K−, K+, K0 satisfy the commutation relations of
su(2).) Let c−K

−+ c+K
+ + c0K

0 be an operator in the linear space spanned
by K−, K+, K0. Then

e t(c−K
− + c+K

+ + c0K
0) =

⊗
i∈S

e t(c−J
− + c+J

+ + c0J
0) (t ≥ 0),

(3.45)
i.e., a natural group of symmetries of the generator L is formed by all oper-
ators of the form (3.45) and their products, and this actually corresponds to
a representation of the Lie group SU(2).

We take this as our motivation to look at one specific operator of the
form (3.45), which is eK

+
. One can check that the uniform distribution is an

invariant law for the exclusion process, so by the principle of Subsection 3.8,
the function

D(x, y) = 1{x=y} =
∏
i∈S

1{xi=yi}

is a trivial self-duality function. Applying Lemma 14 to the symmetry S =
eK

+
, we see that SD = SI = S is also a self-duality function. Since S

factorizes over the sites, it suffices to calculate S for a single site, and then
take the product. We recall from (3.18) that

J+f

(
0 1
0 0

)(
f(1)
f(0)

)
=

(
f(0)

0

)
,

which gives

eJ
+

=
∞∑
n=0

1

n!
(J+)n = I + J+ =

(
1 1
0 1

)
and finally yields the duality function

S(x, y) =
∏
i∈S

1{xi ≥ yi}
(
x, y ∈ {0, 1}S

)
.

A A crash course in Lie algebras

A.1 Lie groups

In the present appendix, we give a bit more background on Lie algebras. In
particular, we explain how Lie algebras are closely linked to Lie groups, and
how every Lie algebra can naturally be embedded in an algebra, called the
universal enveloping algebra. We also explain how properties of the Lie group
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(in particular, compactness) are related to representations of its associated
Lie algebra.

A group is a set G which contains a special element I, called the identity,
and on which a group product (A,B) 7→ AB and inverse operation A 7→ A−1

are defined such that

(i) IA = AI = A

(ii) (AB)C = A(BC)

(iii) A−1A = AA−1 = I.

A group is abelian (also called commutative) if AB = BA for all A,B ∈ G.
A group homomorphism is a map Φ from one group G into another group H
that preserves the group structure, i.e.,

(i) Φ(I) = I,

(ii) Φ(AB) = Φ(A)Φ(B),

(iii) Φ(A−1) = Φ(A)−1.

If Φ is a bijection, then Φ−1 is also a group homomorphism. In this case, we
call Φ a group isomorphism. A subgroup of a group G is a subset H ⊂ G such
that I ∈ H and H is closed under the product and inverse, i.e., A,B ∈ H
imply AB ∈ H and A ∈ H implies A−1 ∈ H. A subgroup is in a natural way
itself a group.

A Lie group is a smooth manifold G which is also a group such that the
group product and inverse functions

G×G 3 (A,B) 7→ AB ∈ G and G 3 A 7→ A−1 ∈ G

are smooth. A finite-dimensional representation of G is a finite-dimensional
linear space V over R or C together with a map

G× V 3 (A, v) 7→ Av ∈ V

such that

(i) v 7→ Av is linear,

(ii) Iv = v,

(iii) A(Bv) = (AB)v.
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Letting L(V ) denote the space of all linear operators A : V → V , these
conditions are equivalent to saying that the map Π : G→ L(V ) defined by

Π(A)v := Av

is a group homomorphism from G into the general linear group GL(V ) of
all invertible linear maps A : V → V . A representation is faithful if Π is
one-to-one, i.e., if A 7→ Π(A) is a group isomorphism between G and the
subgroup Π(G) := {Π(A) : A ∈ G} of GL(V ).

One can prove that ifG is a Lie group and V is a faithful finite-dimensional
representation, then Π(G) is a closed subset of GL(V ) and Π : G → Π(G)
is a homeomorhism. Conversely, each closed subgroup of GL(V ) is a Lie
group. Such Lie groups are called matrix Lie groups. Not every Lie group
has a finite dimensional faithful representation, so not every Lie group is a
matrix Lie group, but many important Lie groups are matrix Lie groups and
following [Hal03] we will mostly focus on them from now on.

A.2 Lie algebras

An algebra is a finite-dimensional linear space a over R or C with a special
element I called unit element and on which there is defined a product

a× a 3 (A,B) 7→ AB ∈ a

such that

(i) (A,B) 7→ AB is bilinear,

(ii) IA = AI = A,

(iii) (AB)C = A(BC).

In some textbooks, algebras are not required to contain a unit element. We
speak of a real resp. complex algebra depending on whether a is a linear
space over R or C. An algebra is abelian if AB = BA for all A,B ∈ G.
In any algebra, the commutator of two elements A,B is defined as [A,B] =
AB −BA. If V is a linear space, then L(V ) is an algebra.

An algebra homomorphism is a map φ : a → b from one algebra into
another that preserves the structure, i.e.,

(i) φ is linear,

(ii) φ(I) = I,
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(iii) φ(AB) = φ(A)φ(B).

Algebra homomorphisms that are bijections have the property that φ−1 is
also a homomorphism; these are called algebra isomorphisms. A subalgebra
of an algebra a is a linear subspace b ⊂ a that contains I and is closed under
the product.

Lie algebras, Lie algebra homomorphisms, and isomorphisms have already
been defined in Section 2.1. A sub-Lie-algebra is a linear subspace h ⊂ g such
that

A,B ∈ h implies [A,B] ∈ h.

If g is an algebra, then g, equipped with the commutator map [ · , · ], is a Lie
algebra. As the example in Section 2.1 shows. Lie algebras need not be an
algebras.

A representation of an algebra a is a linear space V together with a map
a× V → V that satisfies

(i) (A, v) 7→ Av is bilinear,

(ii) Iv = v,

(iii) A(Bv) = (AB)v.

If a is a complex algebra, then we require V to be a linear space over C, but
even when a is a real algebra, it is often useful to allow for the case that V is
a linear space over C. In this case, bilinearity means real linearity in the first
argument and complex linearity in the second argument. We speak of real
or complex representations depending on whether V is a linear space over R
or C.

A representation V of an algebra a gives in a natural way rise to an
algebra homomorphism π : a→ L(V ) defined as

π(A)v := Av (A ∈ a, v ∈ V ).

Conversely, given an algebra homomorphism π : a → L(V ) we can equip
V with the structure of a representation by defining Av := π(A)v. Thus, a
representation V of an algebra a is equivalent to a pair (V, π) where V is a
linear space and π : a → L(V ) is an algebra homomorphism. A representa-
tion (V, π) is faithful if π is an isomorphism between a and the subalgebra
π(a) = {π(A) : A ∈ a} of L(V ).

Representations of Lie algebras have already been defined in Section 2.2.
If V is a complex representation of a real algebra or Lie algebra a, then
the image of a under π is only a real subspace of L(V ). We can define a
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complex algebra or Lie algebra aC whose elements can formally be written as
A+iB with A,B ∈ a; this is called the complexification of a. Then π extends
uniquely to a homomorphism from aC to L(V ), see [Hal03, Prop. 3.39], so V
is also a representation of aC.

Every algebra has a faithful representation. Indeed, a together with the
map (A,B) 7→ AB is a representation of itself, and it is not hard to see (using
our assumption that I ∈ a) that this representation is faithful. Lie algebras
can be represented on themselves in a construction that is very similar to the
one for algebras.

Lemma 15 (Lie algebra represented on itself) A Lie algebra g, equipped
with the map (A,B) 7→ [A,B], is a representation of itself.

Proof It will be convenient to use somewhat different notation for the Lie
bracket. If g is a Lie algebra and X ∈ g, then we define adX : g→ g by

adX(A) := [X,A].

We need to show that g 3 X 7→ adX ∈ L(g) is a Lie algebra homomor-
phism. Bilinearity follows immediately from the bilinear property (i) of the
Lie bracket, so it remains to show that

ad[X,Y ](Z) = adX(adY (Z))− adY (adX(Z)).

This can be rewritten as

[[X, Y ], Z] = [X, [Y, Z]]− [Y, [X,Z]].

Using also the skew symmetric property (ii) of the Lie bracket, this can be
rewritten as

0 = [Z, [X, Y ]] + [X, [Y, Z]] + [Y, [Z,X]],

which is the Jacobi identity.

In general, representing a Lie algebra on itself as in Lemma 15 need not
yield a faithful representation. (For example, any abelian algebra is also a
Lie algebra and for such Lie algebras adX = 0 for each X.) By definition,
the center of a Lie algebra g is the set

{X ∈ g : [X,A] = 0 ∀A ∈ g}. (A.1)

We say that the center is trivial if it contains only the zero element. If g has
a trivial center, then the representation X 7→ adX of g on itself is faithful.
Indeed, adX = adY implies [X,A] = [Y,A] for all A ∈ g and hence X − Y is
an element of the center of g. If the center is trivial, this implies X = Y .
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A.3 Relation between Lie groups and Lie algebras

Let V be a linear space and let G ⊂ GL(V ) be a matrix Lie group. By
definition, the Lie algebra g of G is the space of all matrices A such that
there exists a smooth curve γ in G with

γ(0) = I and ∂
∂t
γ(t)

∣∣
t=0

= A.

In manifold terminology, this says that g is the tangent space to G at I. For
any matrix A, we define

eA :=
∞∑
k=0

1

n!
An. (A.2)

The following lemma follows from [Hal03, Cor. 3.46]. The main idea be-
hind this lemma is that the elements of the Lie algebra act as “infinitesimal
generators” of the Lie group.

Lemma 16 (Exponential formula) Let g be the Lie algebra of a Lie group
G ⊂ GL(V ). Then the following conditions are equivalent.

(i) A ∈ g

(ii) etA ∈ G for all t ∈ R.

The following lemma (a precise proof of which can be found in [Hal03,
Thm 3.20]) says that our terminology is justified.

Lemma 17 (Lie algebra property) The Lie algebra of any matrix Lie
group is a real Lie algebra.

Proof (sketch) Let λ ∈ R and A ∈ g. By assumption, there exists a smooth
curve γ such that γ(0) = I and ∂

∂t
γ(t)

∣∣
t=0

= A. But now t 7→ γ(λt) is also

smooth and ∂
∂t
γ(λt)

∣∣
t=0

= λA, showing that g is closed under multiplication
with real scalars.

Also, if A,B ∈ g, then in the limit as t→ 0,

etAetB =
(
(I + tA+O(t2)

)(
(I + tB +O(t2)

)
= I + (A+B)t+O(t2),

which suggests that A + B lies in the tangent space to G at I; making this
idea precise proves that indeed A+B ∈ g, so g is a real linear space.

To complete the proof, we must show that [A,B] ∈ g for all A,B ∈ g. It
is easy to see that for any A,B ∈ g, as t→ 0

[etA, etB] = t2[A,B] +O(t3),
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and hence

etAetBe−tAe−tB = etA{e−tAetB + [etB, e−tA]}e−tB = I + t2[A,B] +O(t3).

Since etAetBe−tAe−tB ∈ G, this suggests that [A,B] lies in the tangent space
to G at I.

By [Hal03, Cor. 3.47], if g is the Lie algebra of a Lie group G, then there
exist open neighbourhoods 0 ∈ O ⊂ g and I ∈ U ⊂ G such that the map

O 3 A 7→ eA ∈ U

is a homeomorphism (a continuous bijection whose inverse is also continuous).
The identity component G0 of a Lie group G is the connected component that
contains the identity. By [Hal03, Prop. 1.10], G0 is a subgroup11 of G. If U
is an open neighbourhood of I, then each element of G0 can be written as
the product of finitely many elements of U . In particular, if G is connected,
then U generates G. Therefore (see [Hal03, Cor. 3.47]), if G is a connected
Lie group, then each element X ∈ G can be written as

X = eA1 · · · eAn (A.3)

for some A1, . . . , An ∈ g. As [Hal03, Example 3.41] shows, even if G is
connected, it is in general not true that for each A,B ∈ g there exists a
C ∈ g such that eAeB = eC and hence in general {eA : A ∈ g} need not be a
group; in particular, this is not always G.

Anyway, the Lie algebra uniquely characterizes the local structure of a Lie
group, so it should be true that if two Lie groups G and H are isomorphic,
then their Lie algebras g and h are also isomorphic. Indeed, by [Hal03,
Thm. 3.28], each Lie group homomorphism Φ : G→ H gives rise to a unique
homomorphism φ : g→ h of Lie algebras such that

Φ(eA) = eφ(A) (A ∈ g). (A.4)

In general, the converse conclusion cannot be drawn, i.e., two different Lie
groups may have the same Lie algebra. By definition, a Lie group G is simply
connected if it is connected and “has no holes”, i.e., every continuous loop
can be continuously shrunk to a point. (E.g., the surface of a ball is simply
connected but a torus is not.) We cite the following theorem from [Hal03,
Thm. 5.6].

11In fact, G0 is a normal subgroup -see formula (A.9) below for the definition of a normal
subgroup.
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Theorem 18 (Simply connected Lie groups) Let G and H be matrix
Lie groups with Lie algebras g and h and let φ : g→ h be a homomorphism of
Lie algebras. If G is simply connected, then there exists a unique Lie group
homomorphism Φ : G→ H such that (A.4) holds.

In particular ([Hal03, Cor. 5.7]), this implies that two simply connected
Lie groups are isomorphic if and only if their Lie algebras are isomorphic.
Every connected Lie group G has a universal cover (H,Φ) (this is stated
without proof in [Hal03, Sect. 5.8]), which is a simply connected Lie group
H together with a Lie group homomorphism Φ : H → G such that the asso-
ciated Lie algebra homomorphism as in (A.4) is a Lie algebra isomorphism.
The following lemma says that such a universal cover is unique up to natural
isomorphisms.

Lemma 19 (Uniqueness of the universal cover) Let G be a connected
Lie group and let (Hi,Φi) (i = 1, 2) be universal covers of G. Then there
exists a unique Lie group isomorphism Ψ : H1 → H2 such that Ψ(Φ1(A)) =
Φ2(A) (A ∈ G).

Proof Let φi : g → hi denote the Lie algebra homomorphism associated
with Φi as in (A.4). If a Lie group isomorphism Ψ as in the lemma exists,
then the associated Lie algebra isomorphism ψ must satisfy ψ ◦ φ1 = φ2.
By assumption, φi (i = 1, 2) are isomorphisms, so setting ψ := φ2 ◦ φ−1

1

defines a Lie algebra isomorphism from h1 to h2. By assumption, H1 is simply
connected, so by Theorem 18, there exists a unique Lie group homomorphism
Ψ : H1 → H2 such that Ψ(eA) = eψ(A) (A ∈ h1). Similarly, there exists a
unique Lie group homomorphism Ψ̃ : H2 → H1 such that Ψ̃(eA) = eψ

−1(A)

(A ∈ h2). Now

Ψ̃(Ψ(eA)) = Ψ̃(eψ(A)) = eψ
−1◦ψ(A) = eA (A ∈ h1)

and similarly Ψ(Ψ̃(eA)) (A ∈ h2), which (using the fact that elements of the
form eA with A ∈ hi generate Hi) proves that Ψ is invertible and Ψ̃ = Ψ−1.

Informally, the universal cover H of G is the unique simply connected Lie
group that has the same Lie algebra as G. The universal cover of a matrix
Lie group need in general not be a matrix Lie group. Lie’s third theorem
[Hal03, Thm 5.25] says:

Theorem 20 (Lie’s third theorem) Every real Lie algebra g is the Lie
algebra of some connected Lie group G.
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By [Hal03, Conclusion 5.26], we can even take G to be a matrix Lie group,
and by restricting to the identity component we can take G to be connected.
By going to the universal cover, we can also take G to be simply connected,
but in this case we may loose the property that G is a matrix Lie group.
Anyway, we can conclude:

There is a one-to-one correspondence between Lie algebras and
simply connected Lie groups. Every Lie group has a unique uni-
versal cover, which is a simply connected Lie group with the same
Lie algebra.

Let G be a Lie group with Lie algebra g and let (V,Π) be a representation
of G. Then, by (A.4), there exists a unique Lie algebra homomorphism
π : g→ L(V ) such that

Π(eA) = eπ(A) (A ∈ g). (A.5)

More concretely, one has (see [Hal03, Prop. 4.4])

π(A)v = ∂
∂t

Π(etA)v
∣∣
t=0

(A ∈ g, v ∈ V ). (A.6)

We say that (V, π) is the representation of g associated with the represen-
tation (V,Π) of G. Conversely, if G is simply connected, then by grace of
Theorem 18, through (A.5), each representation (V, π) of g gives rise to a
unique associated representation (V,Π) of G.

A.4 Relation between algebras and Lie algebras

If a is an algebra and c ⊂ a is any subset of a, then there exists a smallest
subalgebra b ⊂ a such that b contains c. This algebra consists of the linear
span of the unit element I and all finite products of elements of c. We call b
the algebra generated by c. If b = a, then we say that c generates a.

Let g be a Lie algebra. By definition, an enveloping algebra for g is a pair
(a, i) such that

(i) a is an algebra and i : g→ a is a Lie algebra homomorphism.

(ii) The image i(g) of g under i generates a.

We cite the following theorem from [Hal03, Thms 9.7 and 9.9].

Theorem 21 (Universal enveloping algebra) For every Lie algebra g,
there exists an enveloping algebra (a, i) with the following properties.
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(i) If (b, j) is an enveloping algebra of g, then there exists a unique algebra
homomorphism φ : a→ b such that φ(i(A)) = j(A) for all A ∈ g.

(ii) If {X1, . . . , Xn} is a basis for g, then a basis for a is formed by all
elements of the form

i(X1)k1 · · · i(Xn)kn ,

where k1, . . . , kn ≥ 0 are integers. In particular, these elements are
linearly independent.

An argument similar to the proof of Lemma 19 shows that the pair (a, i)
from Theorem 21 is unique up to natural isomorphisms. We call (a, i) the
universal enveloping algebra of g and use the notation U(g) := a. By prop-
erty (ii), the map i is one-to-one, so we often identify g with its image under
i and pretend g is a sub-Lie-algebra of U(g).

As an immediate consequence of property (i) of Theorem 21, we see that if
V is a representation of a Lie algebra g and π : g→ L(V ) is the associated Lie
algebra homomorphism, then there exists a unique algebra homomorphism
π : U(g) → L(V ) such that π(A) = π(A) (A ∈ g). (Here we view g as a
sub-Lie-algebra of U(g).) Conversely, of course, every representation of U(g)
is also a representation of g.

If (V, π) is a representation of a Lie algebra g, then we usually denote
the associated representation of U(g) also by (V, π), i.e., we identify the map
π with its extension π. Note, however, that a representation (V, π) of a Lie
algebra g can be faithful even when the associated representation (V, π) of
U(g) is not. Indeed, by property (ii) of Theorem 21, U(g) is always infinite
dimensional, even though g is finite dimensional, so finite-dimensional faithful
representations of g are not faithful when viewed as a representation of U(g).

A.5 Adjoints and unitary representations

Let V be a finite dimensional linear space equipped with an inner product
〈 · | · 〉, which for linear spaces over C is conjugate linear in its first argument
and linear in its second argument. Each A ∈ L(V ) has a unique adjoint
A∗ ∈ L(V ) such that

〈A∗v|w〉 = 〈v|Aw〉 (v, w ∈ V ). (A.7)

An operator A is self-adjoint (also called hermitian) if A∗ = A and skew
symmetric if A∗ = −A. A positive operator is an operator such that 〈v|Av〉 ≥
0 for all v. If V,W are linear spaces equipped with inner products, then an
operator U ∈ L(V,W ) is called unitary if it preserves the inner product, i.e.,

〈Uv|Uw〉 = 〈v|w〉 (v, w ∈ V ). (A.8)
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In particular, an operator U ∈ L(V ) is unitary if and only if it is invertible
and U−1 = U . If V is a finite dimensional linear space over C, then for v ∈ V
we define operators 〈v| ∈ L(V,C) and |v〉 ∈ L(C, V ) by

〈v|w := 〈v|w〉 and |v〉c := cv.

Then 〈v||w〉 is an operator in L(C,C) which we can identify with the complex
number 〈v|w〉. Moreover, |v〉〈w| is an operator in L(V ). An orthonormal
basis {e(1), . . . , e(n)} of V is a basis such that 〈e(i)|e(j)〉 = δij. Then

A =
∑
ij

Aij|e(i)〉〈e(j)|,

where Aij denotes the matrix of A with respect to the orthonormal basis
{e(1), . . . , e(n)}. An operator A ∈ L(V ) is normal if [A,A∗] = 0. An
operator is normal if and only if it is diagonal w.r.t. some orthonormal basis,
i.e., if it can be written as

A =
∑
i

λi|e(i)〉〈e(i)|,

where the λi are the eigenvalues of A. For operators, the following properties
are equivalent.

A is hermitian ⇔ A is normal with real eigenvalues,
A is skew symmetric ⇔ A is normal with imaginary eigenvalues,

A is positive ⇔ A is normal with nonnegative eigenvalues,
A is unitary ⇔ A is normal with eigenvalues of norm 1.

By definition, a unitary representation of a Lie group G is a complex
representation (V,Π) where V is equipped with an inner product such that
Π(A) is a unitary operator for each A ∈ G. A unitary representation of a
real Lie algebra g is a complex representation V that is equipped with an
inner product such that

π(A) is skew symmetric for all A ∈ g.

Since eπ(A) is unitary if and only if π(A) is skew symmetric, our definitions
imply that a representation (V,Π) of a Lie group G is unitary if and only if
the associated representation (V, π) of the real Lie algebra g of G is unitary.

Theorem 22 (Compact Lie groups) Let K be a compact Lie group and
let V be a representation of K. Then it is possible to equip V with an inner
product so that V becomes a unitary representation of K.
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Proof (sketch) Choose an arbitrary inner product 〈 · | · 〉 on V and define

〈v|w〉K :=

∫
〈Π(A)v|Π(A)w〉dA,

where dA denotes the Haar measure on K, which is finite by the assumption
that K is compact. It is easy to check that 〈 · | · 〉K is an inner product. In
particular, since Π(A) is invertible for each A ∈ K, we have Π(A)v 6= 0 and
hence 〈Π(A)v|Π(A)v〉 > 0 for all v ∈ V and A ∈ K. Now by the fact that
the Haar measure is invariant under the action of the group

〈Π(B)v|Π(B)w〉K =

∫
〈Π(A)Π(B)v|Π(A)Π(B)w〉dA

=

∫
〈Π(AB)v|Π(AB)w〉dA =

∫
〈Π(C)v|Π(C)w〉dC = 〈v|w〉K ,

which proves that V , equipped with the inner product 〈 · | · 〉K , is a unitary
representation of K.

The following lemma is a sort of converse to Theorem 22 since it says
that noncompact Lie groups do not have faithful unitary representations, at
least when we restrict ourselves to finite-dimensional representations, as we
do here.

Lemma 23 (Noncompact Lie groups) Let K be a noncompact Lie group
and let V be a faithful (finite dimensional) representation of K. Then it is
not possible to equip V with an inner product so that V becomes a unitary
representation of K.

Proof Equip V with an inner product and let U(V ) denote the group of all
unitary maps A : V → V . If (V,Π) is a faithful representation of K, then the
image Π(K) of K under Π is a closed subset of GL(V ) and Π : K → Π(K) is
a homeomorphism. If (V,Π) is a unitary representation, then Π(K) ⊂ U(V )
and hence by the compactness of the latter, Π(K) is compact. Since Π :
K → Π(K) is a homeomorphism, it follows that K is compact.

A ∗-algebra is a complex algebra on which there is defined an adjoint
operation A 7→ A∗ such that

(i) A 7→ A∗ is conjugate linear,

(ii) (A∗)∗ = A,

(iii) (AB)∗ = B∗A∗.
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If V is a complex finite dimensional linear space equipped with an inner prod-
uct, then L(V ), equipped with the adjoint operation (A.7), is a ∗-algebra.

A ∗-algebra homomorphism is an algebra homomorphism that satisfies

φ(A∗) = φ(A)∗.

A sub-∗-algebra of a ∗-algebra is a subalgebra that is closed under the adjoint
operation. By definition, a ∗-representation of a ∗-algebra a is a representa-
tion (V, π) such that V is equipped with an inner product and π is a ∗-algebra
homomorphism.

In general, a ∗-algebra may fail to have a faithful ∗-representation. For
finite dimensional ∗-algebras, a necessary and sufficient condition for the
existence of a faithful representation is that

A∗A = 0 implies A = 0,

but it is rather difficult to prove this; see [Swa17] and references therein.
In infinite dimensions, one needs the theory of C∗-algebras, which are ∗-
algebras equipped with a norm that in faithful representations corresponds
to the operator norm ‖A‖ = sup‖v‖≤1 ‖Av‖.

Recall the definition of an adjoint operation on a complex Lie algebra g
from Section 2.1. Recall also that we called a Lie algebra homomorphism
unitary if φ(A∗) = φ(A)∗, and that a unitary representation is a representa-
tion (V, π) such that V is equipped with an inner product and π is a unitary
Lie algebra homomorphism.

Lemma 24 (Universal enveloping ∗-algebra) Let g be a Lie-∗-algebra.
Then there exists a unique adjoint operation on its universal enveloping al-
gebra U(g) that coincides with the adjoint operation on g.

Proof Recall from Sections 2.2 that every complex linear space V has a
conjugate space which is a linear space V together with a conjugate linear
bijection V 3 v 7→ v ∈ V . If a is a complex algebra, then we can equip a
with the structure of an algebra by putting

A B := BA.

It is not hard to see that a map A 7→ A∗ defined on some algebra a is an
adjoint operation if and only if the map A 7→ A∗ from a into a is an algebra
homomorphism. By the definition of an adjoint operation on a Lie algebra,
[A∗, B∗] = −[A,B]∗ for all A,B ∈ g. It follows that the map

g 3 X 7→ X∗ ∈ U(g)

is a Lie algebra homomorphism, which by the defining property of the uni-
versal enveloping algebra (Theorem 21 (i)) extends to a unique algebra ho-
momorphism from U(g) to U(g).
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A.6 Dual, quotient, sum, and product spaces

Dual spaces

The dual V ′ of a finite dimensional linear space V over K = R or = C is the
space of all linear forms l : V → K. Each element v ∈ V naturally defines
a linear form Lv on V ′ by Lv(l) := l(v) and each linear form on V arises in
this way, so we can identify V ′′ ∼= V . If {e(1), . . . , e(n)} is a basis for V , then
setting f(i)(e(j)) := 1{i=j} defines a basis {f(1), . . . , f(n)} for V ′ called the
dual basis. If V is equipped with an inner product, then setting

〈v|w := 〈v|w〉

defines a linear form on V and V ′ := {〈v| : v ∈ V }. Through this identifica-
tion, we also equip V ′ with an inner product. Then if {e(1), . . . , e(n)} is an
orthonormal basis for V , the dual basis is an orthonormal basis for V ′. Each
linear map A : V → W gives naturally rise to a dual map A′ : W ′ → V ′

defined by
A′(l) := l ◦ A,

and indeed every linear map fromW ′ to V ′ arises in this way, i.e., L(W ′, V ′) =
{A′ : A ∈ L(V,W )}. If V,W are equipped with inner products and A ∈
L(V,W ), then

A′(〈φ|) = 〈A∗φ|,

where A∗ denotes the adjoint of A, i.e., this is the linear map A∗ ∈ L(W,V )
defined by

〈φ|Aψ〉 = 〈A∗φ|ψ〉 (φ ∈ W, ψ ∈ V ).

If (V,Π) is a representation of a Lie group G, then we can define group
homomorphism Π′ : G→ L(V ′) by

Π′(A)l := Π(A−1)′l = l ◦ Π(A−1).

In this way, the dual space V ′ naturally obtains the structure of a represen-
tation of G. Note that

Π′(AB)l = l ◦ Π((AB)−1) = l ◦ Π(A−1)Π(B−1) = Π′(A)(Π′(B)l),

proving that Π′ is indeed a group homomorphism. Similarly, if (V, π) is a
representation of a Lie algebra g, then we can equip the dual space V ′ with
the structure of a representation of g by putting

π′(A)l := −π(A)′(l) = −l ◦ π(A),
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where in this case the minus sign guarantees that

π′([A,B])l = −l ◦ π([A,B]) = −l ◦
(
π(A)π(B)− π(B)π(A)

)
= −

(
π′(B)(π′(A)l)− π′(A)(π′(B)l) = π′(A)(π′(B)l)− π′(B)(π′(A)l).

This is called the dual representation or contragredient representation of G
or g, respectively, associated with V , see [Hal03, Def. 4.21]. If two represen-
tations of G and g are associated as in (A.6), then their dual representations
are also associated.

Quotient spaces

By definition, a normal subgroup of a group G is a subgroup H such that

AH := {AB : B ∈ H} = {BA : B ∈ H} =: HA ∀A ∈ G, (A.9)

or equivalently, if B ∈ H implies ABA−1 ∈ H for all A ∈ G. Sets of the form
AH and HA are called left and right cosets, respectively. If H is a normal
subgroup, then left cosets are right cosets and vice versa, and we can equip
the set

G/H :=
{
AH : A ∈ G} =

{
HA : A ∈ G}

of all cosets with a group structure such that

(AH)(BH) = (AB)H.

We call G/H the quotient group of G and H. Note that as a set this is
obtained from G by dividing out the equivalence relation

A ∼ B ⇔ A = BC for some C ∈ H.

If V is a linear space and W ⊂ V is a linear subspace, then we can define
an equivalence relation on V by setting

v1 ∼ v2 ⇔ v1 = v2 + w for some w ∈ W.

The equivalence classes with respect to this equivalence relation are the sets
of the form

v +W := {v + w : w ∈ W}

and we can equip the space

V/W := {v +W : v ∈ V }
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with the structure of a linear space by setting

a1(v1 +W ) + a2(v2 +W ) :=
(
a1v1 + a2v2

)
+W.

An invariant subspace of a representation V of a Lie group G, Lie algebra
g, or algebra a is a linear space W ⊂ V such that Aw ∈ W for all w ∈ W
and A from G, g, or a, respectively. If W is an invariant subspace, then we
can equip the quotient space V/W with the structure of a representation by
setting

A(v +W ) := (Av) +W.

Note that this is a good definition since v1 = v2 +w for some w ∈ W implies
Av1 = Av2 + Aw where Aw ∈ W by the assumption that W is invariant.

A left ideal (resp. right ideal) of an algebra a is a linear subspace i ⊂ a
such that AB ∈ i (resp. BA ∈ i) for all A ∈ a and B ∈ i. An ideal is a linear
subspace that is both a left and right ideal. If i is an ideal of a, then we can
equip the quotient space a/i with the structure of an algebra by putting

(A+ i)(B + i) := (AB) + i.

To see that this is a good definition, write A1 ∼ A2 if A1 = A2 +B for some
B ∈ i. Then A1 ∼ A2 and B1 ∼ B2 imply that A1 = A2 +C and B1 = B2 +D
for some C,D ∈ i and hence

A1B1 = (A2 + C)(B2 +D) = A2B2 +
(
CB2 + A2D + CD)

with CB2 + A2D + CD ∈ i, so A1B1 ∼ A2B2. If a is a ∗-algebra, then a
∗-ideal of a is an ideal i such that A ∈ i implies A∗ ∈ i. If i is a ∗-ideal, then
we can equip the quotient algebra a/i with an adjoint operation by putting

(A+ i)∗ := A∗ + i.

A linear subspace h of a Lie algebra g is said to be an ideal if [A,B] ∈ h
for all A ∈ g and B ∈ h. Note that this automatically implies that also
[B,A] = −[A,B] ∈ h. If h is an ideal of a Lie algebra, then we can equip the
quotient space g/h with the structure of a Lie algebra by putting

[A+ h, B + h] := [A,B] + h.

The proof that this is a good definition is the same as for algebras.
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The direct sum

The direct sum V1 ⊕ · · · ⊕ Vn of linear spaces V1, . . . , Vn has already been
defined in Section 2.6. There is a natural isomorphism between V1⊕· · ·⊕Vn
and the Carthesian product

V1 × · · · × Vn =
{(
φ(1), . . . , φ(n)

)
: φ(i) ∈ Vi ∀i

}
,

which we equip with a linear structure by defining

a
(
φ(1), . . . , φ(n)

)
+ b
(
ψ(1), . . . , ψ(n)

)
:=
(
aφ(1) + bφ(1), . . . , aφ(n) + bφ(n)

)
.

If V1, . . . , Vn are equipped with inner products, then we require that the inner
product on V1 ⊕ · · · ⊕ Vn is given by

〈φ(1) + · · ·+ φ(n)|ψ(1) + · · ·+ ψ(n)〉 :=
n∑
k=1

〈φ(k)|ψ(k)〉, (A.10)

which has the effect that V1, . . . , Vn are (mutually) orthogonal. One has the
natural isomorphism

(V1 ⊕ V2)/V2
∼= V1.

In general, given a subspace V1 of some larger linear space W , there are
many possible ways to choose another subspace V2 such that W = V1 ⊕ V2

and hence W ∼= (W/V1)⊕ V1.
If V is a linear subspace of some larger linear space W , and W is equipped

with an inner product, then we define the orthogonal complement of V as

V ⊥ := {w ∈ W : 〈v|w〉 = 0 ∀v ∈ V }.

Then one has the natural isomorphisms

W/V ∼= V ⊥ and W ∼= V ⊕ V ⊥,

where the inner product V ⊕ V ⊥ is given in terms of the inner products on
V and V ⊥ as in (A.10). Thus, given a linear subspace V1 of a linear space W
that is equipped with an inner product, there is a canonical way to choose
another subspace V2 such that W = V1 ⊕ V2.

If V1, . . . , Vn are representations of the same Lie group, Lie algebra, or
algebra, then we equip V1 ⊕ · · · ⊕ Vn with the structure of a representation
by putting

A
(
φ(1) + · · ·+ φ(n)

)
:= Aφ(1) + · · ·+ Aφ(n).
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If V,W are representations, then W is an invariant subspace of V ⊕W and
one has the natural isomorphism of representations (V ⊕W )/W ∼= V .

If a1, . . . , an are algebras, then we equip their direct sum a1 ⊕ · · · ⊕ an
with the structure of an algebra by putting(
A(1)+· · ·+A(n)

)(
B(1)+· · ·+B(n)

)
:= A(1)B(1)+· · ·+A(n)B(n). (A.11)

If a, b are algebras, then b is an ideal of a ⊕ b and one has the natural
isomorphism (a ⊕ b)/b ∼= a. Note that b is not a subalgebra of a ⊕ b since
I 6∈ b (unless a = {0}). For ∗-algebras, we also put(

A(1) + · · ·+ A(n)
)∗

:=
(
A(1)∗ + · · ·+ A(n)∗

)
.

The direct sum of Lie algebras has already been defined in Section 2.6. It
is easy to see that this is consistent with the definition of the direct sum of
algebras.

The tensor product

The tensor product of two (or more) linear spaces has already been defined in
Section 2.6. A proof similar to the proof of Lemma 19 shows that the tensor
product is unique up to natural isomorphisms, i.e., if V ⊗̃W and (φ, ψ) 7→
φ⊗̃ψ are another linear space and bilinear map which satisfy the defining
property of the tensor product, then there exists a unique linear bijection
Ψ : V ⊗W → V ⊗̃W such that Ψ(V ⊗W ) = V ⊗̃W .

If V,W are representations of the same Lie group, then we equip V ⊗W
with the structure of a representation by putting

A(φ⊗ ψ) := Aφ⊗ Aψ. (A.12)

If V,W are representations of the same Lie algebra or algebra, then we equip
V ⊗W with the structure of a representation by putting

A(φ⊗ ψ) := Aφ⊗ ψ + φ⊗ Aψ. (A.13)

The reason why we define things in this way is that in view of (A.6), if g is
the Lie algebra of G, then the representation of g defined in (A.13) is the
representation of g that is associated with the representation of G defined in
(A.12). Note that (A.13) is bilinear in φ and ψ and hence by the defining
property of the tensor product uniquely defines a linear operator on V ⊗W .

If a, b are algebras, then we equip their tensor product a ⊗ b with the
structure of an algebra by putting(

A(1)⊗B(1)
)(
A(2)⊗B(2)

)
:=
(
A(1)A(2)⊗B(1)B(2)

)
.

58



Using the defining property of the tensor product, one can show that this
unambiguously defines a linear map

(a⊗ b)2 3 (A,B) 7→ AB ∈ a⊗ b.

We can identify a and b with the subalgebras of a⊗ b given by

a ∼= {A⊗ I : A ∈ a} and b ∼= {I ⊗B : B ∈ b}.

Note that if we identify a and b with subalgebras of a⊗b, then every element
of a commutes with every element of b. If a, b are ∗-algebras, then we equip
the algebra a⊗ b with an adjoint operation by setting

(A⊗B)∗ := (A∗ ⊗B∗).

If g and h are Lie algebras, then the universal enveloping algebra of their
direct sum is naturally isomorphic to the tensor product of their universal
enveloping algebras:

U(g⊕ h) ∼= U(g)⊗ U(h). (A.14)

Indeed, if {X1, . . . , Xn} is a basis for g and {Y1, . . . , Ym} is a basis for h, then
we can define a bilinear map (A,B) 7→ A⊗B from U(g)×U(h) into U(g⊕h)
by (

Xk1
1 · · ·Xkn

n , Y l1
1 · · ·Y lm

m

)
7→ Xk1

1 · · ·Xkn
n ⊗ Y

l1
1 · · ·Y lm

m := Xk1
1 · · ·Xkn

n Y l1
1 · · ·Y lm

m .

where we view g and h as sub-Lie-algebras of g⊕ h such that [X, Y ] = 0 for
each X ∈ g and Y ∈ h. In view of Theorem 21, the space U(g⊕ h) together
with this bilinear map is a realization of the tensor product U(g)⊗ U(h).

On a philosophical note, recall that elements of a Lie algebra are related
to elements of a matrix Lie group via an exponential map. We can view
(A.14) as a reflection of the property of the exponential map that converts
sums into products.

If V and W are representations of algebras a and b, respectively, then we
can make V ⊗W into a representation of a⊗ b by setting

(A⊗B)(φ⊗ ψ) := (Aφ)⊗ (Bψ). (A.15)

Again, by bilinearity and the defining property of the tensor product, this is a
good definition. Note that this is consistent with (A.14) and our definition in
(2.29) where we showed that if V and W are representations of Lie algebras
g and h, then V ⊗W is naturally a representation of g ⊕ h. On the other
hand, one should observe that in the special case that a = b, our present
construction differs from our earlier construction in (A.13).
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A.7 Irreducible representations

Let g be a Lie algebra on which an adjoint operation is defined, and let h :=
{a ∈ g : a∗ = −a} denote the real sub-Lie-algebra12 consisting of all skew-
symmetric elements of g. It is not hard to see that g is the complexification
of h, i.e., each a ∈ g can uniquely be written as a = a1 + ia2 with a1, a2 ∈
h.13 Let {x1, . . . ,xn} be a basis for g. The Lie bracket on g is uniquely
characterized by the commutation relations

[xi,xj] =
n∑
j=1

cijkxk, (A.16)

where cijk are the structure constants (see (A.16)). Likewise, the adjoint
operation on g is uniquely characterized by its action on basis elements

x∗i =
∑
j

dijxj, (A.17)

where dij is another set of constants.
By Theorem 20, the real Lie algebra h is the Lie algebra of some Lie

group G. By going to the universal cover, we can take G to be simply
connected, in which case it is uniquely determined by h. Conversely, if G is
a simply connected Lie group, h is its real Lie algebra, and g := hC is the
complexification of h, then we can equip g with an adjoint operation such
that the set of skew symmetric elements is exactly h, by putting (a1+ia2)∗ :=
−a1 + ia2 for each a1, a2 ∈ h.

If V is a linear space and X1, . . . , Xn ∈ L(V ) satisfy (A.16), then there ex-
ists a unique Lie algebra homomorphism π : g→ L(V ) such that π(xi) = Xi

(i = 1, . . . , n). If V is equipped with an inner product and the operators
X1, . . . , Xn moreover satisfy (A.17), then π is a unitary representation. By
Theorem 21 (i) and Lemma 24, π can in a unique way be extended to a
∗-algebra homomorphism π : U(g) → L(V ). Moreover, if G is the simply
connected Lie group associated with h, then by Theorem 18, there exists
a unique Lie group homomorphism Π : G → L(V ) such that (A.5) holds,
so (V,Π) is a representation of G. Since every element of h is skew sym-
metric, (V, π) and hence also (V,Π) are unitary representations of h and G,
respectively.

12To see that this is a sub-Lie-algebra, note that a,b ∈ h imply [a,b]∗ = −[a∗,b∗] and
hence [a,b] ∈ h.

13Equivalently, we may show that each a ∈ g can uniquely be written as a = Re(a) +
iIm(a) with Re(a), Im(a) self-adjoint. This follows easily by putting Re(a) := 1

2 (a + a∗)
and Im(a) := 1

2 i(a
∗ − a).
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Let W ⊂ V be a linear subspace. It is not hard to see that

W is an invariant subspace of (V,Π)
⇔ W is an invariant subspace of (V, π)
⇔ W is an invariant subspace of (V, π).

We say that V is irreducible if its only invariant subspaces are {0} and V .
Let V,W be two representations of the same Lie group G, Lie algebra g, or

algebra a. Generalizing our earlier definition for ie algebras, a homomorphism
of representations (of any kind) is a linear map φ : V → W such that

φ(av) = aφ(v) (A.18)

for all a ∈ G, a ∈ g, or a ∈ a, respectively. Homomorphisms of representa-
tions are called intertwiners of representations. If φ is a bijection, then its
inverse is also an intertwining map. In this case we call φ an isomorphism
and say that the representations are equivalent (or isomorphic). If G is a
simply connected Lie group, g its associated complexified Lie algebra, and
U(g) its universal enveloping algebra, then it is not hard to see that

(A.18) holds ∀a ∈ G ⇔ (A.18) holds ∀a ∈ g ⇔ (A.18) holds ∀a ∈ U(g).

The following result can be found in, e.g., [Hal03, Thm 4.29]. In the
special case of complex Lie algebras, we have already stated this in Proposi-
tion 4.

Proposition 25 (Schur’s lemma)

(a) Let V and W be irreducible representations of a Lie group, Lie algebra,
or algebra, and let φ : V → W be an intertwiner. Then either φ = 0
or φ is an isomorphism.

(b) Let V be an irreducible complex representation of a Lie group, Lie al-
gebra, or algebra, and let φ : V → V be an intertwiner. Then φ = λI
for some λ ∈ C.

By definition, the center of an algebra is the subalgebra C(a) := {C ∈
a : [A,C] = 0 ∀A ∈ a}. The center is trivial if C(a) = {λI : λ ∈ K}. The
following is adapted from [Hal03, Cor. 4.30].

Corollary 26 (Center) Let (V, π) be an irreducible complex representation
of an algebra a and let C ∈ C(a). Then π(C) = λI for some λ ∈ C.

Proof Define φ : V → V by φv := π(C)v. Then φ(Av) = π(C)π(A)v =
π(CA)v = π(AC)v = π(A)π(C)v = A(φv) for all A ∈ a, so φ : V → V is an
intertwiner. By part (b) of Schur’s lemma, φ = λI for some λ ∈ C.
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A.8 Semisimple Lie algebras

A Lie algebra g is called irreducible (see [Hal03, Def. 3.11]) if its only ideals
are {0} and g, and simple if it is irreducible and has dimension dim(g) ≥ 2.
A Lie algebra is called semisimple if it can be written as the direct sum
of simple Lie algebras. Recall the definition of the center of a Lie algebra
in (A.1).

Lemma 27 (Trivial center) The center of a semisimple Lie algebra is
trivial.

Proof If g is simple and A is an element of its center, then the linear space
spanned by A is an ideal. Since dim(g) ≥ 2 and its only ideals are {0}
and g, this implies that A = 0. If g = g1 ⊕ · · · ⊕ gn is the direct sum of
simple Lie algebras, then we can write any element A of the center of g as
A = A(1) + · · · + A(n) with A(k) ∈ g. By the definition of the Lie bracket
on g (see (2.24)), A(k) lies in the center of g for each k, and hence A = 0 by
what we have already proved.

The following proposition is similar to [Hal03, Prop. 7.4].

Proposition 28 (Inner product on Lie algebra) Let g be a Lie algebra
on which an adjoint operation is defined, let h := {a ∈ g : a∗ = −a}, and let
G be the simply connected Lie group with Lie algebra h. Assume that G is
compact. Then the Lie algebra g, equipped with the map

g 3 x 7→ adx ∈ L(g),

is a faithful representation of itself. It is possible to equip g with an inner
product such that this is a unitary representation, i.e., adx∗ = (adx)∗ (x ∈ g).

Proof By [Hal03, Prop. 7.7], the center of g is trivial. By Lemma 15 and the
remarks below it, it follows that g, equipped with the map g 3 adX ∈ L(g),
is a faithful representation of itself. This representation naturally gives rise
to a representation of G. By assumption, G is compact, so by Theorem 22,
we can equip g with an inner product so that this representation is unitary.
It follows that the representation of h on g is also unitary and hence the
representation of g on itself is a unitary representation.

The following theorem follows from [Hal03, Thm 7.8].

Theorem 29 (Semisimple algebras) Let G be a compact simply connected
Lie group and let g be the complexification of its Lie algebra. Then g is
semisimple.
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Proof (main idea) If g is not simple, then it has some ideal i that is neither
{0} nor g. Let i⊥ denote the orthogonal complement of i with respect to the
inner product on g defined in Proposition 28. It is shown in [Hal03, Prop. 7.5]
that i⊥ is an ideal of g and one has g ∼= i ⊕ i⊥, where ⊕ denotes the direct
sum of Lie algebras. Continuing this process, one arrives at a decomposition
of g as a direct sum of simple Lie algebras.

In fact, the converse statement to Theorem 29 also holds: if g is a semisim-
ple complex Lie algebra, then it is the complexification of the Lie algebra of
a compact simply connected Lie group. This is stated (with references for a
proof) in [Hal03, Sect. 10.3].

Let G be a compact simply connected Lie group, let h be its real Lie
algebra, let g := hC be the complexification of h, and let U(g) denote the
universal enveloping algebra of g. The Casimir element is the element C ∈
U(g) defined as

c := −
∑
j

x2
j ,

where {x1, . . . ,xn} is a basis for h that is orthonormal with respect to the
inner product from Proposition 28.14 We cite the following result from [Hal03,
Prop. 10.5].

Proposition 30 (Casimir element) The definition of the Casimir element
does not depend on the choice of the orthonormal basis {x1, . . . ,xn} of h.
Moreover c lies in the center of U(g).

In irreducible representations, the Casimir element has a simple form.

Lemma 31 (Representations of Casimir element) For each irreducible
representation (V, π) of g, there exists a constant λV ≥ 0 such that π(c) =
λV I.

Proof Proposition 30 and Corollary 26 imply that for each irreducible rep-
resentation (V, π) of U(g), there exists a constant λ ∈ C such that π(c) = λI.
By Theorem 22, we can equip V with an inner product such that it is a uni-
tary representation of h. This means that xj is skew symmetric and hence
ixj is hermitian, so c =

∑
i(ixj)

2 is a positive operator. In particular, its
eigenvalues are ≥ 0.

14The inner product from Proposition 28 is not completely unique; at best it is only
determined up to a multiplicative constant. So the Casimir operator depends on the
choice of the inner product, but once this is fixed, it does not depend on the choice of the
orthonormal basis.
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A.9 Some basic matrix Lie groups

For any finite-dimensional linear space V over V = R or = C, we let GL(V )
denote the general linear group of all invertible linear maps A : V → V . In
particular, we write GL(n;R) = GL(Rn) and GL(n;C) = GL(Cn).

The special linear group SL(V ) is defined as

SL(V ) :=
{
A ∈ GL(V ) : det(A) = 1

}
.

Again, we write SL(n;R) = SL(Rn) and SL(n;C) = SL(Cn). If V is a finite-
dimensional linear space over C and V is equipped with an inner product
〈 ·| · 〉, then we call

U(V ) := {A ∈ L(V ) : A is unitary}

the unitary group and

SU(V ) := {A ∈ U(V ) : det(A) = 1}

the special unitary group, and write U(n) := U(Cn) and SU(n) := SU(Cn).
If V is a finite-dimensional linear space over R and V is equipped with

an inner product 〈 ·| · 〉, then an operator O ∈ L(V ) that preserves the inner
product as in (A.8) is called orthogonal. (This is the equivalent of unitarity
in the real setting.) We call

O(V ) := {A ∈ L(V ) : A is orthogonal}

denote the orthogonal group and

SO(V ) := {A ∈ O(V ) : det(A) = 1}

the special orthogonal group, and write O(n) := O(Rn) and SO(n) := SO(Rn).
There also exists a group O(n;C), which consists of all complex matrices that
preserve the bilinear form (v, w) :=

∑
i viwi. Not that this is not the inner

product on Cn; as a result O(n;C) is not the same as U(n).
Unitary operators satisfy |det(A)| = 1 and orthogonal operators satisfy

det(A) = ±1. The group O(3) consists of rotations and reflections (and
combinations thereof) while SO(3) consists only of rotations.

By [Hal03, Prop. 3.23], for K = R or = C, the Lie algebra of GL(n,K)
is the space Mn(K) of all K-valued n × n matrices, and the Lie algebra of
SL(n,K) is given by

sl(n,K) = {A ∈Mn(K) : tr(A) = 0}.
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By [Hal03, Prop. 3.24], the Lie algebras of U(n) and O(n) are given by

u(n) = {A ∈Mn(C) : A∗ = −A} and o(n) = {A ∈Mn(R) : A∗ = −A}.

Moreover, again by [Hal03, Prop. 3.24], the Lie algebras of SU(n) and SO(n)
are given by

su(n) = {A ∈Mn(C) : A∗ = −A, tr(A) = 0} and so(n) = o(n).

By [Hal03, formula (3.17)], the complexifications of the real Lie algebras
introduced above are given by

gl(n,R)C∼= gl(n,C),

u(n)C∼= gl(n,C),

su(n)C∼= sl(n,C),

sl(n,R)C∼= sl(n,C),

so(n,R)C∼= so(n,C).

As mentioned in [Hal03, Sect. 1.3.1], the following Lie groups are compact:

O(n), SO(n), U(n), and SU(n).

By [Hal03, Prop 1.11, 1.12, and 1.13] and [Hal03, Exercise 1.13], the following
Lie groups are connected:

GL(n;C) SL(n;C) U(n) SU(n), and SO(n).

By [Hal03, Prop. 13.11], the group SU(n) is simply connected. By [Hal03,
Example 5.15], SU(2) is the universal cover of SO(3).

Of further interest are the real and complex symplectic groups SP(n,R)
and SP(n,C), and the compact symplectic group SP(n); for their definitions
we refer to [Hal03, Sect. 1.2.4].

A.10 The Lie group SU(1,1)

Let us define a Minkowski form { · , · } : C2 → C by

{v, w} := v∗1w1 − v∗2w2.

Note that this is almost identical to the usual definition of the inner product
on C2 (in particular, it is conjugate linear in its first argument and linear in

65



its second argument), except for the minus sign in front of the second term.
Letting

M :=

(
1 0
0 −1

)
,

we can write
{v, w} = 〈v|M |w〉,

where 〈 · , · 〉 is the usual inner product. The Lie group SU(1, 1) is the matrix
Lie group consisting of all matrices Y ∈ L(C2) with determinant 1 that
preserve this Minkowski form, i.e.,

det(Y ) = 1 and {Y v, Y w} = {v, w} (v, w ∈ C2).

The second condition can be rewritten as 〈Y v|M |Y w〉 = 〈v|M |w〉 which
holds for all v, w if and only if

Y ∗MY = M, (A.19)

where Y ∗ denotes the usual adjoint of a matrix. Since

(etA)∗MetA = M + t(A∗M +MA) +O(t2),

it is not hard to see that a matrix of the form Y = etA satisfies (A.19) if and
only if

A∗M +MA = 0 ⇔ MA∗M = −A,
and the Lie algebra su(1, 1) associated with SU(1, 1) is given by

su(1, 1) =
{
A ∈M2(C) : MA∗M = −A, tr(A) = 0

}
.

It is easy to see that

A =

(
A11 A12

A21 A22

)
⇒ MA∗M =

(
A11 −(A21)∗

−(A12)∗ A22

)
and in fact the map A 7→MA∗M satisfies the axioms of an adjoint operation.
Let su(1, 1)C denote the Lie algebra

su(1, 1)C :=
{
A ∈M2(C) : tr(A) = 0

}
,

equipped with the adjoint operation A 7→ MA∗M . Then su(1, 1) is the real
sub-Lie algebra of su(1, 1)C consisting of all elements that are skew symmetric
with respect to the adjoint operation A 7→MA∗M .

A basis for su(1, 1)C is formed by the matrices in (2.8), which satisfy the
commutation relations (2.7). The adjoint operation A 7→MA∗M leads to the
adjoint relations (2.9). Some elementary facts about the Lie algebra su(1, 1)C
are already stated in Section 2.4. Note that the definition of the “Casimir
operator” in (2.10) does not follow the general definition for compact Lie
groups in Proposition 30, but is instead defined in an analogous way, replacing
the inner product by a Minkowski form.
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A.11 The Heisenberg group

Consider the matrices

X :=

 0 1 0
0 0 0
0 0 0

 , Y :=

 0 0 0
0 0 1
0 0 0

 , Z :=

 0 0 1
0 0 0
0 0 0

 .

We observe that

XX = 0, XY = Z, XZ = 0,
Y X = 0, Y Y = 0, Y Z = 0,
ZX = 0, ZY = 0, ZZ = 0.

The Heisenberg group H [Hal03, Sect. 1.2.6] is the matrix Lie group consisting
of all 3× 3 real matrices of the form

B = I + xX + yY + zZ (x, y, z ∈ R).

To see that this is really a group, we note that if B is as above, then its
inverse B−1 is given by

B−1 = −xX − yY + (xy − z)Z.

It is easy to see that {X, Y, Z} is a basis for the Lie algebra h of H. In fact,
the expansion formula for et(xX+yY+zZ) terminates and

et(xX+yY+zZ) = I + t(xX + yY + zZ) + 1
2
t2xyZ (t ≥ 0).

The basis elements X, Y, Z satisfy the commutation relations

[X, Y ] = Z, [X,Z] = 0, [Y, Z] = 0.

Thus, we can abstractly define the Heisenberg Lie algebra as the real Lie
algebra h with basis elements x,y, z that satisfy the commutation relations

[x,y] = z, [x, z] = 0, [y, z] = 0. (A.20)

Representations of the Heisenberg algebra have already been discussed in
Subsection 2.5.
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