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1 C∗-Algebras

By definition, an algebra is a linear space A over K = R or C on which there is defined a
product A2 ∋ (A,B) 7→ AB ∈ A such that

(i) (AB)C = A(BC) (A,B,C ∈ A),
(ii) A(bB + cC) = bAB + cAC (A,B,C ∈ A, b, c ∈ K),
(iii) (aA+ bB)C = aAC + bBC (A,B,C ∈ A, a, b ∈ K)

Often, it is assumed that A contains a (necessarily unique) element 1 such that

(iv) 1A = A = A1 (A ∈ A).

An algebra is abelian if
AB = BA (A,B ∈ A).

An adjoint operation is a map A 7→ A∗ such that

(v) (A∗)∗ = A (A ∈ A),

(vi) (aA+ bB)∗ = aA∗ + bB∗ (A,B ∈ A, a, b ∈ C),
(vii) (AB)∗ = B∗A∗ (A,B ∈ A).

In what follows, we reverse the term ∗-algebra for an algebra over C that is equipped with an
adjoint operation such that (i)–(vii) hold. A C∗-algebra is a ∗-algebra equipped with a norm
∥ · ∥ such that

(viii) A is complete in the norm ∥ · ∥,
(ix) ∥AB∥ ≤ ∥A∥∥B∥ (A,B ∈ A),
(x) ∥A∗A∥ = ∥A∥2.

A representation of a C∗-algebra is a Hilbert space H together with a continuous map A×H ∋
(A, ϕ) 7→ Aϕ ∈ H such that

1. (AB)ϕ = A(Bϕ) (A,B ∈ A, ϕ ∈ H),
2. A(bϕ+ cψ) = bAϕ+ cAψ (A ∈ A, ϕ, ψ ∈ H, b, c ∈ C),
3. (aA+ bB)ϕ = aAϕ+ bBϕ (A,B ∈ A, ϕ ∈ H, a, b ∈ K),
4. ⟨ϕ,Aψ⟩ = ⟨A∗ϕ, ψ⟩ (A ∈ A, ϕ, ψ ∈ H),
5. ∥A∥ = sup∥ϕ∥≤1 ∥Aϕ∥ (A ∈ A),

6. 1ϕ = ϕ (ϕ ∈ H).

Let L(H) denote the space of bounded linear operators L : H → H, equipped with the
usual adjoint operation L 7→ L∗ and the operator norm ∥A∥ := sup∥x∥≤1 ∥Ax∥. If H is a
representation of A, then setting

ℓ(A)ϕ := Aϕ (A ∈ A, ϕ ∈ H)
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defines a linear map ℓ : A → L(H) such that ℓ(1) = 1, ℓ(AB) = ℓ(A)ℓ(B), ℓ(A∗) = ℓ(A)∗, and
∥ℓ(A)∥ = ∥A∥. The image ℓ(A) := {ℓ(A) : A ∈ A} of A under this map is a closed subset of
L(H) that is isomorphic, as a C∗-algebra, to A. The Gelfand-Naimark theorem says that each
C∗-algebra has a representation H. If A is separable, then H can be taken separable too.

A map τ : A → C is a linear form if

(xi) τ(aA+ bB) = aτ(A) + bτ(B) (A,B ∈ A, a, b ∈ C).

It is called real if

(xii) τ(A∗) = τ(A) (A ∈ A).

Equivalently, (xii) says that τ(A) ∈ R for each self-adjoint A ∈ A. A positive linear form is a
real linear form such that

(xiii) τ(A∗A) ≥ 0 (A ∈ A).

Equivalently, (xiii) says that τ(A) ≥ 0 for each positive A ∈ A, i.e., for each self-adjoint A ∈ A
with σ(A) ⊂ [0,∞). If moreover

� τ(A∗A) = 0 ⇒ A = 0,

then we say that τ is faithful. A positive linear form that is normalized in the sense that

(xiv) τ(1) = 1

is called a state. If moreover

� τ(AB) = τ(BA) (A,B ∈ A),

then τ is called a pseudotrace. It can be shown that every positive linear form is continuous,
and in fact satisfies

|τ(A)| ≤ |τ(1)| ∥A∥.

Example 1 We can take A =Mn(C), the space of all complex n× n matrices, equipped with
the usual adjoint and the normalized trace τ(A) := 1

ntr(A). Then τ is a state, and moreover
a faithful pseudotrace.

Example 2 If H is a representation of A and ψ ∈ H satisfies ∥ψ∥ = 1, then setting τ(A) :=
⟨ψ,Aψ⟩ defines a state on A. Convex combinations of this sort of states are dense in the space
of all states on A.

By definition, an element X ∈ A is normal if XX∗ = X∗X. An n× n matrix X ∈Mn(C)
is normal if and only if it is diagonal with respect to an orthonormal basis of Cn. Equivalently,
this says that there exists an orthonormal basis {e1, . . . , en} of Cn such that

X =
n∑

i=1

λiPei , (1)

where λ1, . . . , λn are the eigenvalues of X and Pei denotes the orthogonal projection operator
on ei. We can define a spectral measure πX by

πX(D) =
∑

i:λi∈D
Pei (D ∈ B(C)),

where B(C) denotes the Borel-σ-algebra on C. Then (1) can formally be written

X =

∫
λπX(dλ).
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More generally,

Xk(X∗)l =

∫
λkλ

l
πX(dλ) (k, l ≥ 0). (2)

By the complex version of the Stone-Weierstrass theorem, this formula determines πX uniquely.
It turns out that (2) can be generalized to any normal element of a C∗-algebra A. More
precisely, if A is a C∗-algebra and X ∈ A satisfies XX∗ = X∗X, then there exists a unique
projection operator-valued measure πX on C such that (2) holds for each k, l. The measure
πX is called the spectral measure of X. One can show that πX is concentrated on the spectrum
of X, defined as

σ(X) :=
{
λ ∈ C : X − λ is not invertible

}
.

One has ∥X∥ = sup{|λ| : λ ∈ σ(X)} and σ(X) is a compact subset of C. A normal operator
X is self-adjoint if and only if its spectrum is real, i.e., σ(X) ⊂ R. More generally than in (2),
one has

F (X) =

∫
F (λ)πX(dλ) (3)

for any polynomial F of X and X∗. By the Stone-Weierstrass theorem, the polynomials are
dense in the space of continuous function F : σ(X) → C, equipped with the supremumnorm.
We can use this to take the right-hand side of (3) as the definition of F (X) for any continuous
function F : C → C.

2 Quantum probability

A pair (A, τ) where A is a C∗-algebra and τ is a state on A is a quantum probability space.
Here A plays more or less the role of a σ-field, τ plays more or less the role of a probability
measure, and self-adjoint operators correspond to real random variables.

Let A be a C∗-algebra. For any set X ⊂ A, we let α(X ) denote the smallest sub-C∗-
algebra (i.e., linear subspace that contains 1, that is closed under the product and adjoint
operation, and is closed in the norm) of A that contains X . Letting X ∗ := {X∗ : X ∈ X},
one has

α(X ) = span
{ n∏

i=1

Yi : Yi ∈ X ∪ X ∗
}
,

where B denotes the closure of a set B ⊂ A in the norm. In particular, we write α(X) :=
α({X}). If X is normal, then one can prove that

α(X) = {F (X) : F : C → C continuous}. (4)

If X ∈ A is self-adjoint, then we claim that setting∫
F (λ)µX(dλ) := τ

(
F (X)

)
= τ

(∫
F (λ)πX(dλ)

)
for any continuous F : R → C defines a probability measure on R that is concentrated on
σ(X). Indeed, by (xi) the map F 7→ τ

(
F (X)

)
is linear, by (xii) one has τ

(
F (X)

)
∈ R if F is

real, by (xiii) one has τ
(
F (X)

)
≥ 0 if F ≥ 0, and by (xiv) one has τ

(
F (X)

)
= 1 if F ≡ 1. In

quantum probability, a self-adjoint operator X is called an observable, and µX is interpreted
as its law.

If X1, . . . , Xn are normal operators that commute with each other, then there exists a
measure π(X1,...,Xn) on Cn such that

F (X1, . . . , Xn) =

∫
Cn

F (λ1, . . . , λn)π(X1,...,Xn)(dλ). (5)
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This formula should be interpreted as follows. First, one shows that there exists a unique
measure π(X1,...,Xn) on Cn taking values in the space of projection operators such that (5) holds
for each polynomial ofX1, . . . , Xn, X

∗
1 , . . . , X

∗
n. Next, for any continuous function F : Cn → C,

one takes (5) as the definition of F (X1, . . . , Xn), which is equivalent to what one would if one
would define F (X1, . . . , Xn) via approximation with polynomials. In general, π(X1,...,Xn) is
concentrated on σ(X1)× σ(Xn).

In particular, if X1, . . . , Xn are self-adjoint operators that commute with each other, then
setting∫

F (λ1, . . . , λn)µ(X1,...,Xn)(dλ) := τ
(
F (X1, . . . , Xn)

)
= τ

(∫
F (λ1, . . . , λn)π(X1,...,Xn)(dλ)

)
for any continuous F : R → C defines a probability measure on Rn that has the interpretation
of the joint law of the observables X1, . . . , Xn. A peculiar feature of quantum probability is
that if two observables do not commute, then their joint law is not defined. This is related
to the Heisenberg uncertaincy principle, which says that the momentum and position of a
particle cannot both simultaneously be determined with arbitrary precision.

Note that if X1, . . . , Xn are normal operators that commute with each other, then the sub-
C∗-algebra α(X1, . . . , Xn) := α({X1, . . . , Xn}) that they generate is abelian. More generally,
one can show that a quantum probability space (A, τ) where A is abelian corresponds to a
classical probability space, so quantum probability can be seen as an extension of classical
probability.

3 Independence

Let A1,A2 ⊂ A be sub-C∗-algebras of some larger C∗-algebra A. We say that A1 and A2

commute if
A1A2 = A2A1 (A1 ∈ A1, A2 ∈ A2).

We say that A1 and A2 are logically independent if

� {AkBl : 1 ≤ k ≤ n, 1 ≤ l ≤ m} are linearly independent whenever {A1, . . . , An} ⊂ A1

and {B1, . . . , Bm} ⊂ A2 are linearly independent.

Lemma 1 (Product algebra) Let A1,A2 ⊂ A be C∗-algebras. Then it is possible to con-
struct a C∗-algebra A that contains logically independent sub-C∗-algebras A′

1,A′
2 ⊂ A such

that A′
1 is isomorphic to A1 and A′

2 is isomorphic to A2.

Proof (sketch) If H1 and H2 are representations of A1 and A2, then one can make H1 ⊗H2

into a representation of both A1 and A2 by setting A1(ϕ1 ⊗ ϕ2) := (A1ϕ1)⊗ ϕ2 and A2(ϕ1 ⊗
ϕ2) := ϕ1⊗ (A2ϕ2) for Ai ∈ Ai (i = 1, 2). Now A := L(H1⊗H2) has the desired properties.

Let τ be a state on A. We say that A1 and A2 are independent under τ if A1 and A2

commute and
τ(A1A2) = τ(A1)τ(A2) (A1 ∈ A1, A2 ∈ A2).

Proposition 2 (Product state) Assume that A1 and A2 commute and are logically inde-
pendent. Let τi be a state on Ai (i = 1, 2). Then there exists a unique state τ12 on α(A1∪A2)
such that its restrictions to A1 and A2 are τ1 and τ2 and A1 and A2 are independent under
τ12. Without the assumption of logical independence, the uniqueness statement still holds but
existence may fail.

Proof (sketch) We only prove the uniqueness statement. If A1 and A2 commute, then

α(A1 ∪ A2) = span{A1A2 : A1 ∈ A1, A2 ∈ A2}. (6)
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Thus τ12 is uniquely determined by τ12(A1A2) = τ1(A1)τ2(A2) (Ai ∈ Ai, i = 1, 2).

In the special case that Ai (i = 1, 2) are of the form α(Xi) with Xi an observable, Propo-
sition 2 reduces to the usual concept of two independent real random variables.

Lemma 3 (Independent observables) Let A be a C∗-algebra, let τ be a state on A, and
let X1, X2 ∈ A be self-adjoint. Then the following statements are equivalent.

(i) α(X1) and α(X2) are independent.

(ii) X1 commutes with X2 and µ(X1,X2) is the product measure of µX1 and µX2.

Proof If (i) holds, then X1 must commute with X2 and∫
F1(λ1)F2(λ2)µ(X1,X2)(dλ) = τ

(
F1(X1)F2(X2)

)
= τ

(
F1(X1)

)
τ
(
F2(X2)

)
=

(∫
F1(λ)µX1(dλ)

)(∫
F2(λ)µX2(dλ)

)
for all continuous F1, F2, which shows that µ(X1,X2) is the product measure of µX1 and µX2 .
Conversely, if (ii) holds, then α(X1) commutes with α(X2) and the calculation above and (4)
show that τ(A1A2) = τ(A1)τ(A2) for all A1 = α(X1) and A2 = α(X2).

If the equivalent conditions of Lemma 3 are satisfied, then we say that that the observables
X1, X2 are independent. Lemma 3 implies that for independent self-adjoint operators,

µX1+X2 = µX1 ∗ µX2 ,

where ∗ denotes convolution of probability measures.

4 Free independence

Let A be a C∗-algebra and let A1,A2 ⊂ A be sub-C∗-algebras. We say that A1 and A2 are
free if

� Whenever 1, A1, . . . , An ∈ A1 are linearly independent and 1, B1, . . . , Bm ∈ A2 are
linearly independent, one has that all alternating products of the form

1, Ai1 , Bj1 , Ai1Bj2 , Bj1Ai2 , Ai1Bj2Ai3 , Bj1Ai2Bj3 , Ai1Bj2Ai3Bj4 , . . . (7)

with i1, i2, . . . ∈ {1, . . . , n} and j1, j2 . . . ∈ {1, . . . ,m} are linearly independent.

The use of the word “free” here is similar to its use in the expression “a free group”. In a
sense, this means that the algebras A1 and A2 are maximally noncommuting. Since both A1

and A2 contain the identity, and the identity obviously commutes with itself, we have to give
the identity a special role in our definition. To understand why we need linear independence,
imagine that there would exist A1, A2 ∈ A1 and B ∈ A2 such that A1BA2 = 2A2

1B+1. Then
using such a linear relation, one could try to simplify products of elements of A1 and A2.
The freeness condition says that no such simplifications are possible. Note that α(A1 ∪A2) is
infinite dimensional as soon as A1 and A2 each have dimension ≥ 2. We skip the somewhat
tedious proof of the following fact.

Lemma 4 (Free product algebra) Let A1,A2 be C∗-algebras. Then it is possible to con-
struct a C∗-algebra A that contains free sub-C∗-algebras A′

1,A′
2 ⊂ A such that A′

1 is isomor-
phic to A1 and A′

2 is isomorphic to A2.
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Let τ be a state on A and let A1,A2 ⊂ A be sub-C∗-algebras. We say that A1 and A2

are freely independent if

τ(A1B2) = 0, τ(B1A2) = 0, τ(A1B2A3) = 0, τ(B1A2B3) = 0, τ(A1B2A3B4) = 0, . . . (8)

whenever A1, A2, . . . ∈ A1 and B1, B2, . . . ∈ A2 satisfy τ(Ai) = 0 i = 1, 2, . . . and τ(Bj) = 0
j = 1, 2, . . ..

Proposition 5 (Free product state) Let A1 and A2 be free and let τi be states on Ai

(i = 1, 2). Then there exists a unique state τ12 on α(A1 ∪ A2) whose restriction to Ai is τi
(i = 1, 2) such that under τ12, the algebras A1 and A2 are freely independent. If we drop the
assumption that A1 and A2 are free, then the uniqueness statement still holds (but τ12 may
fail to exist in general).

Proof (sketch) We only prove the uniqueness statement. Let X ∈ A1 and Y ∈ A2. Then
X − τ(X)1 has trace zero and hence

0 = τ
(
(X − τ(X))(Y − τ(Y ))

)
= τ(XY )− τ(X)τ(Y ),

from which we see that
τ(XY ) = τ(X)τ(Y ). (9)

Similarly, for X1, X2 ∈ A1 and Y ∈ A2,

0= τ
(
(X1 − τ(X1))(Y − τ(Y ))(X2 − τ(X2))

)
= τ(X1Y X2)− τ(X1Y )τ(X2)− τ(X1X2)τ(Y )− τ(Y X2)τ(X1)

+3τ(X1)τ(Y )τ(X2)− τ(X1)τ(Y )τ(X2)

= τ(X1Y X2)− τ(X1X2)τ(Y ),

where in the last step we have used (9). It follows that

τ(X1Y X2) = τ(X1X2)τ(Y ) (X1, X2 ∈ A1, Y ∈ A2), (10)

which in fact we would also have if A1 and A2 were independent (and would commute).
Similarly

τ(Y1XY2) = τ(Y1Y2)τ(X) (X ∈ A1, Y1, Y2 ∈ A2). (11)

However, continuing in the same spirit, we find that for X1, X2 ∈ A1 and Y1, Y2 ∈ A2,

0= τ
(
(X1 − τ(X1))(Y1 − τ(Y1))(X2 − τ(X2))(Y2 − τ(Y2))

)
= τ(X1Y1X2Y2)

−τ(X1Y1X2)τ(Y2)− τ(X1Y1Y2)τ(X2)− τ(X1X2Y2)τ(Y1)− τ(Y1X2Y1)τ(X1)

+τ(X1Y1)τ(X2)τ(Y2) + τ(X1X2)τ(Y1)τ(Y2) + τ(X1Y2)τ(Y1)τ(X2)

+τ(Y1X2)τ(X1)τ(Y2) + τ(Y1Y2)τ(X1)τ(X2) + τ(X2Y2)τ(X1)τ(Y1)

−4τ(X1)τ(Y1)τ(X2)τ(Y2) + τ(X1)τ(Y1)τ(X2)τ(Y2).

Using (9), we can simplify this to

τ(X1Y1X2Y2)= τ(X1Y1X2)τ(Y2) + τ(X1Y1Y2)τ(X2) + τ(X1X2Y2)τ(Y1) + τ(Y1X2Y1)τ(X1)

−τ(X1X2)τ(Y1)τ(Y2)− τ(Y1Y2)τ(X1)τ(X2)− τ(X1)τ(Y1)τ(X2)τ(Y2),

and using (10) and (11) we can further simplify this to

τ(X1Y1X2Y2) = τ(X1X2)τ(Y1)τ(Y2) + τ(Y1Y2)τ(X1)τ(X2)− τ(X1)τ(X2)τ(Y1)τ(Y2). (12)
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This time, we get something different from the independent case. (In the independent case,
we would get τ(X1X2)τ(Y1Y2).) Nevertheless, it is not hard to show by induction that using
(8), one can express τ of any mixed moment of elements of A1 and A2 in moments of elements
of A1 and A2 separately.

We say that two self-adjoint operators X1 and X2 are freely independent if they generate
freely independent sub-C∗-algebras. It follows from Proposition 5 that if X1 and X2 are freely
independent, then the law of µX1+X2 (and in fact any reasonable function of X1 and X2) is
uniquely determined by the marginal laws µX1 and µX2 , so we can write

µX1+X2 = µX1 ⊞ µX2 ,

where ⊞ is called the free convolution of two probability measures.
Free independence of three or more algebras is defined in a similar way as for two algebras.

It is not hard to see that A1, . . . ,An are freely independent if and only if Ai+1 is freely
independent of α(A1 ∪ · · · ∪ Ai) for each i.

5 The Free Central Limit Theorem

We note that if X and Y are freely independent with mean

τ(X) =

∫
λµX(dλ) = 0 and τ(Y ) =

∫
λµY (dλ) = 0,

then by (9), ∫
λ2 µX+Y (dλ) = τ

(
(X + Y )2

)
= τ(X2) + τ(Y 2).

We set
Var(X) := τ

(
(X − τ(X))2

)
= Var(µX).

Then more generally, the variance of X+Y is the sum of the variances of X and Y . We recall
that the (standard) semicircle law has mean zero and variance C2/2 = 1. More generally,
we can define semicircle laws with any mean and variance by adding a constant and scaling.
The following proposition and theorem show that free independence is indeed very similar to
classical independence.

Proposition 6 (Stability of the semicircle law) Assume that X1, . . . , Xk are freely in-
dependent and that Xi has a semicircle law with mean τ(Xi) and variance Var(Xi). Then∑k

i=1Xi has a semicircle law with mean
∑k

i=1 τ(Xi) and variance
∑k

i=1Var(Xi).

Theorem 7 (Free Central Limit Theorem) Let (Xi)i≥1 be self-adjoint elements of some
C∗-algebra that are freely independent and identically distributed with mean zero and variance
1. Then the law of 1√

n

∑k
i=1Xi converges weakly to the semicircle law.

We will not prove Proposition 6 and Theorem 7 but we will show that the free convolution
of the standard semicircle law with itself yields a semicircle law with variance 2.

Consider the Hilbert space H := ℓ2(N) of square integrable functions f : N → C with the
usual inner product. Let e0, e1, . . . denote the usual basis. Let τ0 be the state on A := L(H)
defined as τ0(A) := ⟨e0, Ae0⟩. Define U : ℓ2(N) → ℓ2(N) by Uen := en+1 (n ≥ 0). It is not
hard to see that U is a unitary operator1 and U∗en = en−1 (n ≥ 1) while U∗e0 = 0. Set

1In the sense that ⟨Uϕ,Uψ⟩ = ⟨ϕ, ψ⟩ and the left inverse U−1 equals U∗. Note that U does not have a right
inverse!
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X = U + U∗, which is self-adjoint. We claim that µX is the semicircle law.2 To see this, we
calculate its moments. Removing the brackets in

τ0
(
(U + U∗)n

)
= ⟨e0, (U + U∗)ne0⟩,

we obtain 2n terms of the form ⟨e0, Vn · · ·Vie0⟩ with Vi ∈ {U,U∗} for all 1 ≤ i ≤ n. Each term
gives a contribution zero or one. The nonzero terms are precisely those for which there exists
a random walk path S : {0, . . . , n} → N such that

Vk · · ·Vie0 = eSk
(0 ≤ k ≤ n)

with S0 = Sn = 0. This means that τ0
(
(U+U∗)n

)
= 0 if n is odd and τ0

(
(U+U∗)n

)
= Cn/2 if

n is even, where Ck/2 is the Catalan number we have seen before. We recognize the moments
of the (standard) semicircle law, so we conclude that µX is the semicircle law.

Let T be the set whose elements are finite words of the form i = i1 · · · in made from the
alphabet {1, 2}. We call |i| := n the length of the word and let ∅ denote the word of length
zero. Consider the Hilbert space F := ℓ2(T) of square integrable functions f : T → C, with
the usual inner product. Let B1 be the set of all j ∈ T such that either j = ∅ or |j| = n for
some n ≥ 1 and jn = 2. Then for each j ∈ B1 and f ∈ F , we can define fj ∈ ℓ(N) by

fj(k) := f
(
j 1 · · · 1︸ ︷︷ ︸
k times

)
(j ∈ B1, k ∈ N).

A function f ∈ F is uniquely characterised by the functions {fj : j ∈ B1}, so that we can view
F as the direct sum F =

⊕
j∈B1

ℓ(N). We define ℓ1 : L(H) → L(F) by(
ℓ1(A)f

)
j
:= Afj (j ∈ B1).

Similarly, we let B2 be the set of all j ∈ T such that either j = ∅ or |j| = n for some n ≥ 1
and jn = 1, and set(

ℓ2(A)f
)
j
:= Afj (j ∈ B2) with fj(k) := f

(
j 2 · · · 2︸ ︷︷ ︸
k times

)
(k ≥ 0).

We let Ai := ℓi(A) = {ℓi(A) : A ∈ L(H)} be the sub-C∗-algebra of L(F) generated by
elements of the form ℓi(A) (A ∈ L(H), i = 1, 2). Let e∅, e1, e2, e11, e12, . . . denote the obvious
orthonormal basis and let τ∅ be the state on A := L(F) defined as τ∅(A) := ⟨e∅, Ae∅⟩. We
claim that

� ℓi is a C∗-algebra isomorphism from A = L(H) to Ai = ℓi(A) (i = 1, 2).

� τ∅
(
ℓi(A)

)
= τ0(A) (A ∈ A).

� A1 and A2 are freely independent under τ∅.

To see the third point, we note that τ0(X) = 0 if and only if (Xe0)(0) = 0. Now if
X1, X2, X3, . . . ∈ L(H) satisfy

τ∅
(
ℓ1(X1)

)
= τ0(X1) = 0,

τ∅
(
ℓ2(X2)

)
= τ0(X2) = 0,

τ∅
(
ℓ1(X3)

)
= τ0(X3) = 0,

. . . ,

2This implies that X has a purely continuous spectrum.
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then ℓ1(X1)e∅ is concentrated on {1, 11, 111, 1111, . . .}, hence ℓ2(X2)ℓ1(X1)e∅ is concentrated
on {

12, 122, 1222, . . . , 112, 1122, 11222, . . . , 1112, 11122, . . .
}
,

and so on, proving free independence. In particular, these functions are zero in ∅ so that

τ∅
(
ℓ1(X3)ℓ2(X2)ℓ1(X1)

)
= 0,

and so on. Now let Ui = ℓi(U) and U∗
i = ℓi(U

∗) = ℓi(U)∗. Then

Uiej := eji and U∗
i ej =

{
ej2···in if n ≥ 1 and i1 = j,

0 otherwise
(j = j1 · · · jn ∈ T).

Let Xi := Ui + U∗
i . We have already seen that X1 and X2 are freely independent and that

µXi is the standard semicircle law (i = 1, 2). We claim that µX1+X2 is a semicircle law with
variance 2. To see this, we calculate moments. Removing the brackets in

τ∅
(
(U1 + U2 + U∗

1 + U∗
2 )

n
)
= ⟨e0, (U1 + U2 + U∗

1 + U∗
2 )

ne0⟩,

we obtain 4n terms of the form ⟨e∅, Vn · · ·Vie∅⟩ with Vi ∈ {U1, U2, U
∗
1 , U

∗
2 } for all 1 ≤ i ≤ n.

Each term gives a contribution zero or one. The nonzero terms are precisely those for which
there exists a random walk path S : {0, . . . , n} → T such that

Vk · · ·Vie∅ = eSk
(0 ≤ k ≤ n)

with S0 = Sn = ∅. This means that τ∅
(
(X1 +X2)

n
)
= 0 if n is odd and τ∅

(
(X1 +X2)

n
)
=

2n/2Cn/2 if n is even, where Ck/2 is the Catalan number we have seen before, and the factor

2n/2 comes from the fact that each time we make a step deeper into the tree, we have two
choices where to go. (On the way back there is no such choice, so we get 2n/2 and not 2n.).
This means that

τ∅
(
(X1 +X2)

n
)
= τ0

(
(
√
2X)n

)
,

where X has a standard semicircle law. We conclude that µX1+X2 is a semicircle law with
variance 2.

6 Convergence in law

Let m ≥ 1 be an integer, and for each n, let (An, τn, Xn,1, . . . , Xn,m) be a quantum probability
space that contains m self-adjoint elements Xn,1, . . . , Xn,m. By definition, we say that the
sequence (An, τn, Xn,1, . . . , Xn,m) converges in law to a limit (A, τ,X1, . . . , Xm), which we
denote as

(An, τn, Xn,1, . . . , Xn,m) =⇒
n→∞

(A, τ,X1, . . . , Xm),

if

(i) ∥Xn,k∥ −→
n→∞

∥Xk∥ for all 1 ≤ k ≤ m,

(ii) τ
(
Xn,k1 · · ·Xn,kd

)
−→
n→∞

τ
(
Xk1 · · ·Xkd

)
∀(k1, . . . , kd) ∈ {1, . . . ,m}d, d ≥ 1.

Proposition 8 (Weak convergence) Assume that the self-adjoint elements Xn,1, . . . , Xn,m

commute for each n, and that also X1, . . . , Xm commute. Then the conditions (i) and (ii) are
equivalent to

(i) ∥Xn,k∥ −→
n→∞

∥Xk∥ for all 1 ≤ k ≤ m,
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(ii)’ µXn,1,...,Xn,m =⇒
n→∞

µ(X1,...,Xm),

where in (ii)’, ⇒ denotes weak convergence of probability measures on Rm.

Proof Thanks to condition (i), there exists a compact set C ⊂ Rm so that the measures
µXn,1,...,Xn,m and µ(X1,...,Xm) are all concentrated on C. As a result, condition (ii)’ is equivalent
to ∫

λp11 · · ·λpmm µXn,1,...,Xn,m −→
n→∞

∫
λp11 · · ·λpmm µX1,...,Xm ∀p1, . . . , pm ≥ 0.

Due to the commutativity assumption, filling in the definition of µ(X1,...,Xm), we see that this
is equivalent to condition (ii).

7 Relation to random matrix theory

Let M = (ξij)i,j∈N+ be an infinite hermitian Wigner matrix and let M ′ = (ξ′ij)i,j∈N+ be an
independent copy of M . For each n ≥ 1, let Mn := (ξij)1≤i,j≤n and M ′

n := (ξij)1≤i,j≤n. Let
An denote the C∗-algebra consisting of all complex n× n matrices and let τn(A) := n−1tr(A)
denote the normalised trace on An. I believe the following theorem probably holds, though I
do not know an exact reference.

Theorem 9 (Independent Wigner matrices) Assume that (ξij)i<j are i.i.d. with mean
zero and variance one. Let Xn :=Mn/

√
n and X ′

n :=M ′
n/

√
n. Then almost surely, one has

(An, τn, Xn, X
′
n) =⇒

n→∞
(A, τ,X,X ′), (13)

where X and X ′ are freely independent and distributed according to the standard semicircle
law.

The almost sure convergence (An, τn, Xn) =⇒
n→∞

(A, τ,X) has, of course, been shown in the

book. Theorem 9 boosts this to convergence of the “joint law” of two independent Wigner
matrices. It is not so hard to intuitively understand why the algebras generated by Xn and X ′

n

should be “asymptotically free”, in the sense of being as non-commuting as they can possibly
be. It is less clear why they should be asymptotically freely independent. In the book by Tao,
you can find a sketch of a proof, that is based on moment calculations and in fact proves the
asymptotic free independence together with the convergence to the semicircle law. Is there an
easier way to intuitively understand why free independence should arise in the limit?

Theorem 9 helps us somewhat to understand why the semicircle law occurs in random
matrix theory. Imagine that we would only know that (13) holds for some (A, τ,X,X ′) such
that X and X ′ are freely independent. Since (Xn + X ′

n)/
√
2 are also Wigner matrices, we

then see that
µX = µ(X+X′)/

√
2 = µX ⊞ µX′ = µX ⊞ µX ,

so this tells us that the limit law of the spectrum of random matrices has to be stable under
free convolution.

In Tao’s book, a lot of time is spent on showing that rescaled random matrices with i.i.d.
entries converge to the semicircle law. From an operator perspective, the assumption of i.i.d.
entries is not so natural, since it is basis-dependent, except for special ensembles such as GOE
or GUE. I believe that with the help of the concept of free independence, it has been shown
that some matrix ensembles that do not have i.i.d. entries also have the semicircle law in the
limit.
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