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Preface

Interacting particle systems, in the sense we will be using the word in these
lecture notes, are countable systems of locally interacting Markov processes.
Each interacting particle system is define on a lattice: a countable set with
(usually) some concept of distance defined on it; the canonical choice is the
d-dimensional integer lattice Zd. Situated on each point in this lattice, there
is a continuous-time Markov process with a finite state space (often even
of cardinality two) whose jump rates depend on the states of the Markov
processes on near-by sites. Interacting particle systems are often used as
extremely simplified ‘toy models’ for stochastic phenomena that involve a
spatial structure.

An attractive property of interacting particle systems is that they are
easy to simulate on a computer.1 Although the definition of an interact-
ing particle system often looks very simple, and problems of existence and
uniqueness have long been settled, it is often surprisingly difficult to prove
anything nontrivial about its behavior. With a few exceptions, explicit cal-
culations tend not to be feasible, so one has to be satisfied with qualitative
statements and some explicit bounds. Despite intensive research for over
more than forty years, some easy-to-formulate problems still remain open
while the solutions of others have required the development of nontrivial and
complicated techniques.

Luckily, as a reward for all this, it turns out that despite their simple
rules, interacting particle systems are often remarkably subtle models that
capture the sort of phenomena one is interested in much better than might
initially be expected. Thus, while it may seem outrageous to assume that
“Plants of a certain type occupy points in the square lattice Z2, live for an
exponential time with mean one, and place seeds on unoccupied neighboring
sites with rate λ” it turns out that making the model more realistic often
does not change much in its overall behavior. Indeed, there is a general
philosophy in the field, that is still insufficiently understood, that says that
interacting particle systems come in ‘universality classes’ with the property
that all models in one class have roughly the same behavior.

As a mathematical discipline, the subject of interacting particle systems is
still relatively young. It started around 1970 with the work of R.L. Dobrushin
and F. Spitzer, with many other authors joining in during the next few years.
By 1975, general existence and uniqueness questions had been settled, four
classic models had been introduced (the exclusion process, the stochastic

1To get started doing this yourself, look at my simulation library that is available from
http://staff.utia.cas.cz/swart/simulate.html.
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Ising model, the voter model and the contact process), and elementary (and
less elementary) properties of these models had been proved. In 1985, when
Liggett’s published his famous book [Lig85], the subject had established itself
as a mature field of study. Since then, it has continued to grow rapidly, to
the point where it is impossible to accurately capture the state of the art
in a single book. Lanchier’s [Lan24] book makes an impressive attempt to
give an overview of the modern literature on interacting particle systems in
the life and social siences only, at the cost of not being able to give detailed
proofs of all the known facts. Indeed, such is the sophistication of modern
methods that it would be possible to write a book on each of the four classic
models mentioned above alone.

While interacting particle systems, in the narrow sense indicated above,
have apparently not been the subject of mathematical study before 1970,
the subject has close links to some problems that are considerably older.
In particular, the Ising model (without time evolution) has been studied
since 1925 while both the Ising model and the contact process have close
connections to percolation, which has been studied since the late 1950-ies.
In recent years, more links between interacting particle systems and other,
older subjects of mathematical research have been established, and the field
continues to recieve new impulses not only from the applied, but also from
the more theoretical side.

The present notes are loosely based on an older set of lecture notes for
courses that I gave at Charles University in Prague in 2009 and 2011. An-
other imput came from slides for a course I gave at Verona University in
2014. Compared to the lecture notes of 2011, most of the text has been
rewritten. Many figures have been added, as well as a chapter on the mean-
field limit. The old lecture notes were organized around three classical mod-
els: the contact process, the Ising model, and the voter model. Instead, the
present notes are organized around methods: the mean-field limit, graphical
representations, monotone coupling, duality, and comparison with oriented
percolation. Compared to the older notes, some results have been removed,
in particular about the Ising model, whose study requires rather different
techniques from the other models. Another omission are positive correla-
tions. On the other hand, a wide range of interacting particle systems not
(or barely) mentioned in the previous lecture notes are now used as examples
throughout the notes, to give a better impression of the modern literature of
the subject.

I am indebted to Tibor Mach for a careful reading of the lecture notes
from 2011 that led to a large number of typoes being corrected. I would
like to thank Aernout van Enter for a number of corrections and suggestions
that helped me improve the text from 2016. Sam Olesker-Taylor pointed out
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some typoes in the version of 2020. Finally, Jan Niklas Latz helped correct
many mistakes in the versions of 2021 and 2022.

These lecture notes have first been posted on the arXiv in 2017 and have
been updated in 2020 and 2022. The update in 2020 corrected the proof of
Lemma 4.25, which was wrong in the original version, and made some other
minor corrections. In the update of 2022 several additions have been made.
The main existence and uniqueness result in Chapter 4 has been formulated
as a pathwise uniqueness result for solutions of the evolution equation (4.10).
Chapter 6 has also been radically rewritten and in Chapter 1 a section has
been added about periodic behavior. In the other chapters several smaller
points have been clarified and some pictures have been added.
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Chapter 1

Introduction

1.1 General set-up

Let S be a finite set, called the local state space, and let Λ be a countable
set, called the lattice. We let SΛ denote the Carthesian product space of Λ
copies of S, i.e., elements x of SΛ are of the form

x =
(
x(i)

)
i∈Λ with x(i) ∈ S ∀ i ∈ Λ.

Equivalently, SΛ is nothing else than the set of all functions x : Λ → S.
Interacting particle systems are continuous-time Markov processes X =

(Xt)t≥0 with a state space of the form SΛ. Thus, (Xt)t≥0 is a Markov process
such that at each time t ≥ 0, the state of X is of the form

Xt =
(
Xt(i)

)
i∈Λ with Xt(i) ∈ S ∀ i ∈ Λ.

We call Xt(i) the local state of X at time t and at the position i. Positions
i ∈ Λ are also often called sites.

The time evolution of continuous-time Markov processes is usually char-
acterized by their generator G, which is an operator acting on functions
f : S → R, where S is the state space. For example, in the case of Brownian
motion, the state space is R and the generator is the differential operator
G = 1

2
∂2

∂x2
. In the case of an interacting particle system, the state space is of

the form S = SΛ and the generator can usually be written in the form

Gf(x) =
∑
m∈G

rm
{
f
(
m(x)

)
− f

(
x
)}

(x ∈ SΛ). (1.1)

Here G is a set whose elements are local maps m : SΛ → SΛ and (rm)m∈G
is a collection of nonnegative constants called rates, that say with which

9
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Poisson intensity the local map m should be applied to the configuration Xt.
The precise definitions will be given in later chapters, but at the moment
it suffices to say that if we approximate (Xt)t≥0 by a discrete-time Markov
chain where time is increased in steps of size dt, then

rm dt is the probability that the map m
is applied during the time interval (t, t+ dt].

Often, the lattice Λ has the structure of an (undirected) graph. In this
case, we let E denote the corresponding edge set , i.e., a set of unordered
pairs {i, j} called edges, with i, j ∈ Λ, i ̸= j, that in drawings of the graph
are connected by a line segment. We let

E :=
{
(i, j) : {i, j} ∈ E

}
denote the corresponding set of all ordered pairs (i, j) that correspond to an
edge. We call

Ni :=
{
j ∈ Λ : {i, j} ∈ E

}
(1.2)

the neighborhood of the site i.

Many well-known and well-studied interacting particle systems are de-
fined on the d-dimensional integer lattice Zd. We denote the origin by
0 = (0, . . . , 0) ∈ Zd. For any i = (i1, . . . , id) ∈ Zd, we let

∥i∥1 :=
d∑

k=1

|ik| and ∥i∥∞ := max
k=1,...,d

|ik| (i ∈ Zd)

denote the ℓ1-norm and supremumnorm, respectively. For R ≥ 1, we set

Ed :=
{
{i, j} : ∥i− j∥1 = 1

}
and Ed

R :=
{
{i, j} : 0 < ∥i− j∥∞ ≤ R

}
.

(1.3)
Then (Zd, Ed) is the integer lattice equipped with the nearest neighbor graph
structure and (Zd, Ed

R) is the graph obtained by connecting all edges within
∥ · ∥∞-distance R with an edge. We let Ed and EdR denote the corresponding
sets of ordered pairs (i, j).

Before we turn to rigorous mathematical theory, it is good to see a number
of examples. It is easy to simulate interacting particle systems on a computer.
In simulations, the infinite graphs (Zd, Ed) or (Zd, Ed

R) are replaced by a
finite piece of Zd, with some choice of the boundary conditions (e.g. periodic
boundary conditions).
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1.2 The voter model

For each i, j ∈ Λ, the voter model map votij : S
Λ → SΛ is defined as

votij(x)(k) :=

{
x(i) if k = j,

x(k) otherwise.
(1.4)

Applying votij to a configuration x has the effect that local state of the site
i is copied onto the site j. The nearest neighbor voter model on Zd is the
interacting particle system with generator

Gvotf(x) :=
1

|N0|
∑

(i,j)∈Ed

{
f
(
votij(x)

)
− f

(
x
)}

(x ∈ SZd

). (1.5)

Here N0 is the neighborhood of the origin and |N0| = 2d denotes its cardinal-
ity. Similarly, replacing the set of oriented edges Ed by EdR and replacing N0

by the appropriate set of neighbors in this new graph, we obtain the range
R voter model.

In the context of the voter model, the local state x(i) at a site i is often
called the type at i. The voter model is often used to model biological
populations, where organisms with different genetic types occupy sites in
space. Note that since each site j has |Nj| = |N0| neighbors, the total rate
of all maps votij with i ∈ Nj is one. In view of this, an alternative way
to describe the dynamics in (1.5) is to say that with rate 1, the organism
living at a given site dies, and is replaced by a descendant chosen with equal
probability from its neighbors.

An alternative interpretation, that has given the voter model its name, is
that sites represent people and types represent political opinions. With rate
one, an individual becomes unsure what political party to vote for, asks a
randomly chosen neighbor, and copies his/her opinion.

In Figure 1.1, we see the four snapshots of the time evolution of a two-
dimensional nearest-neighbor voter model. The initial state is constructed
by assigning i.i.d. types to the sites. Due to the copying dynamics, we see
patches appear where every site in a local neighborhood has the same type.
As time proceeds, these patches, usually called clusters, grow in size, so that
eventually, for any N ≥ 1, the probability that all sites within distance N of
the origin are of the same type tends to one.1

It turns out that this sort of behavior, called clustering, is dimension
dependent. The voter model clusters in dimensions 1 and 2, but not in

1In spite of this, for the model on the infinite lattice, it is still true that the origin
changes its type infinitely often.
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Figure 1.1: Four snapshots of a two-dimensional voter model with periodic
boundary conditions. Initially, the types of sites are i.i.d. Time evolved in
these pictures is 0, 1, 32, and 500.

dimensions 3 and more. In Figure 1.2, we see the four snapshots of the time
evolution of a three-dimensional voter model. The model is simulated on a
cube with periodic boundary conditions. In this case, we see that even after
a long time, there are still many different types near the origin.2

1.3 The contact process

The contact process is another interacting particle system with a biological
interpretation. For this process, we choose the local state space S = {0, 1}.

2On a finite lattice, such as we use in our simulations, one would eventually see one
type take over, but the time one has to wait for this is very long compared to dimensions
1 and 2. On the infinite lattice, the probability that the origin has a different type from
its right neighbor tends to a positive limit as time tends to infinity.
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Figure 1.2: Four snapshots of a three-dimensional voter model with periodic
boundary conditions. Initially, the types of sites are i.i.d. Time evolved in
these pictures is 0, 4, 32, and 250.

We interpret a site such that Xt(i) = 1 as occupied by an organism, and a
site such that Xt(i) = 0 as empty. Alternatively, the contact process can
be seen as a model for the spread of an infection. In this case, sites with
Xt(i) = 1 are called infected and sites with Xt(i) = 0 are called healthy.

For each i, j ∈ Λ, we define a branching map braij : {0, 1}Λ → {0, 1}Λ as

braij(x)(k) :=

{
x(i) ∨ x(j) if k = j,

x(k) otherwise.
(1.6)

Note that this says that if prior to the application of braij, the site i is
occupied, then after the application of braij, the site j will also be occupied,
regardless of its previous state. If initially i is empty, then nothing happens.
We interpret this as the organism at i giving birth to a new organism at j,
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or the infected site i infecting the site j. If j is already occupied/infected,
then nothing happens.

For each i ∈ Λ, we also define a death map deathi : {0, 1}Λ → {0, 1}Λ as

deathi(x)(k) :=

{
0 if k = i,

x(k) otherwise.
(1.7)

If the map deathi is applied, then an organism at i, if there is any, dies,
respectively, the site i, if it is infected, recovers from the infection.

Figure 1.3: Four snapshots of a two-dimensional contact process. Initially,
only a single site is infected. The infection rate is 2, the death rate is 1, and
time evolved in these pictures is 1, 5, 10, and 20.

Recalling (1.3), the (nearest neighbor) contact process with infection rate
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λ ≥ 0 and death rate δ ≥ 0 is the interacting particle system with generator

Gcontf(x) :=λ
∑

(i,j)∈Ed

{
f
(
braij(x)

)
− f

(
x
)}

+δ
∑
i∈Zd

{
f
(
deathi(x)

)
− f

(
x
)}

(x ∈ {0, 1}Zd

).
(1.8)

This says that infected sites infect each healthy neighbor with rate λ, and
infected sites recover with rate δ.

In Figure 1.3, we see the four snapshots of the time evolution of a two-
dimensional contact process. Occupied sites are black and empty sites are
white. Initially, only the origin is occupied. The infection rate is 2 and the
death rate is 1. In this example, the infection spreads through the whole
population, eventually reaching a steady state3 where a positive fraction of
the population is infected. Of course, starting from a single infected site,
there is always a positive probability that the infection dies out in the initial
stages of the epidemic.

Unlike the voter model, the behavior of the contact process is roughly
similar in different dimensions. On the other hand, the proportion λ/δ of the
infection rate to the death rate is important for the behavior. By changing the
speed of time, we can without loss of generality choose one of the constants
λ and δ to be one, and it is customary to set δ := 1. In Figure 1.4, we have
plotted the survival probability

θ(λ) := P1{0} [Xt ̸= 0 ∀t ≥ 0] (1.9)

of the one-dimensional contact process, started in X0 = 1{0}, i.e., with a
single infected site at the origin, as a function of the infection rate λ. For
reasons that we cannot explain here, this is in fact the same as the probability
that the origin is infected in equilibrium.

It turns out that for the nearest-neighbor contact process on Zd, there
exists a critical value λc = λc(d) with 0 < λc < ∞ such that θ(λ) = 0 for
λ ≤ λc and θ(λ) > 0 for λ > λc. The function θ is continuous, strictly
increasing and concave on [λc,∞) and satisfies limλ→∞ θ(λ) = 1. One has

λc(1) = 1.6489± 0.0002. (1.10)

Proving these statements is not easy, however. For example, continuity of the
function θ in the point λc was proved only in 1990 [BG90], seventeen years

3In fact, on the finite square used in our simulations, one can prove that the infection
dies out a.s. However, the time one has to wait for this is exponentially large in the
system size. For the size of system shown in Figure 1.3, this time is already too long to
be numerically observable.
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λ

θ(λ)

λc

1

Figure 1.4: Survival probability of the one-dimensional contact process.

after the introduction of the model in [CS73, Har74]. The best4 rigorous
upper bound on the constant from (1.10) is λc(1) ≤ 1.942 which is proved in
[Lig95].

Krone [Kro99] introduced a two-stage contact process . In this model, the
local state space is {0, 1, 2} where 0 represents an empty site, 1 a young
organism, and 2 an adult organism. In a branching event, an adult organism
produces a young organism on an empty neighboring site. In addition, young
organisms can grow up. Both young and adults can die, the young possibly
at a higher rate than the adults. The behavior of this model is similar to
that of the contact process.

1.4 Ising and Potts models

In a stochastic Ising model, sites in the lattice Zd are interpreted as atoms
in a crystal, that can have two possible local states, usually denoted by −1
and +1. In the traditional interpretation, these states describe the direction
of the magnetic field of the atom, and because of this, the local state x(i)
of a site i is usually called the spin at i. More generally, one can consider
stochastic Potts models where each “spin” can have q ≥ 2 possible values.
In this case, the local state space is traditionally denoted as S = {1, . . . , q},

4There exists a sequence of rigorous upper bounds on the constant from (1.10) that is
known to converge to the real value, but these bounds are so difficult to calculate that the
best bound that has really been achieved by this method is much worse than the one in
[Lig95].
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the special case q = 2 corresponding to the Ising model (except for a small
difference in notation between S = {−1,+1} and S = {1, 2}).

Given a state x and site i, we let

Nx,i(σ) :=
∑
j∈Ni

1{x(j) = σ} (σ ∈ S) (1.11)

denote the number of neighbors of the site i that have the spin value σ ∈ S.
In the Ising and Potts models, sites like or dislike to have the same spin
value as their neighbors, depending on a parameter β ∈ R. Adding a so-
called Glauber dynamics to the model,5 sites update their spin values with
rate one, and at such an event choose a new spin value with probabilities
that depend on the values of their neighbors. More precisely, the stochastic
Potts model with Glauber dynamics is the interacting particle system that
evolves in such a way that

site i flips to the value σ with rate rσi (x) :=
eβNx,i(σ)∑
τ∈S e

βNx,i(τ)
. (1.12)

More formally, we can write the generator as

GPottsf(x) :=
∑
i∈Zd

∑
σ∈S

rσi (x)
{
f
(
mσ
i (x)

)
− f

(
x
)}
, (1.13)

where mσ
i : SΛ → SΛ are maps defined by

mσ
i (x)(j) :=

{
σ if j = i,

x(j) otherwise.
(1.14)

The attentive reader may notice that the way we have written the generator
in (1.13) is different from the way we have written our generators so far, since
unlike the rates rm in (1.1), the rates rσi (x) depend on the state x. This will
be explained in more detail in Chapter 4. In particular, in Section 4.6, we
will see that it is possible to rewrite the generator in (1.13) in a way that fits
the general form (1.1) (with rates that do not depend on the state x) but for
the Potts model, unlike the models we have seen so far, this way of writing
the generator is less natural and more complicated.

5The terms Ising model and Potts model refer only to certain Gibbs measures. A
stochastic Ising model or Potts model is any interacting particle system that has these
Gibbs measures as its invariant laws (usually reversible). There exist several different
ways to invent a dynamics with this property. This will be explained in a bit more detail
in Section 5.4. In this section, we stick to Glauber dynamics.
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Returning to our informal description in (1.12), we notice that for β > 0,
sites prefer to have spin values that agree with as many neighbors as possible,
i.e., the model is ferromagnetic. For β < 0, the model is antiferromagnetic.
These terms reflect the situation that in some materials, neighboring spins
like to line up, which can lead to long-range order that has the effect that
the material can be magnetized. Antiferromagnetic materials, on the other
hand, lack this effect.

Alternatively, Potts models can also be interpreted as social or economic
models, where sites represent people or firms and spin values represent opin-
ions or the state (financially healthy or not) of a firm [BD01].

Figure 1.5: Four snapshots of a q = 4, β = 1.2 Potts model with Glauber
dynamics and periodic boundary conditions. Initially, the types of sites are
i.i.d. Time evolved in these pictures is 0, 4, 32, 500.

In Figure 1.5 we see four snapshots of a two-dimensional nearest-neighbor
Potts model with four possible spin values. We have used periodic boundary
conditions, and the value of the parameter β is 1.2. Superficially, the behavior
is similar to that of a voter model, in the sense that the system forms clusters
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of growing size that in the end take over any finite neighborhood of the origin.
Contrary to the voter model, however, even in the middle of a large cluster
that is predominantly of one color, sites can still flip to other values as is
clear from (1.12), so in the simulations we see many small islands of different
colors inside large clusters where one color dominates. Another difference
is that clustering happens only when the value of the parameter β is large
enough. For small values of β, the behavior is roughly similar to the voter
model in dimensions d ≥ 3. There is a critical value 0 < βc < ∞ where the
model changes from one type of behavior to the other type of behavior. In
this respect, the model is similar to the contact process.

To make this critical value visible, imagine that instead of periodic bound-
ary conditions, we would use frozen boundary conditions where the sites at
the boundary are kept fixed at one chosen color, say color 1. Then the system
has a unique invariant law (equilibrium), in which for sufficiently large values
of β the color 1 is (much) more frequent than the other colors, but for low
values of β all colors occur with the same frequency. In particular, for the
Ising model, where the set of possible spin values in {−1,+1}, we let

m∗(β) := the expectation of x(0) with +1 boundary
conditions, in the limit of large system size.

(1.15)

This function is called the spontaneous magnetization. For the Ising model in
two dimensions, the spontaneous magnetization can be explicitly calculated,
as was first done by Onsager [Ons44]. The formula is

m∗(β) =

{ (
1− sinh(β)−4

)1/8
for β ≥ βc := log(1 +

√
2),

0 for β ≤ βc.
(1.16)

This function is plotted in Figure 1.6. In this case, the critical point βc is
known explicitly.

For Ising models in dimensions d ≥ 3, the graph of m∗(β) looks roughly
similar to Figure 1.6, with βc ≈ 0.442 in dimension 3 [GPA01], but no explicit
formulas are known.

In dimension one, one has m∗(β) = 0 for all β ≥ 0. More generally,
one-dimensional Potts models do not show long range order, even if β is very
large.6 By this we mean that in equilibrium, the correlation between the spin
values at 0 and a point i ∈ Z tends to zero as i→ ∞ for any value of β (even

6This was first noticed by Ising [Isi25], who introduced the model but noticed that it
was uninteresting, incorrectly assuming that what he had proved in dimension 1 would
probably hold in any dimension. Peierls [Pei36] realized that dimension matters and proved
that the Ising model in higher dimensions does show long range order.
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Figure 1.6: The spontaneous magnetization of the two-dimensional Ising
model.

though the decay is slow if β is large). In Figure 1.7, we compare the time
evolution of a one-dimensional Potts model (with a large value of β) with
the time evolution of a one-dimensional voter model. In the voter model, the
cluster size keeps growing, but in the Potts model, the typical cluster size
converges to a finite limit.

1.5 Phase transitions

Figures 1.4 and 1.6 are examples of a phenomenon that is often observed in
interacting particle systems. As a parameter governing the dynamics crosses
a particular value, the system goes through an abrupt change in behavior.
This is called a phase transition and the value of the parameter is called
the point of the phase transition or, in the mathematical literature, critical
point. As we will see in a moment, in the physics literature, the term critical
point has a more restricted meaning. The term “phase transition” of course
also describes the behavior that certain materials change from a gas, fluid,
or solid phase into another phase at a particular value of the temperature,
pressure etc., and from the theoretical physicist’s point of view, this is indeed
the same phenomenon.

In both Figure 1.4 and 1.6, the point of the phase transition in fact
separates two regimes, one where the interacting particle systems (on the
infinite lattice) has a unique invariant law (below λc and βc) and another
regime where there are more invariant laws (above λc and βc). Indeed, for
the contact process, the delta measure on the empty configuration is always
an invariant law, but above λc, a second, nontrivial invariant law also ap-
pears. Potts models have q invariant laws (one corresponding to each color)
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Figure 1.7: Time evolution of a one-dimensional voter model (above) and a
one-dimensional Potts model (below) with a high value of β.

above the critical point.7 Multiple invariant laws are a general phenomenon
associated with phase transitions.

Phase transitions are classified into first order and second order phase
transitions.8 Second order phase transitions are also called continuous phase

7More precisely, they have q invariant laws that have the additional property that they
are also translation invariant in space. Depending on the dimension, there may exist
additional invariant laws that are not translation invariant.

8This terminology was introduced by Paul Ehrenfest. The idea is that in first order
phase transitions, the first derivative of the free energy has a discontinuity, while in a
second order phase transitions, the first derivative of the free energy is continuous and
only the second derivative makes a jump.
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transitions. The phase transitions in Figures 1.4 and 1.6 are both second
order, since the functions θ and m∗ are continuous at the critical points λc
and βc, respectively. Also, second order phase transitions are characterized by
the fact that at the critical point, there is only one invariant law. By contrast,
if we would draw the function m∗(β) of a Potts model for sufficiently large
values of q (in dimension two, for q > 4), then the plot of m∗ would make a
jump at βc and the system would have multiple invariant laws at this point,
which means that this phase transition is first order.

It can be difficult to prove whether a given phase transition is first or
second order. While for the two-dimensional Ising model, continuity of the
magnetization follows from Onsager’s solution [Ons44], the analogous state-
ment for the three-dimensional Ising model was only proved recently [ADS15]
(70 years after Onsager!).

For the Ising model, it is known (but only partially proved) that

m∗(β) ∝ (β − βc)
c as β ↓ βc,

where c is a critical exponent, which is given by

c = 1/8 in dim 2, c ≈ 0.326 in dim 3, and c = 1/2 in dim ≥ 4.

For the contact process, it has numerically been observed that

θ(λ) ∝ (λ− λc)
c as λ ↓ λc,

with a critical exponent

c ≈ 0.276 in dim 1, c ≈ 0.583 in dim 2,

c ≈ 0.813 in dim 3, and c = 1 in dim ≥ 4.

In theoretical physics, (nonrigorous) renormalization group theory is used
to explain these critical exponents and calculate them. According to this
theory, critical exponents are universal. For example, the nearest-neighbor
model and the range R models with different values of R all have different
values of the critical point, but the critical exponent c has the same value
for all these models.9 Also, changing from the square lattice to, e.g., the
triangular lattice has no effect on c.

Critical exponents are associated only with second order phase transi-
tions. At the critical point of a second order phase transition, one observes

9Universality in the range R does not always hold. It has been proved that the q = 3
ferromagnetic Potts model in dimension two has a first order phase transition for large
R [GB07], while the model with R = 1 is known to have a second order phase transition
[DST17].
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critical behavior, which involves, e.g., power-law decay of correlations. For
this reason, physicists use the term “critical point” only for second order
phase transitions.

So far, there is no mathematical theory that can explain critical behav-
ior, except in high dimensions (where one uses a technique called the lace
expansion) and in a few two-dimensional models (that have a conformally
invariant scaling limit that can be described using the Schramm-Loewner
equation).

1.6 Variations on the voter model

Apart from the models discussed so far, lots of other interacting particle sys-
tems have been introduced and studied in the literature to model a phlectora
of phenomena. Some of these behave very similarly to the models we have
already seen (and even appear to have the same critical exponents), while
others are completely different. In this and the next sections, we take a brief
look at some of these models to get an impression of the possibilities.

The biased voter model with bias s ≥ 0 is the interacting particle system
with state space {0, 1}Zd

and generator (compare (1.5))

Gbiasf(x) :=
1

2d

∑
(i,j)∈Ed

{
f
(
votij(x)

)
− f

(
x
)}

+
s

2d

∑
(i,j)∈Ed

{
f
(
braij(x)

)
− f

(
x
)}
,

(1.17)

where votij and braij are the voter and branching maps defined in (1.4) and
(1.6). The biased voter model describes a situation where one genetic type of
an organism (in this case, type 1) is more fit than the other type, and hence
reproduces at a larger rate. Alternatively, this type may represent a new idea
or opinion that is more attractive than the current opinion. Contrary to the
normal voter model, even if we start with just a single invidual of type 1,
there is a positive probability that type 1 never dies out and indeed takes
over the whole population, as can be seen in Figure 1.8.

Fix i ∈ Zd and for any x ∈ {0, 1}Zd
, let

fτ (x) :=
1

|Ni|
∑
j∈Ni

1{x(j) = τ} (τ = 0, 1)

be the frequency of type τ in the neighborhood Ni. In the standard voter
model, if the present state is x, then the site i changes its type with the
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Figure 1.8: Time evolution of a one-dimensional biased voter model with
bias s = 0.2.

following rates:
0 7→ 1 with rate f1(x),

1 7→ 0 with rate f0(x).

In the biased voter model, this is changed to

0 7→ 1 with rate (1 + s)f1(x),

1 7→ 0 with rate f0(x).

Another generalization of the voter model, introduced in [NP99], is de-
fined by the rates

0 7→ 1 with rate f1(x)
(
f0(x) + αf1(x)

)
,

1 7→ 0 with rate f0(x)
(
f1(x) + αf0(x)

)
,

(1.18)

where 0 ≤ α ≤ 1 is a model parameter. Another way of expressing this is to
say that if the individual at i is of type τ , then this individual dies with rate

fτ (x) + αf1−τ (x), (1.19)

and once an individual has died, just as in the normal contact process, it is
replaced by a descendant of a uniformly chosen neighbor.

If α = 1, then the rate of dying in (1.19) is one and we are back at the
standard voter model, but for α < 1, individuals die less often if they are
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surrounded by a lot of individuals of the other type. In biology, this models
balancing selection. This is the effect that individuals that differ from their
neighbors experience less competition, which results in a selective drive for
high biodiversity.

In the social interpretation of the voter model, we may interpret (1.19)
as saying that persons change their mind less often if they disagree with a
lot of neighbors, i.e., the model in (1.18) has “rebellious” behavior.

Numerical simulations, shown in Figure 1.9, suggest that in one dimension
and for ranges R ≥ 2, the model in (1.18) exhibits a phase transition in α.
For α sufficiently close to 1, the model behaves essentially as a voter model,
with clusters growing in time, but for small values of α (which represent
strong rebellious behavior), the cluster size tends to a finite limit.

1.7 Branching and coalescing particles

For each i, j ∈ Zd, we define a coalescing random walk map rwij : {0, 1}Z
d →

{0, 1}Zd
by

rwij(x)(k) :=


0 if k = i,

x(i) ∨ x(j) if k = j,

x(k) otherwise.

(1.20)

Applying rwij to a configuration x has the effect that if the site i is occupied
by a particle, then this particle jumps to the site j. If there is already a
particle at j, then the two particles coalesce.

The interacting particle system with generator

Grwf(x) =
1

|N0|
∑

(i,j)∈Ed

{
f
(
rwij(x)

)
− f

(
x
)}

(x ∈ {0, 1}Zd

) (1.21)

describes a system of coalescing random walks, where each particle jumps
with rate 1 to a uniformly chosen neighboring site, and two particles on the
same site coalesce; see Figure 1.10. Likewise, replacing the coalescing random
walk map by the annihilating random walk map defined as

arwij(x)(k) :=


0 if k = i,

x(i) + x(j) mod(2) if k = j,

x(k) otherwise,

(1.22)

yields a system of annihilating random walks, that kill each other as soon as
two particles land on the same site; see Figure 1.10.



26 CHAPTER 1. INTRODUCTION

space

time

0 100 200 300 400 500

0

200

400

600

space

time

0 100 200 300 400 500

0

200

400

600

Figure 1.9: Evolution of “rebellious” voter models with α = 0.8 and α = 0.3,
respectively.

For each i, j ∈ Zd, we define an exclusion map exclij : S
Zd → SZd

by

exclij(x)(k) :=


x(j) if k = i,

x(i) if k = j,

x(k) otherwise.

(1.23)

Applying exclij to a configuration x has the effect of interchanging the types
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Figure 1.10: Systems of coalescing random walks (above) and annihilating
random walks (below).

of j and j. The interacting particle system with state space {0, 1}Zd
and

generator

Gexclf(x) =
1

|N0|
∑

(i,j)∈Ed

{
f
(
exclij(x)

)
− f

(
x
)}

(x ∈ {0, 1}Zd

) (1.24)

is called the (symmetric) exclusion process. In the exclusion process, individ-
ual particles move according to random walks, that are independent as long
as the particles are sufficiently far apart. Particles never meet, and the total
number of particles is preserved.

The previous three maps (coalescing random walk map, annihilating ran-
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dom walk map, and exclusion map) can be combined with, e.g., the branching
map and death map from (1.6) and (1.7). In particular, adding coalescing
random walk or exclusion dynamics to a contact process models displacement
(migration) of organisms. Since in many organisms, you actually need two
parents to produce offspring, several authors [Nob92, Dur92, Neu94, SS15a]
have studied particle systems where the branching map is replaced by the
cooperative branching map

coopijk(x)(l) :=

{
1 if l = k, x(i) = 1, x(j) = 1,

x(l) otherwise.
(1.25)

See Figure 1.11 for a one-dimensional interacting particle system involving
cooperative branching and coalescing random walks.
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Figure 1.11: A one-dimensional interacting particle system with cooperative
branching and coalescing random walk dynamics.

We define a killing map by

killij(x)(k) :=

{
0 if k = j, x(i) = 1, x(j) = 1,

x(k) otherwise.
(1.26)

In words, this says that if there are particles at i and j, then the particle
at i kills the particle at j. Sudbury [Sud97, Sud99] has studied a “biased
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annihilating branching process” with generator of the form

Gbabpf(x) :=λ
∑

(i,j)∈E1

{
f
(
braij(x)

)
− f

(
x
)}

+
∑

(i,j)∈E1

{
f
(
killij(x)

)
− f

(
x
)}

(x ∈ {0, 1}Z).
(1.27)

In the physics literature, this model is known as the Fredrickson-Andersen
one spin facilitated model, see formula (26) in [RS03] (with f = 1). It is part
of the class of kinetically constrained models. In the mathematical literature
on this subject, a slight variant of the model has been studied [BDT19].
Figure 1.12 shows a simulation of such a system when λ = 0.2. When λ is
small, in the simulations, the process seems to behave similar to systems of
branching and coalescing random walks.
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Figure 1.12: A system with branching and killing.

1.8 Periodic behavior

An invariant law of an interacting particle system is a probability distribution
on the space SΛ of all possible configurations with the property that if the
system at time zero is distributed according to this law, then at all later
times it is also distributed according to this law. Invariant laws need not be
unique. For example, Potts models above the critical point have q different
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invariant laws, that are characterized by the color that occupies the majority
of the sites.

For all the interacting particle systems and initial states we have con-
sidered so far, the system has the property that as time tends to infinity,
the distribution of the system converges to an invariant law. This need not
always be the case. Perhaps the simplest way in which this can fail is if
the system has a periodic law, i.e., a law that has the property that if the
system at time zero is distributed according to this law, then it returns to
this law after a finite time T > 0 (the period), but the system has a different
distribution at all intermediate times 0 < t < T .

Very little is known rigorously about interacting particle systems with pe-
riodic laws. Jahnel and Külske [JK14a] have constructed a three dimensional
interacting particle system that has a periodic law. A general result due to
Mountford [Mou95] implies that one dimensional systems with finite range
interactings cannot have periodic laws. Beyond this, very little is known
for spatial models, although there are some studies of periodic behavior in
the mean-field limit (see Chapter 3). In particular, it is not known whether
periodic laws are possible in two dimensions. The construction in [JK14a] is
rather abstract since they do not write down the dynamics of their system
explictly but only prove that such a system exists. Their system also does
not have finite range interactings, although the strength of the interaction
decays exponentially in the distance, which is almost as good.

Numerical simulations suggest that periodic behavior is not a rare phe-
nomenon. Several interacting particle systems with explicit dynamics are
known to exhibit periodic behavior in simulations. All known examples seem
to work only in dimensions three and higher, however, which suggests that,
perhaps, periodic behavior is not possible in two dimensions.

In the mutually metastable Ising model, based on the work of Collet,
Formentin and Tovazzi [CFT16], the local state space is S = {−1,+1}2 and
the lattice is Λ = Z3. We denote an element of SΛ as x = (x(i))i∈Λ where
x(i) =

(
x1(i), x2(i)

)
with x1(i), x2(i) ∈ {−1,+1} (i ∈ Z3). We let

M1
i (x) :=

1

|Ni|
∑
j∈Ni

x1(j) and M2
i (x) :=

1

|Ni|
∑
j∈Ni

x2(j)

denote the average values of x1(j) and x2(j) among the neighbors of a site
i. The mutually metastable Ising model with parameters α, β ≥ 0 is the
interacting particle sysytem with state space SΛ that evolves in such a way
that

x1(i) flips its the value with rate e−x
1(i)[βM1

i (x) + αx2(i)],

x2(i) flips its the value with rate e−x
2(i)[βM2

i (x)− αx1(i)].
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Figure 1.13: Periodic behavior of the dissipative Ising model with α = 0.2
and β = 8 on a cube with side length 40 and periodic boundary conditions.
Colors indicate the state of x1(i). Good sites have bright colors and corrupted
sites have dark colors. Shown is the transition from a predominantly minus
state to a predominantly plus state.

When α = 0, there is no interaction between the two spins at a given site.
In this case X1

t := (X1
t (i))i∈Λ and X2

t := (X1
t (i))i∈Λ evolve as independent

stochastic Ising models.10 In particular, the effect of the term −βx1(i)M1
i (x)

in the exponent is that the spin x1(i) does not change its value often if it
agrees with most of its neighbors (so that x1(i)M1

i (x) > 0), and on the
other hand changes its value with a high rate if it disagrees with most of its
neighbors (so that x1(i)M1

i (x) < 0). Similarly, the spin x2(i) has a tendency
to align with the majority of its neighbors.

When α > 0, then in addition, the spin x1(i) tries to align with x2(i), but
on the other hand, the spin x2(i) prefers to have a different value from x1(i).
When most of the spins x1(i) have the value +1 and most of the spins x2(i)
also have the value +1, then the spins x1(i) are perfectly satisfied, because
they agree with most of their neighbors and also with the other spins x2(i).

10The parameter β here is defined differently from the parameter β in Section 1.4.
Denoting the latter by β′, one has 1

2β
′ = 1

|Ni|β. Also, the dynamics here are different from

the Glauber dynamics of Section 1.4.
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Figure 1.14: Three snapshots of a stationary dissipative Ising model with
α = 0.2 and β = 8 on a square with side length 100 and periodic boundary
conditions. Although the system locally behaves in a periodic way sites do
not coordinate their action over longer distances.

But the spins x2(i) are not completely satisfied. From their point of view, it
would be ideal if most of the spins x1(i) have the value +1 but most of the
spins x2(i) have the value −1. Numerical simulations suggest that the result
of this is, for suitable choices of the parameters, that the systems starts to
cycle, in a coordinated way, through the states

(+1,+1) 7→ (+1,−1) 7→ (−1,−1) 7→ (−1,+1) 7→ (+1,+1) 7→ · · · .

However, this sort of coordinated behavior seems to happen only in di-
mensions three and more. In two dimensions, even though individual sites
still tend to pass through the states (+1,+1) 7→ (+1,−1) 7→ (−1,−1) 7→
(−1,+1) 7→ in this order, the sites at larger distances from each other no
longer coordinate their behavior.

In the dissipative Ising model, based on a model described in [DFR13,
Tov19, CD+20], the local state space is again S = {−1,+1}2. There are
again two model parameters α, β ≥ 0 but the dynamics are different. Letting
Mi(x) := (M1

i (x)+M
2
i (x))/2 denote the average value of x1(j) and x2(j) for

all sites j neighboring the site i, the system evolves in such a way that

x1(i) flips its the value with rate e−βx
1(i)Mi(x),

x2(i) flips its the value with rate α1{x1(i)=x2(i)}.

We call sites where x1(i) = x2(i) good sites with spin x1(i) and sites where
x1(i) ̸= x2(i) corrupted sites with spin x1(i). Note that corrupted sites have
no influence on Mi(x). Therefore, we can describe the dynamics informally
as follows: sites try to align with their neighbors, but they only see the good
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neighbors. After flipping their spin, sites are initially good, but they become
corrupt with rate α and stay so until the next time when they flip their spin.

In simulations of the three dimensional model, for a suitable choice of the
parameters, we see periodic behavior, where the system cycles through the
states

(+1,+1) 7→ (+1,−1) 7→ (−1,−1) 7→ (−1,+1) 7→ (+1,+1) 7→ · · ·

in a coordinated way. In two dimensions, we still see this behavior locally, but
sites at larger distances from each other no longer coordinate their behavior.
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Chapter 2

Continuous-time Markov chains

2.1 Finite state space

Let S be any finite set. A (real) matrix indexed by S is a collection of real
constants A = (A(x, y))x,y∈S. We calculate with such matrices in the same
way as with normal finite matrices. Thus, the product AB of two matrices
is defined as

(AB)(x, z) :=
∑
y∈S

A(x, y)B(y, z) (x, z ∈ S).

We let 1 denote the identity matrix 1(x, y) = 1{x=y} and define An in the
obvious way, with A0 := 1. If f : S → R is a function, then we also define

Af(x) :=
∑
y∈S

A(x, y)f(y) and fA(y) :=
∑
x∈S

f(x)A(x, y). (2.1)

A probability kernel on S is a matrix K = (K(x, y))x,y∈S such that K(x, y) ≥
0 (x, y ∈ S) and

∑
y∈SK(x, y) = 1 (x ∈ S). Clearly, the composition of two

probability kernels yields a third probability kernel. A probability kernel is
deterministic if it is of the form

Km(x, y) :=

{
1 if x = m(x),

0 otherwise,

for some functionm : S → S. It is easy to see that the space of all probability
kernels on a finite set S is convex, and the deterministic probability kernels
are exactly the extremal elements of this set. It follows that each probability
kernel can be written as a convex combination of deterministic probability

35
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kernels. Another way to say this is that for each probability kernel K on S,
it is possible to find a random map M : S → S such that1

K(x, y) = P
[
M(x) = y

]
(x, y ∈ S). (2.2)

A formula of this form is called a random mapping representation of the
probability kernel K.

A Markov semigroup is a collection of probability kernels (Pt)t≥0 such
that

lim
t↓0

Pt = P0 = 1 and PsPt = Ps+t (s, t ≥ 0).

Each such Markov semigroup is of the form

Pt = e tG :=
∞∑
n=0

1

n!
(tG)n,

where the generator G is a matrix of the form

G(x, y) ≥ 0 (x ̸= y) and
∑
y

G(x, y) = 0. (2.3)

By definition, we say that a function f that is defined on an interval
I ⊂ R is piecewise constant if each compact subinterval of I can be divided
into finitely many subintervals, so that f is constant on each subinterval.
By definition, a Markov process with semigroup (Pt)t≥0 is a stochastic pro-
cess X = (Xt)t≥0 with values in S and piecewise constant, right-continuous
sample paths, such that

P
[
Xu ∈ ·

∣∣ (Xs)0≤s≤t
]
= Pu−t(Xt, · ) a.s. (0 ≤ t ≤ u). (2.4)

Here, in the left-hand side, we condition on the σ-field generated by the
random variables (Xs)0≤s≤t. One can prove that formula (2.4) is equivalent
to the statement that

P
[
X0 = x0, . . . , Xtn = xn

]
= P[X0 = x0]Pt1−t0(x0, x1) · · ·Ptn−tn−1(xn−1, xn) (0 < t1 < · · · < tn).

(2.5)
From this last formula, we see that for each initial law P[X0 = · ] = µ, there is
a unique Markov process with semigroup (Pt)t≥0 and this initial law. We say
that (Pt)t≥0 are the transition kernels of the Markov process. It is custom

1Indeed, this formula says nothing else than K =
∑

m P[M = m]Km, where the sum
runs over all maps m : S → S, and Km is the deterministic kernel defined by the map m.
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to let Pµ denote the law of the Markov process with initial law µ, and to
let Px denote the law of the Markov process with deterministic initial state
X0 = x a.s. We let Eµ and Ex denote expectation with respect to Pµ and
Px, respectively. Recalling our notation (2.1), we see that for any probability
law µ on S and function f : S → R,

µPt(x)=Pµ[Xt = x],

Ptf(x)=Ex[f(Xt)]
(t ≥ 0, x ∈ S).

In particular, µPt is the law of the process at time t. We note that

Px[Xt = y] = Pt(x, y) = 1{x=y} + tG(x, y) +O(t2) as t ↓ 0.

For x ̸= y, we call G(x, y) the rate of jumps from x to y. Intuitively, if the
process is in x, then in the next infinitesimal time interval of length dt it has
a probability G(x, y)dt to jump to y, independently for all y ̸= x.

Let S be a finite set. Let K be a finite set whose elements are proba-
bility kernels on S and let (rK)K∈K be nonnegative constants. Then it is
straightforward to check that setting

Gf :=
∑
K∈K

rK
{
Kf − f

}
(2.6)

defines a Markov generator. The following exercise says that conversely, each
Markov generator can be written in this form, where we can even choose the
set K so that it has only one element.

Exercise 2.1 Let S be a finite set. Show that each Markov generator G on
S can be written in the form Gf = r{Kf − f}, where r ≥ 0 is a constant
and K is a probability kernel on S. Hint: first add a multiple of the identity
matrix to G to make all diagonal entries nonnegative and then normalize.

If all kernels in the set K are deterministic, then our expression for G
takes the form

Gf(x) =
∑
m∈G

rm
{
f
(
m(x)

)
− f

(
x
)}
, (2.7)

where G is a finite set whose elements are maps m : S → S and (rm)m∈G
are nonnegative constants. We call (2.7) a random mapping representation of
the generator G. Random mapping representations of generators will become
important in Section 2.6 below.

Exercise 2.2 Let S be a finite set. Show that each Markov generator G on
S has a random mapping representation.
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2.2 The embedded Markov chain

Continuous-time Markov processes with countable state space (also known
as continuous-time Markov chains) can in many ways be treated in the same
way as those with a finite state space, but there are some complications,
which mainly stem from the fact that such processes may explode. A good
general reference for this material is [Lig10, Chapter 2].

We calculate with matrices indexed by a countably infinite set S in the
same way as for finite S, provided the infinite sums are well-defined (i.e., not
of the form ∞−∞). Generalizing our earlier definition, we say that K is a
subprobability kernel if

∑
yK(x, y) ≤ 1 for all x ∈ S. Also when S is infinite,

we define generators as in (2.3). Note that∑
y∈S

G(x, y) = −G(x, x) +
∑
y: y ̸=x

G(x, y).

Since G(x, y) ≥ 0 for x ̸= y, the sum on the right-hand side is always well-
defined, though a priori it may be infinite. The condition

∑
y G(x, y) implies

that it must be finite, however. In the special context of continuous-time
Markov chains, a generator is traditionally called a Q-matrix (and denoted
as Q) but we will stick to the term generator.

It is well-known [Lig10, Section 2.5.2] that one can construct a continuous-
time Markov chain with generator G from its associated embedded discrete
Markov chain and independent, exponentially distributed holding times. We
now recall this construction. Let G be a generator, let c(x) := −G(x, x)
(x ∈ S), and let K be the probability kernel on S defined by

K(x, y) :=


c(x)−1G(x, y) if c(x) > 0, x ̸= y,

1 if c(x) = 0, x = y,

0 otherwise.

For each x ∈ S, let (Y x
k )k≥0 be the discrete-time Markov chain with initial

state Y x
0 = x and transition kernel K. Set N := inf{n ≥ 0 : c(Y x

n ) = 0},
which may be infinite, and let (σk)k≥0 be i.i.d. exponentially distributed ran-
dom variables with mean one, independent of (Y x

k )k≥0. We define (τk)0≤k≤N+1

by

τ0 := 0, τn :=
n−1∑
k=0

σk/c(Y
x
k ) (1 ≤ n ≤ N + 1),

where we use the conventions that σk/c(Y
x
k ) := ∞ if c(Y x

k ) = 0 and N +1 :=
∞ if N = ∞. We set τ := τN+1. Note that τ = ∞ on the event that N <∞,
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but τ may be finite on the event that N = ∞. We define a stochastic process
(Xx

t )t≥0 with values in S∞ := S ∪ {∞} by

Xx
t :=

{
Y x
k if t ∈ [τk, τk+1), 0 ≤ k < N + 1,

∞ if t ≥ τ.

We call τ the explosion time. We set X∞
t := ∞ (t ≥ 0) and define probability

kernels (P t)t≥0 on S∞ by

P t(x, y) := P
[
Xx
t = y

]
(t ≥ 0, x, y ∈ S∞).

We call (Xx
t )t≥0 the continuous-time Markov chain with generator G and

we call (Y x
k )k≥0 its associated embedded discrete-time Markov chain. It is

well-known that (Xx
t )t≥0 is a Markov process (in the sense of (2.4) and (2.5))

with state space S∞ and transition kernels (P t)t≥0. In Exercise 2.3 below,
you will be be asked to prove this. The random times

ηk := σk/c(Y
x
k ) (0 ≤ k < N)

are called the holding times. Note that conditional on the embedded chain
(Y x

k )k≥0, the holding times (ηk)0≤k<N are independent exponentially dis-
tributed such that ηk has mean 1/c(Y x

k ). If τ = ∞ a.s. for each initial state
x ∈ S, then we say that the continuous-time Markov chain with generator G
is nonexplosive. In the opposite case, it is explosive. We let

Pt(x, y) := P t(x, y) (t ≥ 0, x, y ∈ S) (2.8)

denote the restrictions of the transition kernels (P t)t≥0 to S. If G is explosive,
then these are only subprobability kernels.

Exercise 2.3 Show that (Xx
t )t≥0 is a Markov process in the sense of (2.4)

with state space S∞ and transition kernels (P t)t≥0. Hint: let M be the
number of jumps of the process (Xx

s )0≤s≤t, which may be infinite. Then af-
ter conditioning on (Xx

s )0≤s≤t, you know M as well as (Y x
k )0≤k<M+1 and

(σk)0≤k<M , plus in the case that M < ∞ you have the information that∑M
k=0 σk/c(Y

x
k ) > t. Given all this information, what do you know about the

process (Xx
u)u≥t?

2.3 Generator construction

Let G be the generator of a continuous-time Markov chain with countable
state space S. Generalising our earlier definition to countable state spaces,
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we call the collection of subprobability kernels (Pt)t≥0 defined in (2.8) the
Markov semigroup with generator G. In this section we make a more direct
link between (Pt)t≥0 and G.

Let u : S × [0,∞) → [0,∞) be a function. We say that u solves the
Kolmogorov backward equation

∂
∂t
ut(x) =

∑
y

G(x, y)ut(y) (t ≥ 0, x ∈ S), (2.9)

if the function t 7→ ut(x) is continuously differentiable for each x ∈ S and
(2.9) holds. Note that the sum on the right-hand side of (2.9) is always well-
defined since u ≥ 0 and all terms except one are nonnegative. A priori, the
sum might be ∞, but the equality in (2.9) implies that it must be finite. We
say that u is a minimal solution to (2.9) if any other solution u′ with the
same initial condition u′0 = u0 satisfies ut(x) ≤ u′t(x) for all t ≥ 0 and x ∈ S.
Note that for a given initial condition, there can be at most one minimal
solution to (2.9). The following theorem is the main result of this section.

Theorem 2.4 (Generator construction) Let G be the generator of a
continuous-time Markov chain with countable state space S and let (Pt)t≥0

be the Markov semigroup with generator G. Then for each bounded function
f : S → [0,∞), the function

ut(x) := Ptf(x) (t ≥ 0, x ∈ S)

is the minimal solution to the Kolmogorov backward equation (2.9) with initial
condition f .

To prepare for the proof of Theorem 2.4, as a first step, we set c(x) :=
−G(x, x) (x ∈ S), and we consider the equation

ut(x) = u0(x)e−c(x)t +
∫ t

0

ds e−c(x)s
∑
y: y ̸=x

G(x, y)ut−s(y). (2.10)

By definition, a solution to (2.10) is a function u : S × [0,∞) → [0,∞)
such that t 7→ ut(x) is measurable for all x ∈ S and (2.10) holds for all
t ≥ 0 and x ∈ S. Note that since G(x, y) ≥ 0 for x ̸= y, the sum over
y and consequently also the integral over s are well-defined, even though a
priori the outcome may be ∞ (a posteriori, of course, (2.10) implies that the
outcome must be finite).

Lemma 2.5 (First jump decomposition) Under the assumptions of The-
orem 2.4, the function u solves (2.10) with u0 = f .
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Proof Since f is bounded ut(x) := Ptf(x) < ∞ for all t ≥ 0 and x ∈ S.
(This is the only place in the proof where we use the boundedness of f .)
Let (Xx

t )t≥0 be the continuous-time Markov chain with generator G and
initial state x ∈ S, constructed from the embedded discrete-time Markov
chain (Y x

k )k≥0 and i.i.d. standard exponential random variables (σk)k≥0 as
in the previous section. We extend f to S∞ by setting f(∞) := 0 so that
Ptf(x) = E[f(Xx

t )]. Let τk denote the time when (Xx
t )t≥0 makes its k-th

jump. If c(x) = 0, then τ1 = ∞ a.s. and Xt = x a.s. for all t ≥ 0, which
implies ut(x) = Ptf(x) = E[f(Xt)] = f(x) (t ≥ 0), so (2.10) is trivially
satisfied with u0 = f . We assume, therefore, from now on that c(x) > 0.
In this case, conditional on τ1 = s and Xx

τ1
= y, the process (Xx

τ1+t
)t≥0 is

equally distributed with (Xy
t )t≥0, which allows us to write

E[f(Xx
t )] = f(x)P[τ1 > t] +

∫ t

0

P[τ1 ∈ dt]
∑
y: y ̸=x

P[Xx
τ1
= y]P

[
f(Xy

t−s)
]

= f(x)e−c(x)t +
∫ t

0

c(x)e−c(x)sds c(x)−1
∑
y: y ̸=x

G(x, y)Pt−sf(y),

which shows that ut := Ptf solves (2.10) with u0 = f .

Lemma 2.6 (The backward equation) If a function u : S × [0,∞) →
[0,∞) solves (2.9), then it solves (2.10). Conversely, each bounded solution
to (2.10) also solves (2.9).

Proof If u solves (2.9), then

∂
∂t
ut(x) + c(x)ut(x) =

∑
y: y ̸=x

G(x, y)ut(y),

which implies

∂
∂t

(
ec(x)tut(x)

)
= ec(x)t

∑
y: y ̸=x

G(x, y)ut(y) (t ≥ 0, x ∈ S).

Integrating and then multiplying both sides of the equation by e−c(x)t, we
obtain

ut(x) = u0(x)e−c(x)t +
∫ t

0

ds e−c(x)(t− s)
∑
y: y ̸=x

G(x, y)us(y),

which after the substitution s 7→ t− s yields (2.10).
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Conversely, if (2.10) holds and u is bounded, then the right-hand side is
continuous in t for each x and hence so is the left-had side. But then te
right-hand side must actually be continuously differentiable as a function of
t and the same must be true for the left-hand side. We can then reverse the
argument above (differentiating instead of integrating) to obtain (2.9).

Lemma 2.7 (Comparison principle) Let G be the generator of a con-
tinuous-time Markov chain with countable state space S and let (Pt)t≥0 be the
Markov semigroup with generator G. Assume that u : S × [0,∞) → [0,∞)
satisfies

∂
∂t
ut(x) ≥

∑
y

G(x, y)ut(y) (t ≥ 0, x ∈ S),

where t 7→ ut(x) is continuously differentiable for each x ∈ S. Then

Ptu0(x) ≤ ut(x) (t ≥ 0, x ∈ S).

Proof Let (Xx
t )t≥0 be the continuous-time Markov chain with generator G

and initial state x and as in Section 2.2, let τk denote the time of its k-th
jump, for 1 ≤ k ≤ N , where N denotes the total number of jumps, which
may be finite or infinite, and let τ denote the explosion time. Then

Ptu0(x) = E
[
u0(X

x
t )1{t<τ}

]
(t ≥ 0).

On the event that N <∞ we set τk := ∞ for k > N and we define

u
(n)
0 (x) = E

[
u0(X

x
t )1{t<τn}

]
(t ≥ 0).

Then

u
(n)
t (x) −→

n→∞
Ptu0(x) (t ≥ 0).

Using the same argument as in the proof of Lemma 2.5, we see that

u
(n+1)
t (x) = u0(x)e−c(x)t +

∫ t

0

ds e−c(x)s
∑
y: y ̸=x

G(x, y)u
(n)
t−s(y).

By the same argument as in the proof of Lemma 2.6, with all equalities
replaced by inequalities,

ut(x) ≥ u0(x)e−c(x)t +
∫ t

0

ds e−c(x)s
∑
y: y ̸=x

G(x, y)ut−s(y).
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We claim that u
(n)
t (x) ≤ ut(x) (n ≥ 0, t ≥ 0). The proof is by induction.

Clearly u
(0)
t (x) = 0 ≤ ut(x) (t ≥ 0). Assuming that the statement holds for

n, we have

ut(x) ≥ u0(x)e−c(x)t +
∫ t

0

ds e−c(x)s
∑
y: y ̸=x

G(x, y)ut−s(y)

≥ u0(x)e−c(x)t +
∫ t

0

ds e−c(x)s
∑
y: y ̸=x

G(x, y)u
(n)
t−s(y) = u

(n+1)
t (x).

Letting n→ ∞ we obtain ut(x) ≥ Pt(x).

Proof of Theorem 2.4 By Lemmas 2.5 and 2.6, u solves the Kolmogorov
backward equation (2.9) with initial condition f . If u′ is another solution,
then Lemma 2.7 implies that u ≤ u′, showing that u is minimal.

We conclude this section with the following observation.

Proposition 2.8 (Uniqueness of solutions) The Kolmogorov backward
equation (2.9) has a unique bounded solution u with initial condition u0 = f
for each bounded function f : S → [0,∞) if and only if the continuous-time
Markov chain with generator G is nonexplosive.

Proof For each r ∈ R, let r : S → R denote the function that is constantly
equal to r. If G is explosive, then ut := Pt1 and u′t := 1 (t ≥ 0) are two
different bounded solutions of the Kolmogorov backward equation (2.9) with
initial condition u0 = u′0 = 1, proving that solutions are not unique.

On the other hand, assume that G is nonexplosive and that u is a bounded
solution with initial condition u0 = f . Since u is bounded, there exist an
r ≥ 0 such that ut ≤ r (t ≥ 0). Lemma 2.7 tells us that Ptf ≤ ut (t ≥ 0).
Also, since r− u solves (2.9) with initial condition r− f , Lemma 2.7 tells us
that r−ut ≥ Pt(r− f) = r−Ptf (t ≥ 0) where in the last step we have used
that G is nonexplosive. Combining these inequalities, we see that ut = Ptf
(t ≥ 0).

2.4 Lyapunov functions

It is tempting to think of explosive continuous-time Markov chains as patho-
logical, but there exist very natural chains that are explosive. In fact, each
transient chain can with a suitable random time transform be transformed
into an explosive chain, so from this point of view the distinction between
transient and recurrent chains would appear to be more fundamental than
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the distinction between explosive and nonexplosive chains. Nevertheless, it
is useful to have at our disposal a technique for proving that a given chain is
nonexplosive. In the present section, we will show how nonexplosiveness can
be proved with the help of Lyapunov functions. Below is the main result of
this section. The term “Lyapunov function” originates in the stability the-
ory of ordinary differential equations but is sometimes also used for certain
functions occurring in Foster’s theorem, that gives necessary and sufficient
conditions for positive recurrence of a Markov chain. The role of the function
L in the following theorem is similar, so using the term in a general sense,
we may call it a Lyapunov function too.

Theorem 2.9 (Sufficient conditions for nonexplosiveness) Let G be
the generator of a continuous-time Markov chain with countable state space
S and let c(x) := −G(x, x) (x ∈ S). Assume that there exists a function
L : S → [0,∞) and constant λ ∈ R such that:

(i) sup{c(x) : x ∈ S, L(x) < C} is finite for all C <∞,

(ii) GL ≤ λL.

Then the continuous-time Markov chain (Xt)t≥0 with generator G is nonex-
plosive and

Ex
[
L(Xt)

]
≤ eλtL(x) (t ≥ 0, x ∈ S).

The proof of Theorem 2.9 depends on two lemmas.

Lemma 2.10 (Exponential bound) Let (Xt)t≥0 be a continuous-time
Markov chain with generator G, started in X0 = x. Assume that L : S →
[0,∞) satisfies GL ≤ λL for some λ ∈ R. Then

Ex
[
L(Xt)1{t<τ}

]
≤ eλtL(x) (t ≥ 0), (2.11)

where τ denotes the explosion time of (Xt)t≥0.

Proof The function ut(x) := L(x)eλt satisfies ∂
∂t
ut ≥ Gut (t ≥ 0), so

Lemma 2.7 tells us that Ptu0 ≤ ut (t ≥ 0), which is the same as (2.11).

Lemma 2.11 (Bounded jump rates) Let G be the generator of a continu-
ous-time Markov chain with countable state space S and let c(x) := −G(x, x)
(x ∈ S). Assume that supx∈S c(x) <∞. Then G is nonexplosive.
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Proof Let (Xx
t )t≥0 be the continuous-time Markov chain with generator

G and initial state x, constructed from its embedded discrete-time Markov
chain (Y x

k )k≥0 and i.i.d. standard exponential random variables (σk)k≥0 as in
Section 2.2. Let N be the total number of jumps, which may be finite or
infinite, and let τ denote the explosion time. On the event that N < ∞ we
have τ = ∞ while on the event that N = ∞ we have

τ =
∞∑
k=0

σk/c(Y
x
k ).

By our assumption that C := supx∈S c(x) < ∞ we can estimate this from
below by

τ ≥ C−1

∞∑
k=1

σk

which is ∞ a.s. by the strong law of large numbers.

Proof of Theorem 2.9 It suffices to prove that G is nonexplosive, since the
statement about the expectation of L(Xt) then follows from Lemma 2.10.
We set

SC :=
{
x ∈ S : L(x) < C

}
and define a generator GC by

GC(x, y) :=

{
G(x, y) if x ∈ SC ,

0 if x ̸∈ SC

We let (Xx
t )t≥0 and (Xx,C

t )t≥0 denote the continuous-time Markov chains with
generators G and GC respectively. It follows from the construction of these
processes in terms of their embedded Markov chains that we can naturally
couple these processes such that

Xx
t = Xx,C

t ∀t ≤ τC := inf
{
t ≥ 0 : Xx

t ̸∈ SC
}
.

In fact, we then have

Xx,C
t = Xx

t∧τC (t ≥ 0),

i.e., (Xx,C
t )t≥0 corresponds to the process (X

x
t )t≥0 stopped as soon as it leaves

SC .
Let τ denote the explosion time of (Xx

t )t≥0. Lemma 2.11 and assump-
tion (i) of the theorem imply that (Xx,C

t )t≥0 is nonexplosive. Since the pro-
cesses (Xx

t )t≥0 and (Xx,C
t )t≥0 are equal up to time τC it follows that τC ≤ τ .
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Making λ larger if necessary, we can without loss of generality assume that
λ ≥ 0. Assumption (ii) of the theorem then implies that also GCL ≤ λL.
Indeed, GCL(x) = GL(x) if L(x) < C and GCL(x) = 0 otherwise. We can
therefore use Lemma 2.10 and the fact that GC is nonexplosive to conclude
that

CPx[τC ≤ t] ≤ E
[
L(Xx,C

t )
]
≤ eλtL(x) (t ≥ 0).

Since τC ≤ τ , it follows that

Px[τ ≤ t] ≤ eλtL(x)/C (t ≥ 0),

so letting C → ∞ we see that τ = ∞ a.s.

2.5 Poisson point sets

The construction of a continuous-time Markov chain from its embedded
discrete-time Markov chain is useful for theoretical purposes, but for the
purpose of studying interacting particle systems a different construction will
turn out to be much more useful, that is based on Poisson point sets. To
prepare for this, in the present section, we recall the definition of Poisson
point sets and some of their basic properties.

Let S be a σ-compact2 metrizable space. We will mainly be interested in
the case that S = G × R where G is a countable set. We let S denote the
Borel-σ-field on S. A locally finite measure on (S,S) is a measure µ such
that µ(C) <∞ for all compact C ⊂ S.

Let (Ω,F ,P) be our underlying probability space. A random measure
on S is a function ξ : Ω × S → [0,∞] such that for fixed ω ∈ Ω, the
function ξ(ω, · ) is a locally finite measure on (S,S), and for fixed A ∈ S,
the function ξ( · , A) is measurable. By [Kal97, Lemma 1.37], we can think
of ξ as a random variable with values in the space of locally finite measures
on (S,S), equipped with the σ-field generated by the maps µ 7→ µ(A) with
A ∈ S. Then the integral

∫
fdξ defines a [0,∞]-valued random variable for

all measurable f : S → [0,∞]. There exists a unique measure, denoted by
E[ξ], such that ∫

f dE[ξ] = E
[ ∫

f dξ
]

for all measurable f : S → [0,∞]. The measure E[ξ] is called the intensity
of ξ.

2This means that there exists a countable collection of compact sets Si ⊂ S such that⋃
i Si = S.
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The following result follows from [Kal97, Lemma 10.1 and Prop. 10.4].3

Below, Sloc := {A ∈ S : A is compact} denotes the set of measurable subsets
of S whose closure is compact.

Proposition 2.12 (Poisson point measures) Let µ be a locally finite
measure on (S,S). Then there exists a random measure ξ, unique in dis-
tribution, such that for any disjoint A1, . . . , An ∈ Sloc, the random variables
ξ(A1), . . . , ξ(An) are independent and ξ(Ai) is Poisson distributed with mean
µ(Ai).

We call a random measure ξ as in (2.12) a Poisson point measure with
intensity µ. Indeed, one can check that E[ξ] = µ. We note that ξ(A) ∈ N
for all A ∈ Sloc. Such measures are called (locally finite) counting measures .
Each locally finite counting measure ν on S is of the form

ν =
∑

x∈supp(ν)

nxδx,

where supp(ν), the support of ν, is a locally finite subset of S, the nx are
positive integers, and δx denotes the delta-measure at x. We say that ν is
simple if nx = 1 for all x ∈ supp(ν). Recall that a measure µ has an atom
at x if µ({x}) > 0. A measure µ is called atomless if it has no atoms, i.e.,
µ({x}) = 0 for all x ∈ S. The already mentioned [Kal97, Prop. 10.4] tells us
the following.

Lemma 2.13 (Simple Poisson point measures) Let ξ be a Poisson point
measure with locally finite intensity µ. Then ξ is a.s. simple if and only if µ
is atomless.

If µ is atomless, then a Poisson point measure ξ with intensity µ is char-
acterized by its support ω := supp(ξ). We call ω a Poisson point set with
intensity µ. Intuitively, ω is a set such that P[ω ∩ dx ̸= ∅] = µ(dx), indepen-
dently for each infinitesimal subset dx ⊂ S.

For any counting measure ν on S and measurable function f : S → [0, 1]
we introduce the notation

fν :=
n∏
i=1

f(xi) where ν =
∑
i

δxi .

3In fact, [Kal97, Prop. 10.4] shows that it is possible to construct Poisson point measures
on arbitrary measurable spaces, assuming only that the intensity measure is σ-finite, but
we will not need this generality.
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Here, by definition, f 0 := 1, where 0 denotes the counting measure that is
identically zero. Alternatively, our definition says that

fν = e
∫
(log f)dν,

where log 0 := −∞ and e−∞ := 0. It is easy to see that f νf ν
′
= f ν+ν

′
.

Lemma 2.14 (Laplace functionals) Let µ be a localy finite measure on
(S,S) and let ξ be a Poisson point measure with intensity µ. Then

E
[
(1− f)ξ

]
= e−

∫
fdµ (2.12)

for each measurable f : S → [0, 1]. Conversely, if ξ is a random counting
measure and (2.12) holds for all continuous, compactly supported f , then ξ
is a Poisson point measure with intensity µ.

Proof The fact that Poisson point measures satisfy (2.12) is proved in
[Kal97, Lemma 10.2], which is written in terms of − log f , rather than f .
The fact that (2.12) determines the law of ξ uniquely follows from [Kal97,
Lemma 10.1].

Formula (2.12) can be interpreted in terms of thinning. Consider a count-
ing measure ν =

∑
i δxi , let f : S → [0, 1] be measurable, and let χi be

independent Bernoulli random variables (i.e., random variables with values
in {0, 1}) with P[χi = 1] = f(xi). Then the random counting measure

ν ′ :=
∑
i

χiδxi

is called an f -thinning of the counting measure ν. Note that

P[ν ′ = 0] =
∏
i

P[χi = 0] = (1− f)ν .

In view of this, the left-hand side of (2.12) can be interpreted as the proba-
bility that after thinning the random counting measure ξ with f , no points
remain. By [Kal97, Lemma 10.1], knowing this probability for each con-
tinuous, compactly supported f uniquely determines the law of a random
counting measure.

Using Lemma 2.14, it is easy to prove that if ξ1 and ξ2 are independent
Poisson point measures with intensities µ1 and µ2, then ξ1 + ξ2 is a Poisson
point measure with intensity µ1+µ2. We also mention [Kal97, Lemma 10.17],
which says the following.
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Lemma 2.15 (Poisson points on the halfline) Let (τk)k≥0 be real random
variables such that τ0 = 0 and σk := τk − τk−1 > 0 (k ≥ 1). Then ω := {τk :
k ≥ 1} is a Poisson point set on [0,∞) with intensity cℓ, where ℓ denotes
the Lebesgue measure, if and only if the random variables (σk)k≥1 are i.i.d.
exponentially distributed with mean c−1.

2.6 Poisson construction of Markov processes

In the present section we will show how a continuous-time Markov chain
with countable state space S can be constructed by applying certain maps
m : S → S at the times of a Poisson point process. We start with the
following observation.

Lemma 2.16 (Random mapping representation) Let S be a countable
set, let G be a countable collection of maps m : S → S, and let (rm)m∈G be
nonnegative real numbers such that

c(x) :=
∑

m:m(x)̸=x

rm <∞ for all x ∈ S. (2.13)

Then there exists a generator G of a continuous-time Markov chain with state
space S such that

Gf(x) =
∑
m∈G

rm
{
f
(
m(x)

)
− f

(
x
)}

(2.14)

for all bounded f : S → [0,∞). Conversely, each generator G of a continu-
ous-time Markov chain with state space S can be written in the form (2.14)
for a suitable choice of a collection G of maps m : S → S and nonnegative
real numbers (rm)m∈G satisfying (2.13).

Proof Let G be a countable collection of maps m : S → S, let (rm)m∈G
be nonnegative real numbers satisfying (2.13), and let c(x) be as defined in
(2.13). Then it is straightforward to check that

G(x, y) :=


∑
m∈G

m(x)=y

rm if x ̸= y,

−c(x) if x = y

(x, y ∈ S)

defines a generator such that (2.14) holds. To see that each generator G
can be written in this form, we define for each x, y ∈ S with x ̸= y a map
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mx,y : S → S by

mx,y(z) :=

{
y if z = x,

z otherwise,

we set G := {mx,y : x, y ∈ S, x ̸= y} and rmx,y := G(x, y). It is then
straightforward to check that the rates (rm)m∈G satisfy (2.13) and (2.14)
holds.

We call the way of writingG as in (2.14) a random mapping representation
ofG. Recall that random mapping representations of probability kernels have
been defined in Section 2.1. There is a close connection between the two.
Indeed, we will see that if (Pt)t≥0 is the Markov semigroup with generator
G, then using a random mapping representation of G we can for each t ≥ 0
construct a random mapping representation of Pt. We will do this by giving
a Poisson construction of the continuous-time Markov chain with generator
G. In the context of interacting particle systems, such Poisson construction
are known as graphical representations and they have many applications.

From now on, we assume that G is the generator of a continuous-time
Markov chain with countable state space S and we fix a random mapping
representation of G of the form (2.14) in terms of rates (rm)m∈G satisfying
(2.13). We equip the space G × R with the measure

ρ
(
{m} × A

)
:= rm ℓ(A)

(
m ∈ G, A ∈ B(R)

)
, (2.15)

where B(R) denotes the Borel-σ-field on R and ℓ denotes the Lebesgue mea-
sure. Let ω be a Poisson point set with intensity ρ. We call ω the graphical
representation associated with the random mapping representation (2.14).
We claim that for each t ∈ R, there exists at most one m ∈ G such that
(m, t) ∈ ω. To see this, we note that for each m ∈ G, the set

ξm :=
∑

t: (m,t)∈ω

δt

is a Poisson point measure on R with intensity rmℓ. Since the sets R× {m}
(m ∈ G) are disjoint, the random measures ξm (m ∈ G) are independent,
and hence for each m ̸= m′, the measure ξm+ ξm′ is a Poisson point measure
on R with intensity (rm + rm′)ℓ. Since the Lebesgue measure is atomless,
by Lemma 2.13, this Poisson point measure is simple, so there are no times
t ∈ R for which both (m, t) ∈ ω and (m′, t) ∈ ω. In view of this, we can
unambiguously define a random function R ∋ t 7→ mω

t by setting

mω
t :=

{
m if (m, t) ∈ ω,

1 otherwise,
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where we write 1 to denote the identity map.

As before, we write S∞ := S ∪ {∞}. We equip S∞ with a topology such
that a set A ⊂ S∞ is closed if and only if A is either finite or A is infinite and
∞ ∈ A. One can check that S∞ is compact in this topology and a sequence
xn ∈ S converges to ∞ if and only if it leaves every finite subset of S, i.e.,
for each finite S ′ ⊂ S, there exists an m such that xn ̸∈ S ′ for all n ≥ m.
The topological space S∞ is known as the one-point compactification of S.

Fix s ∈ R. By definition, we say that a random function X : [s,∞) → S∞
solves the evolution equation

Xt = mω
t (Xt−) (t > s) (2.16)

if

(i) limr↓tXr = Xt (t ≥ s) and limr↑tXr =: Xt− exists (t > s),

(ii) Xt = ∞ for all t ≥ τ := inf{t ≥ s : Xt = ∞},

(iii) if τ <∞, then limt↑τ Xt = ∞,

and (2.16) holds. Below is the main result of this section.

Theorem 2.17 (Poisson construction) Let G be the generator of a con-
tinuous-time Markov chain with countable state space S and let ω be the
graphical representation associated with a random mapping representation of
G. Then almost surely, for each s ∈ R and x ∈ S∞, there exists a unique
solution (Xs,x

t )t≥s to the evolution equation (2.16) with initial state Xs,x
s = x.

Setting

Xs,t(x) := Xs,x
t (s ≤ t, x ∈ S∞) (2.17)

defines a collection of maps (Xs,t)s≤t from S∞ into itself such that

Xs,s = 1 and Xt,u ◦Xs,t = Xs,u (s ≤ t ≤ u). (2.18)

If G is nonexplosive, then almost surely, Xs,t maps S into itself for all s ≤ t.
If s ∈ R and X0 is an S-valued random variable with law µ, independent of
ω, then the process (Xt)t≥0 defined as

Xt := Xs,s+t(X0) (t ≥ 0) (2.19)

is distributed as the continuous-time Markov chain with generator G and
initial law µ.
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Formula (2.18) says that the random maps (Xs,t)s≤t form a stochastic
flow. This stochastic flow is stationary in the sense that

X0,t is equally distributed with Xs,s+t (s ∈ R).

We note that since Xs,t is constructed using only Poisson points of the form
(m, r) with s < r ≤ t, and restrictions of a Poisson point set to disjoint parts
of the space are independent, it follows that the stochastic flow (Xs,t)s≤t has
independent increments in the sense that

Xt0,t1 , . . . ,Xtn−1,tn are independent ∀ t0 < · · · < tn.

We now that (2.19) implies that

Pt(x, y) = P
[
Xs,s+t(x) = y

]
(s, t ∈ R, x, y ∈ S),

so indeed, as announced, we have found a random mapping representation
of the subprobability kernels (Pt)t≥0.

Proof of Theorem 2.17 We start by proving that for each s ∈ R and
x ∈ S∞, there exists a unique solution (Xs,x

t )t≥s to the evolution equation
(2.16) with initial state Xs,x

s = x. If x = ∞, then clearly X∞
t = ∞ (t ≥ s)

is the unique solution of (2.16) so without loss of generality we assume from
now on that x ∈ S. For each x ∈ S, the set{

t ∈ R : mω
t (x) ̸= x

}
is a Poisson point set on R with intensity c(x) defined in (2.13), which is
finite by assumption. This allows us to inductively define times (τn)n≥0 and
a discrete chain (Y x

n )n≥0 by setting τ0 := 0, Y x
0 := x,

τn+1 :=

{
inf

{
t > τn : mω

t (xn) ̸= xn
}

if τn <∞,

∞ if τn = ∞

and

Y x
n+1 :=

{
mω
τn+1

(Y x
n ) if τn <∞,

Y x
n if τn = ∞.

We set τ := limn→∞ τn and

N := inf
{
n ≥ 0 : τn+1 = ∞

}
= inf

{
n ≥ 0 : c(Y x

n ) = 0
}
.

We claim that (Xs,x
t )t≥s defined as

Xx
t :=

{
Y x
k if t ∈ [τk, τk+1), 0 ≤ k < N + 1,

∞ if t ≥ τ
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solves the evolution equation (2.16). It is easy to see that it satisfies proper-
ties (i) and (ii) of a solution and that (2.16) holds. To see that it also satisfies
(iii), imagine that on the contrary that τ <∞ while Xt does not converge to
∞ as t→ τ . By the definition of the one-point compactification, this implies
that there exist a finite set S ′ ⊂ S and times sn → τ such that Xsn ∈ S ′.
This, in turn, implies that during the finite time interval [0, τ), the function
Xt makes infinitely many jumps that start at some point in S ′ and end in
some other point in S. But this is impossible, since by (2.13),⋃

y∈S′

{
t ∈ R : mω

t (y) ̸= y
}

is a locally finite subset of R. This completes the proof that (Xs,x
t )t≥s solves

(2.16). If (X ′
t)t≥s is another solution, then we see by induction thatX ′

t = Xs,x
t

for all 0 ≤ t ≤ τn and for all n ≥ 0. By property (iii) this implies thatX ′
τ = ∞

and hence X ′
t = ∞ for all t ≥ τ by property (ii), which shows that solutions

to (2.16) are unique.
Let (Xs,t)s≤t be defined in (2.17). Then it is straightforward to check

that (Xs,t)s≤t is a stochastic flow in the sense of (2.18). By the argument we
have already given, (Xs,t)s≤t has independent increments. It is also clearly
stationary in the sense that

X0,t is equally distributed with Xs,s+t (s, t ∈ R).

Let (P t)t≥0 be the probability kernels on S∞ defined as

P t(x, y) := P
[
X0,t(x) = y

]
(t ≥ 0, x, y ∈ S∞).

If (Xt)t≥0 is defined as in (2.19), then using the fact that (Xs,t)s≤t is a sta-
tionary stochastic flow with independent increments, we see that

P
[
X0 = x0, . . . , Xtn = xn

]
= P[X0 = x0]Pt1−t0(x0, x1) · · ·Ptn−tn−1(xn−1, xn)

for all 0 < t1 < · · · < tn and x0, . . . , xn ∈ S∞, which shows that (Xt)t≥0 is a
Markov process with transition kernels (P t)t≥0.

Let (Pt)t≥0 denote the restrictions of the probability kernels (P t)t≥0 to S.
We claim that (Pt)t≥0 is the Markov semigroup with generator G. Using the
properties of Poisson point processes, it is easy to see that

Pt(x, y) = 1(x, y) + tG(x, y) +O(t2) as t→ 0 (x, y ∈ S),

where 1 denotes the identity matrix, so 1(x, z) = 1 if x = z and = 0 otherwise.
One can prove that this property, together with the Markov property of the
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process (Xt)t≥0, suffices to uniquely identify (Xt)t≥0 defined in (2.19) as the
continuous-time Markov chain with generator G and initial law µ. We refer
the interested reader to [Lig10, Section 2.3] for the arguments, which are
elegant but a bit lengthy.

An alternative way to prove that (Xt)t≥0 defined in (2.19) is the con-
tinuous-time Markov chain with generator G and initial law µ is as follows.
First, by conditioning on X0 (which is independent of everything else) we
can reduce the problem to the case that X0 = x is deterministic. The case
x = ∞ is trivial so without loss of generality we may assume that x ∈ S.
It then suffices to show that (Y x

n )n≥0 defined above is the correct embedded
discrete-time Markov chain and that

σn := c(Y x
n )(τn+1 − τn) (0 ≤ n < N)

are i.i.d. standard exponentially distributed random variables. More pre-
cisely, we want to show that for each x = x0, . . . , xn with c(xk) > 0 for all
0 ≤ k < n and for all s1, . . . , sn ≥ 0, one has

P
[
τ1 − τ0 > s1, Y

x
1 = x1, . . . , τn − τn−1 > sn, Y

x
n = xn

]
= e−c(x0)s1c(x0)−1G(x0, x1) · · · e−c(xn−1)snc(xn−1)

−1G(xn−1, xn).

The easiest way to prove this is via discrete approximation. For r1, . . . , rn ∈
εN := {εn : n ≥ 0}, setting tk :=

∑k
n=1(rk + ε) (0 ≤ k ≤ n), we have

P
[
τ1 ∈ (t1, t1 + ε], Y x

1 = x1, . . . , τn ∈ (tn, tn + ε], Y x
n = xn

]
= e−c(x0)r1εG(x0, x1) · · · e−c(xn−1)rnεG(xn−1, xn) +O(ε2),

where e−c(xk−1)rk is the probability thatmω
t (xk−1) = xk−1 for all t ∈ (tk−1+

ε, tk] and εG(xk−1, xk) + O(ε2) is the probability that there exists a unique
t ∈ (tk, tk + ε] such that mω

t (xk−1) = xk, while mω
t′(xk−1) = xk−1 for all

t′ ∈ (tk, t] and m
ω
t′(xk) = xk for all t′ ∈ (t, tk + ε]. Since∑

r∈εN
r≥sk

εe−c(xk−1)r ≈
∫ ∞

sk

dr e−c(xk−1)r = c(xk−1)
−1e−c(xk−1)sk ,

by letting ε → 0 one can check that the joint law of the embedded Markov
chain and the holding times are precisely what they should be. For brevity,
we leave the details to the reader.

To complete the proof, we must show that if G is nonexplosive, then
almost surely, Xs,t maps S into itself for all s ≤ t. In other words, we must
show that

Xs,t(x) ∈ S ∀s, t ∈ R with s ≤ t and x ∈ S a.s.
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If s is deterministic, then by what we have proved Xt := Xs,s+t(x) (t ≥ 0) is
the continuous-time Markov chain with generator G and initial state x, so if
this process is nonexplosive, then

Xs,t(x) ∈ S ∀t ∈ [s,∞) a.s. (s ∈ R, x ∈ S).

Since s 7→ Xs,t(x) is constant between the times of the Poisson point process{
s ∈ R : mω

s (x) ̸= x
}

which has finite intensity by (2.13), we can improve our previous statement
to

Xs,t(x) ∈ S ∀s, t ∈ R with s ≤ t a.s. (x ∈ S),

and since S is countable, we see that the statement holds for all s, t ∈ R with
s ≤ t and x ∈ S simultaneously.

2.7 Local maps

The state space of the interacting particle systems we are interested is of
the form SΛ, where S is a finite set, called the local state space, and Λ is a
countable set, called the lattice. Here SΛ denotes the cartesian product of Λ
copies of S, i.e., this is the space of all functions x : Λ → S. Typically, we can
write the generator G of an interacting particle system in the form (2.14), i.e.,
there is a natural random mapping representation for G. Sometimes, there
are two or more random mapping representations for the same generator that
each have their own advantages and disadvantages. Sometimes, like in the
case of stochastic Ising models, it is not immediately obvious how to find a
random mapping representation of the generator, but in Section 4.6 we will
show that one can found for this process as well.

If the lattice Λ is finite, then so is SΛ and we can immediately apply
Theorem 2.17 to construct our interacting particle system from a graphical
representation ω. If Λ is infinite, then SΛ is uncountable (as long as S has
at least two elements), so Theorem 2.17 is not applicable. In Chapter 4 we
will develop the methods needed to construct interacting particle systems
on infinite lattices from a graphical representation. There is one important
special case where Theorem 2.17 is applicable, however, even if the lattice
is finite. Many interacting particle systems with a local state space of the
form S = {0, 1} have the property that if we start the system in an initial
configuration with finitely many ones, then the system stays in such states
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for all times. Examples are the voter model, the contact process, and var-
ious systems of branching and coalescing particles. A counterexample are
stochastic Ising models.

In Section 2.8 we will apply Theorem 2.17 to such interacting particle
systems on infinite lattices, but started in an initial configuration with finitely
many ones. To prepare for this, in the present section, we take a closer look
at the sort of maps that are typically used to construct an interacting particle
system, such as the voter map in (1.4) and the branching and death maps in
(1.6) and (1.7).

We will always equip the state space SΛ of an interacting particle system
with the product topology, which says that a sequence xn ∈ SΛ converges to
a limit x if and only if

xn(i) −→
n→∞

x(i) ∀i ∈ Λ.

Note that since S is finite, this simply says that for each i ∈ Λ, there is an
N (which may depend on i) such that xn(i) = x(i) for all n ≥ N . Since S is
finite, it is in particular compact, so by Tychonoff’s theorem, the space SΛ

is compact in the product topology.
Let S and T be finite sets, let Λ be a countable set, and let f : SΛ → T

be a function. Then we say that a point j ∈ Λ is f -relevant if

∃x, y ∈ SΛ s.t. f(x) ̸= f(y) and x(k) = y(k) ∀k ̸= j,

i.e., changing the value of x in j may change the value of f(x). We write

R(f) :=
{
j ∈ Λ : j is f -relevant

}
.

The following lemma (which we have taken from [SS15b, Lemma 24]) says
that a function f : SΛ → T is continuous with respect to the product topology
if and only if it depends on finitely many coordinates.

Lemma 2.18 (Continuous maps) Let S and T be finite sets and let Λ be
a countable set. Then a function f : SΛ → T is continuous with respect to
the product topology if and only if the following two conditions are satisfied:

(i) R(f) is finite,

(ii) If x, y ∈ SΛ satisfy x(j) = y(j) for all j ∈ R(f), then f(x) = f(y).

Before we give the proof of Lemma 2.18, we first make some observa-
tions. The following exercise shows how continuity can fail if condition (i) of
Lemma 2.18 does not hold.
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Exercise 2.19 (A discontinuous map) Let 2N := {2n : n ∈ N} and
2N+ 1 := {2n+ 1 : n ∈ N}. Define f : {0, 1}N → {0, 1} by

f(x) :=

{
1 if inf{i ∈ N : x(i) = 1} ∈ 2N ∪ {∞},
0 if inf{i ∈ N : x(i) = 1} ∈ 2N+ 1.

(2.20)

Show that f satisfies condition (ii) of Lemma 2.18 but not condition (i).
Show that f is not continuous.

The following exercise shows that contrary to what one might initially
have guessed, condition (ii) of Lemma 2.18 is not automatically satisfied,
even when condition (i) holds.

Exercise 2.20 (Another discontinuous map) Define f : {0, 1}N →
{0, 1} by

f(x) :=

{
1 if {i ∈ N : x(i) = 1} is finite,

0 if {i ∈ N : x(i) = 1} is infinite.
(2.21)

Show that f satisfies condition (i) of Lemma 2.18 but not condition (ii).
Show that f is not continuous.

Proof of Lemma 2.18 Let (αj)j∈Λ be strictly positive constants such that∑
j∈Λ αj <∞. Then the metric

d(x, y) :=
∑
j∈Λ

αj1{x(j) ̸= y(j)} (x, y ∈ SΛ) (2.22)

generates the product topology on SΛ. By Tychonoff’s theorem, SΛ is com-
pact, so the function f is uniformly continuous. Since the target space T is
finite, this means that there exists an ε > 0 such that d(x, y) < ε implies
f(x) = f(y). Since

∑
j∈Λ αj < ∞, there exists some finite Λ′ ⊂ Λ such that∑

j∈Λ\Λ′ αj < ε. It follows that

(ii)’ If x, y ∈ SΛ satisfy x(j) = y(j) for all j ∈ Λ′, then f(x) = f(y).

We conclude from this thatR(f) ⊂ Λ′, proving (i). If this is a strict inclusion,
then we can inductively remove those points from Λ′ that are not elements
of R(f) while preserving the property (ii)’, until in a finite number of steps
we see that (ii) holds.

Conversely, if (i) and (ii) hold and xk → x pointwise, then by (i) there
exists some n such that xk(j) = x(j) for all j ∈ R(f) and hence by (ii)
f(xk) = f(x) for all k ≥ n, proving that f is continuous.

For any map m : SΛ → SΛ and i ∈ Λ, we define m[i] : SΛ → S by
m[i](x) := m(x)(i) (x ∈ SΛ, i ∈ Λ). It follows immediately from the def-
inition of the product topology that m is continuous if and only if m[i] is



58 CHAPTER 2. CONTINUOUS-TIME MARKOV CHAINS

continuous for all i ∈ Λ. We let

D(m) :=
{
i ∈ Λ : ∃x ∈ SΛ s.t. m(x)(i) ̸= x(i)

}
denote the set of lattice points i for which m[i] is not the identity map.

By definition, a local map is a function m : SΛ → SΛ such that:

(i) m is continuous,

(ii) D(m) is finite.

In view of Lemma 2.18, this says that m is local if m changes the values
of at most finitely many lattice points using information from finitely many
lattice points only. The following exercise describes yet another way to look
at local maps.

Exercise 2.21 (Local maps) Show that a map m : SΛ → SΛ is local if and
only if there exists a finite set ∆ ⊂ Λ and a map m′ : S∆ → S∆ such that

m(x)(k) =

{
m′((x(i))i∈∆)(k) if k ∈ ∆,

x(k) otherwise.

Before we continue, it is good to see a number of examples.

• The voter map votij defined in (1.4) satisfies

D(votij) = {j} and R(votij[j]) = {i},

since only the type at j changes, and it suffices to know the type at i
to predict the new type of j.

• The branching map braij defined in (1.6) satisfies

D(braij) = {j} and R(braij[j]) = {i, j},

since only the type at j changes, but we need to know both the type
at i and j to predict the new type of j since braij(x)(j) = x(i) ∨ x(j).

• The death map deathi defined in (1.7) satisfies

D(deathi) = {i} and R(deathi[i]) = ∅

since only the type at i changes, and the new type at i is 0 regardless
of x.
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• For each i ∈ Λ, we can similarly define a birth map birthi : {0, 1}Λ →
{0, 1}Λ as

birthi(x)(k) :=

{
1 if k = i,

x(k) otherwise.
(2.23)

Then

D(birthi) = {i} and R(birthi[i]) = ∅.

• The coalescing random walk map rwij defined in (1.20) satisfies

D(rwij) = {i, j}, R(rwij[i]) = ∅, and R(rwij[j]) = {i, j},

since the types at both i and j can change, the new type at i is 0
regardless of the previous state, but to calculate rwij(x)(j) we need to
know both x(i) and x(j).

Exercise 2.22 (Exclusion and cooperative branching maps) Recall
the exclusion map exclij defined in (1.23) and the cooperative branching
map coopijk defined in (1.25). For m = exclij or m = coopijk, determine
D(m), and determine R(m[i]) for all i ∈ D(m).

2.8 Systems of finitely many particles

Throughout this section we assume that S is a finite set containing a special
element that we denote by 0. For x ∈ SΛ we introduce the notation

|x| :=
∣∣{i ∈ Λ : x(i) ̸= 0}

∣∣ (x ∈ SΛ)

and we write

S(Λ) := SΛ and Sfin(Λ) :=
{
x ∈ S(Λ) : |x| <∞

}
.

It is easy to see that Sfin(Λ) is countable. We let 0 ∈ S(Λ) denote the
configuration that is identically zero, i.e., this is the constant function defined
as 0(i) := 0 (i ∈ Λ). We note that if a local map m : S(Λ) → S(Λ) satisfies

m(0) = 0, (2.24)

then by the fact that it is a local map

x ∈ Sfin(Λ) implies m(x) ∈ Sfin(Λ).
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Almost all the examples of local maps listed in the previous section satisfy
(2.24). Indeed, this holds for the local maps

votij, braij, deathi, rwij, exclij, and coopijk,

while birthi is the only local map listed in the previous section that does
not map 0 into itself.

Let G is a countable collection of local maps m : S(Λ) → S(Λ) that all
satisfy (2.24) and let (rm)m∈G be rates. Then under suitable assumptions on
the rates, we may expect that

Gf(x) :=
∑
m∈G

rm
{
f
(
m(x)

)
− f

(
x
)}

(2.25)

is the generator of a nonexplosive continuous-time Markov chain with count-
able state space Sfin(Λ). To formulate sufficient conditions for this to be true,
for any local map m : SΛ → SΛ we introduce the following notation:

R(m) :=
{
(i, j) ∈ Λ2 : j ∈ D(m), i ∈ R(m[j])

}
,

R↑
i (m) :=

{
j ∈ Λ : (i, j) ∈ R(m)

}
, R↓

j(m) :=
{
i ∈ Λ : (i, j) ∈ R(m)

}
.

Here is the main result of this section. The form of condition (2.26) is
originally due to [Lat24].

Theorem 2.23 (Finite particle configurations) Let S and Λ be a finite
and countable set, respectively, and assume that S contains a special element
denoted as 0. Let G be a countable collection of local maps m : SΛ → SΛ such
that m(0) = 0 for all m ∈ G and let (rm)m∈G be nonnegative rates. Assume
that

sup
i∈Λ

∑
m∈G

rm
(
1D(m)(i) + |R↑

i (m)|
)
<∞. (2.26)

Then G defined in (2.25) is the generator of a nonexplosive continuous-time
Markov chain with state space Sfin(Λ).

Proof We start by checking condition (2.13) which is necessary and sufficient
for (2.25) to define the generator of a (possibly explosive) continuous-time
Markov chain. In our present setting, (2.13) reads∑

m:m(x)̸=x

rm <∞ for all x ∈ Sfin(Λ).

Let x ∈ Sfin(Λ) and let A := {i ∈ Λ : x(i) ̸= 0} which is finite by the
definition of Sfin(Λ). If m(x) ̸= x, then m(x)(j) ̸= x(j) for some some
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j ∈ D(m). If j ̸∈ A, then by the fact that m(0) = 0, there must exist an
i ∈ A such that i ∈ R(m[j]). This allows us to estimate∑

m:m(x)̸=x

rm≤
∑
j∈A

∑
m∈G

1D(m)(j)rm +
∑
j∈Λ\A

∑
i∈A

∑
m∈G

1R↑
i (m)(j)rm

=
∑
i∈A

(∑
m∈G

1D(m)(i)rm +
∑
m∈G

|R↑
i (m)\A|rm

)
,

which is finite by (2.26).

It remains to prove that G is nonexplosive. We apply Theorem 2.9 to the
Lyapunov function

L(x) := |x|
(
x ∈ Sfin(Λ)

)
. (2.27)

Note that c(x) := −G(x, x) =
∑

m:m(x)̸=x rm, so our previous calculation

shows that the function L satisfies condition (i) of Theorem 2.9. It therefore
remains to check condition (ii) of Theorem 2.9. We estimate

GL(x) =
∑
m∈G

rm
{
L
(
m(x)

)
− L

(
x
)}

≤
∑
m∈G

rm
∣∣{j ∈ Λ : x(j) = 0, m(x)(j) ̸= 0

}∣∣
≤

∑
m∈G

rm
∣∣{(i, j) ∈ R(m) : x(i) ̸= 0, x(j) = 0

}∣∣
≤L(x) sup

i∈Λ

∑
m∈G

rm|R↑
i (m)| (x ∈ Sfin(Λ)),

where in the second inequality we have used that m(0) = 0 for all m ∈ G.
Our calculation shows that condition (ii) of Theorem 2.9 is satisfied with

λ := sup
i∈Λ

∑
m∈G

rm|R↑
i (m)|,

which is finite by (2.26).

It is instructive to see some concrete examples of interacting particle
systems to which Theorem 2.23 is applicable. Generalising (1.5), if λ : Λ2 →
[0,∞) is a function, then we can define a voter model generator by

Gvotf(x) :=
∑
i,j∈Λ2

λ(i, j)
{
f
(
votij(x)

)
− f

(
x
)}

(x ∈ SΛ), (2.28)

where λ(i, j) ≥ 0 is the Poisson rate at which site j adopts the type of site i.
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Exercise 2.24 Show that the generator Gvot satisfies the assumptions of
Theorem 2.23 if

sup
i∈Λ

[∑
j∈Λ

λ(j, i) +
∑
j∈Λ

λ(i, j)
]
<∞.

Similarly, generalising (1.8), we can define a contact process generator by

Gcontf(x) :=
∑
i,j∈Λ

λ(i, j)
{
f
(
braij(x)

)
− f

(
x
)}

+δ
∑
i∈Λ

{
f
(
deathi(x)

)
− f

(
x
)}
,

(2.29)

where λ(i, j) ≥ 0 is the infection rate from i to j and δ ≥ 0 is the death rate.

Exercise 2.25 Show that the generator Gcont satisfies the assumptions of
Theorem 2.23 if

sup
i∈Λ

[∑
j∈Λ

λ(j, i) +
∑
j∈Λ

λ(i, j)
]
<∞.

For processes with some sort of translation invariant structure the expres-
sion

∑
j∈Λ λ(j, i) +

∑
j∈Λ λ(i, j) does not depend on i ∈ Λ. Using this, one

can check that for translation invariant voter models, the condition in Exer-
cise 2.24 is optimal. Indeed, if we start the process with a single one at i, then∑

j∈Λ λ(j, i) is the rate at which this one becomes a zero while
∑

j∈Λ λ(i, j)
is the rate at which this one produces another one somewhere. In case of the
contact process, we can actually do a bit better than Exercise 2.25.

Proposition 2.26 (Finite contact processes) Assume that

r := sup
i∈Λ

∑
j∈Λ

λ(i, j) <∞. (2.30)

Then Gcont, defined in (2.29), is the generator of a nonexplosive continuous-
time Markov chain with state space Sfin(Λ). Moreover,

Ex
[
|Xt|

]
≤ e (r − δ)t|x|

(
t ≥ 0, x ∈ Sfin(Λ)

)
. (2.31)

Proof For any x ∈ Sfin(Λ), we can estimate the quantity c(x) from (2.13)
by ∑

m:m(x)̸=x

rm = δ|x|+
∑

i:x(i)=1

∑
j:x(j)=0

λ(i, j) ≤ (δ + r)|x|,

where r is the quantity in (2.30). Since this is finite for each x ∈ Sfin(Λ),
Gcont is the generator of a (possibly explosive) continuous-time Markov chain
with state space Sfin(Λ).
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To see that Gcont is nonexplosive we apply Theorem 2.9 to the Lyapunov
function in (2.27). Our previous calculation shows that L satisfies condi-
tion (i) of Theorem 2.9 so it remains to check condition (ii). We estimate

GL(x) =
∑
m∈G

rm
{
L
(
m(x)

)
− L

(
x
)}

≤
∑
i,j∈Λ

λ(i, j)1{x(i)=1, x(j)=0} − δ
∑
i∈Λ

1{x(i)=1}

≤ (r − δ)|x|,

from which we see that condition (ii) of Theorem 2.9 is satisfied with λ = r−δ.
Theorem 2.9 now tells us that Gcont is nonexplosive and (2.31) holds.

In particular, Proposition 2.26 tells us that if r < δ, then the contact
process dies out in the sense that

Px
[
Xt = 0] −→

t→∞
1 ∀x ∈ Sfin(Λ).

This is quite natural since r, defined in (2.30), is the maximal reproduction
rate of an individual (assuming all other sites are vacant). If this is less
than the death rate, then each individual produces on average less than one
offspring before it dies, leading to an exponential decay of the population
size.
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Chapter 3

The mean-field limit

3.1 Processes on the complete graph

In Chapter 1, we have made acquaintances with a number of interacting
particle systems. While some properties of these systems sometimes turn
out easy to prove, other seemingly elementary questions can sometimes be
remarkably difficult. A few examples of such hard problems have been men-
tioned in Chapter 1. In view of this, interacting particle systems are being
studied by a range of different methods, from straightforward numerical sim-
ulations as we have seen in Chapter 1, to nonrigorous renormalization group
techniques and rigorous mathematical methods. All these approaches com-
plement each other. In addition, when a given problem appears too hard,
one often looks for simpler models that (one hopes) still catch the essence,
or at least some essential features of the behavior that one is interested in.

A standard way to turn a difficult model into an (often) much easier
model is to take the mean-field limit, which we explain in the present chapter.
Basically, this means that one replaces the graph structure of the underlying
lattice that one is really interested in (in practice often Zd) by the structure
of the complete graph with N vertices, and then takes the limit N → ∞.
As we will see, many properties of “real” interacting particle systems are
already reflected in these mean-field models. In particular, phase transitions
can often already be observed and even the values of critical exponents of
high-dimensional models are correctly predicted by the mean-field model. In
view of this, studying the mean-field limit is a wise first step in the study of
any more complicated model that one may encounter.

Of course, not all phenomena can be captured by replacing the graph
structure that one is really interested in by the complete graph. Comparing
the real model with the mean-field model, one can learn which elements of

65
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the observed behavior are a consequence of the specific spatial structure of
the lattice, and which are not. Also for this reason, studying the mean-field
limit should be part of a complete study of any interacting particle system.

3.2 The mean-field limit of the Ising model

In this section we study the mean-field Ising model, also known as the Curie-
Weiss model , with Glauber dynamics.

We recall from formulas (1.11) and (1.12) in Chapter 1 that the Ising
model is an interacting particle system with local state space S = {−1,+1},
where each site i updates its spin value x(i) ∈ {−1,+1} at rate one. When
a spin value is updated, the probability that the new value is +1 resp. −1
is proportional to eβNx,i(+1) resp. eβNx,i(−1), where Nx,i(σ) :=

∑
j∈Ni

1{x(j)=σ}
denotes the number of neighboring sites that have the spin value σ.

For the aim of taking the mean-field model, it will be convenient to for-
mulate the model slightly differently. We let

Nx,i :=
1

|Ni|
∑
j∈Ni

1{x(j)=σ}

denote the fraction of neighbors that have the spin value σ, and consider the
model where (compare (1.12))

site i flips to the value σ with rate
eβNx,i(σ)∑
τ∈S e

βNx,i(τ)
. (3.1)

Assuming that |Ni| is just a constant that does not depend on i ∈ Λ (as is
the case, e.g., for the model on Zd), this is just a reparametrization of the
original model where the parameter β is replaced by β/|Ni|.

We now wish to construct the mean-field model, i.e., the model on a
complete graph ΛN with |ΛN | = N vertices (sites), where each site is a
neighbor of each other site. For mathematical simplicity, we even count a
site as a neighbor of itself, i.e., we set

Ni := ΛN and |Ni| = N.

A consequence of this choice is that the average magnetization

X t :=
1

N

∑
i∈ΛN

Xt(i) (t ≥ 0)
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forms a Markov process X = (X t)t≥0. Indeed, X t takes values in the space{
− 1,−1 + 2

N
, . . . , 1− 2

N
, 1
}
,

and jumps

x 7→ x+ 2
N

with rate Nx(−1)
eβNx(+1)/N

eβNx(−1)/N + eβNx(+1)/N
,

x 7→ x− 2
N

with rate Nx(+1)
eβNx(−1)/N

eβNx(−1)/N + eβNx(+1)/N
,

where Nx(σ) := Nx,i(σ) =
∑

j∈Λn
1{x(j)=σ} does not depend on i ∈ ΛN . We

observe that

Nx(+1)/N = (1 + x)/2 and Nx(−1)/N = (1− x)/2.

In view of this, we can rewrite the jump rates of X as

x 7→ x+ 2
N

with rate N(1− x)/2
eβ(1+x)/2

eβ(1−x)/2 + eβ(1+x)/2
,

x 7→ x− 2
N

with rate N(1 + x)/2
eβ(1−x)/2

eβ(1−x)/2 + eβ(1+x)/2
.

In particular, since these rates are a function of x only (and do not depend
on other functions of x = (x(i))i∈ΛN

), we see that X = (X t)t≥0, on its own,
is a Markov process. (This argument will be made rigorous in Section 3.4
below.) Cancelling a common factor eβ/2 in the nominator and denominator
of the rates, we can simplify our formulas a bit to

x 7→ x+ 2
N

with rate r+(x) := N(1− x)/2
eβx/2

e−βx/2 + eβx/2
,

x 7→ x− 2
N

with rate r−(x) := N(1 + x)/2
e−βx/2

e−βx/2 + eβx/2
.

(3.2)

In Figure 3.1 we can see simulations of the Markov process in (3.2) on
a lattice with N = 10, 100, 1000, and 10, 000 sites, respectively. It appears
that in the limit N → ∞, the process X t is given by a smooth, deterministic
function.

It is not hard to guess what this function is. Indeed, denoting the gener-
ator of the process in (3.2) by GN,β, we see that the local drift of the process
X is given by

Ex[X t] = x+ tgβ(x) +O(t2) where gβ(x) := GN,βf(x) with f(x) := x.
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Figure 3.1: The mean-field Ising model on lattice with N = 10, 100, 1000,
and 10, 000 sites, respectively. In these simulations, the parameter is β = 3,
and the initial state is X0 = 0.1, except in the first picture, where X0 = 0.2.

We calculate

gβ(x)= r+(x) ·
2

N
− r−(x) ·

2

N
=

(1− x)eβx/2 − (1 + x)e−βx/2

eβx/2 + e−βx/2

=
eβx/2 − e−βx/2

eβx/2 + e−βx/2
− x = tanh(1

2
βx)− x.

(3.3)

Note that the constant N cancels out of this formula. In view of this, by some
law of large numbers (that will be made rigorous in Theorem 3.2 below), we
expect (X t)t≥0 to converge in distribution, as N → ∞, to a solution of the
differential equation

∂
∂t
X t = gβ(X t) (t ≥ 0). (3.4)

3.3 Analysis of the mean-field model

Assuming the correctness of (3.4) for the moment, we can study the behavior
of the mean-field Ising model X in the limit that we first send N → ∞, and
then t→ ∞. A simple analysis of the function gβ (see Figure 3.2) reveals that
the differential equation (3.4) has a single fixed point for β ≤ 2, and three
fixed points for β > 2. Here, with a fixed point of the differential equation,
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we mean a point z such that x0 = z implies xt = z for all t ≥ 0, i.e., this is
a point such that gβ(z) = 0.

gβ(x)

x

β = 1.8
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Figure 3.2: The drift function gβ for β = 1.8, 2, 2.1, and 2.3, respectively.
For β > 2, the fixed point x = 0 becomes unstable and two new fixed points
appear.

Indeed, using the facts that tanh is an odd function that is concave on
[0,∞) and satisfies ∂

∂x
tanh(x)|x=0 = 1, we see that:

• For β ≤ 2, the equation gβ(x) = 0 has the unique solution x = 0.

• For β > 2, the equation gβ(x) = 0 has three solutions x− < 0 < x+.

For β ≤ 2, solutions to the differential equation (3.4) converge to the
unique fixed point x = 0 as time tends to zero. On the other hand, for
β > 2, the fixed point x = 0 becomes unstable. SolutionsX to the differential
equation (3.4) starting in X0 > 0 converge to x+, while solutions starting in
X0 < 0 converge to x−.

In Figure 3.3, we have plotted the three fixed points x− < 0 < x+ as a
function of β, and indicated their domains of attraction. The function

xupp(β) :=

{
0 if β ≤ 2,

the unique pos. sol. of tanh(1
2
βx) = x if β > 2

(3.5)
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xupp(β)
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Figure 3.3: Fixed points of the mean-field Ising model as a function of β,
with their domains of attraction. The upper fixed point as a function of β is
indicated with a bold line.

plays a similar role as the spontaneous magnetization m∗(β) for the Ising
model on Zd (see formula (1.15)). More precisely, for mean-field processes
started in initial states X0 > 0, the quantity xupp describes the double limit

lim
t→∞

lim
N→∞

X t = xupp. (3.6)

We see from (3.5) that the mean-field Ising model (as formulated in (3.1))
exhibits a second-order (i.e., continuous) phase transition at the critical point
βc = 2. Since

xupp(β) ∝ (β − βc)
1/2 as β ↓ βc,

the mean-field critical exponent associated with the magnetization1 is c =
1/2, which is the same as for the Ising model on Zd in dimensions d ≥ 4 (see
Section 1.5). Understanding why the mean-field model correctly predicts the
critical exponent in sufficiently high dimensions goes beyond the scope of the
present chapter.

To conclude the present section, we note that the two limits in (3.6)
cannot be interchanged. Indeed, for each fixed N , the Markov process X is
irreducible, and hence, by standard theory, has a unique equilibrium law that
is the long-time of the law at time t, started from an arbitrary initial state.
In view of the symmetry of the problem, the magnetization in equilibrium
must be zero, so regardless of the initial state, we have, for each fixed N ,

lim
t→∞

E[X t] = 0.

1In general, for a given second-order phase transition, there are several quantities of
interest that all show power-law behavior near the critical point, and hence there are also
several critical exponents associated with a given phase transition.
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The reason why this can be true while at the same time (3.6) also holds
is that the speed of convergence to equilibrium of the Markov process X
becomes very slow as N → ∞.

t

X t

5000 10,000 15,000 20,000

-1

-0.5

0

0.5

1

Figure 3.4: Metastable behavior of a mean-field Ising model with N = 50
and β = 3. Note the different time scale compared to Figure 3.1.

In Figure 3.4, we have plotted the time evolution of a mean-field Ising
model X on a lattice with N = 50 sites, for a value of β above the critical
point (concretely β = 3, which lies above βc = 2). Although the average of
X in the long run is 0, we see that the process spends most of its time around
the values xupp and −xupp, with rare transitions between the two. This sort
of behavior is called metastable behavior.

The value N = 50 was near the highest possible value for which I could
still numerically observe this sort of behavior. For N = 100 the transitions
between the two metastable states xupp and −xupp become so rare that my
program was no longer able to see them within a reasonable runtime. With
the help of large deviations theory, one can show that the time that the system
spends in one metastable state is approximately exponentially distributed
(with a large mean), and calculate the asymptotics of the mean waiting time
as N → ∞. It turns out that the mean time one has to wait for a transition
grows exponentially fast in N .
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3.4 Functions of Markov processes

In the present section we formulate a proposition and a theorem that we
have already implicitly used. Both are concerned with functions of Markov
processes. Let X = (Xt)t≥0 be a Markov process with finite state space
S, generator G, and semigroup (Pt)t≥0. Let T be another finite set and let
f : S → T be a function. For each x ∈ S and y′ ∈ T such that f(x) ̸= y′, let

H(x, y′) :=
∑

x′∈S: f(x′)=y′
G(x, x′) (3.7)

be the total rate at which f(Xt) jumps to the state y′, when the present state
is Xt = x. The next proposition says that if these rates are a function of
f(x) only, then the process Y = (Yt)t≥0 defined by

Yt := f(Xt) (t ≥ 0) (3.8)

is itself a Markov process.

Proposition 3.1 (Autonomous Markov process) Assume that the rates
in (3.7) are of the form

H(x, y′) = H
(
f(x), y′

)
(x ∈ S, y′ ∈ T, f(x) ̸= y′) (3.9)

where H is a Markov generator of some process in T . Then the process Y
defined in (3.8) is a Markov process with generator H. Conversely, if for
each initial law of the process X, it is true that Y is a Markov process with
generator H, then (3.9) must hold.

Proof of Proposition 3.1 Let us define H(x, y′) as in (3.7) also when
f(x) = y′. We start by noting that if (3.9) holds for all x ∈ S and y′ ∈ T
such that f(x) ̸= y′, then it also holds when f(x) = y′. To see this, we write

H
(
f(x), f(x)

)
= −

∑
y′: y′ ̸=f(x)

H(f(x), y′) = −
∑

y′: y′ ̸=f(x)

∑
x′: f(x′)=y′

G(x, x′)

= −
∑

x′: f(x′) ̸=f(x)

G(x, x′) =
∑

x′: f(x′)=f(x)

G(x, x′),

where we have used that since H and G are Markov generators, one has∑
y′∈T H(f(x), y′) = 0 and

∑
x′∈S G(x, x

′) = 0. We have thus shown that
(3.9) is equivalent to

H
(
f(x), y′

)
=

∑
x′: f(x′)=y′

G(x, x′)
(
x ∈ S, y′ ∈ T

)
. (3.10)
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We claim that this is equivalent to

Qt

(
f(x), y′

)
=

∑
x′: f(x′)=y′

Pt(x, x
′)

(
t ≥ 0, x ∈ S, y′ ∈ T

)
, (3.11)

where (Qt)t≥0 is the semigroup generated by H. To prove this, we start by
observing that for any function g : T → R,

G(g ◦ f)(x) =
∑
x′

G(x, x′)g(f(x′)) =
∑
y′

∑
x′: f(x′)=y′

G(x, x′)g(y′),

(Hg) ◦ f(x) =
∑
y′

H(f(x), y′)g(y′).

The right-hand sides of these equations are equal for all g : T → R if and
only if (3.10) holds, so (3.10) is equivalent to the statement that

G(g ◦ f) = (Hg) ◦ f (g : T → R). (3.12)

By exactly the same argument with G replaced by Pt and H replaced by Qt,
we see that (3.11) is equivalent to

Pt(g ◦ f) = (Qtg) ◦ f (t ≥ 0, g : T → R). (3.13)

To see that (3.12) and (3.13) are equivalent, we write

Pt = eGt =
∞∑
n=0

1

n!
tnGn and Qt = eHt =

∞∑
n=0

1

n!
tnHn. (3.14)

We observe that (3.12) implies

G2(g ◦ f) = G
(
(Hg) ◦ f

)
= (H2g) ◦ f,

and similarly, by induction, Gn(g ◦ f) = (Hng) ◦ f for all n ≥ 0, which by
(3.14) implies (3.13). Conversely, if (3.13) holds for all t ≥ 0, then it must
hold up to first order in t as t ↓ 0, which implies (3.12). This completes the
proof that (3.9) is equivalent to (3.11).

If (3.11) holds, then by (2.5), the finite dimensional distributions of Y are
given by

P
[
Y0 = y0, . . . , Ytn = yn

]
=

∑
x0: f(x0)=y0

· · ·
∑

xn: f(xn)=yn

P[X0 = x0]Pt1−t0(x0, x1) · · ·Ptn−tn−1(xn−1, xn)

= P[Y0 = y0]Qt1−t0(y0, y1) · · ·Qtn−tn−1(yn−1, yn)
(3.15)
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(0 = t0 < · · · < tn). Again by (2.5), this implies that Y is a Markov process
with generator H.

Conversely, if Y is a Markov process with generator H for each initial
state of X, then for each x0 ∈ S, (3.15) must hold when X0 = x0 a.s. and for
n = 1, from which we see that (3.11) and hence (3.9) hold.

Summarizing, Proposition 3.1 says that if Yt = f(Xt) is a function of a
Markov process, and the jump rates of Y are a function of the present state
of Y only (and do not otherwise depend on the state of X), then Y is itself
a Markov process. In such a situation, we will say that Y is an autonomous
Markov process. We have already implicitly used Proposition 3.1 in Sec-
tion 3.2, when we claimed that the process X is a Markov process with jump
rates as in (3.2).

Remark For the final statement of the proposition, it is essential that Y is
a Markov process for each initial law X. There exist interesting examples of
functions of Markov processes that are not autonomous Markov processes,
but nonetheless are Markov processes for some special initial laws of the
original Markov process. This is closely related to the concept of intertwining
of Markov processes that will briefly be mentioned in Section 6.5 below.

Our next aim is to make the claim rigorous that for large N , the process
X can be aproximated by solutions to the differential equation (3.4). We will
apply a theorem from [DN08]. Although the proof is not very complicated,
it is a bit lengthy and would detract from our main objects of interest here,
so we only show how the theorem below can be deduced from a theorem in
[DN08]. That paper also treats the multi-dimensional case and gives explicit
estimates on probabilities of the form (3.19) below. An alternative, more
probabilistic approach to mean-field equations is described in [MSS20].

For each N ≥ 1, let XN = (XN
t )t≥0 be a Markov process with finite

state space SN , generator GN , and semigroup (PN
t )t≥0, and let fN : SN → R

be functions. We will be interested in conditions under which the processes
(fN(X

N
t ))t≥0 apprioximate the solution (yt)t≥0 of a differential equation, in

the limit N → ∞. Note that we do not require that fN(X
N
t ) is an au-

tonomous Markov process. To ease notation, we will sometimes drop the
super- and subscripts N when no confusion arises.

We define two functions α = αN and β = βN that describe the quadratic
variation and drift, respectively, of the process f(Xt). More precisely, these
functions are given by

α(x) :=
∑
x′∈S

G(x, x′)
(
f(x′)− f(x)

)2
,

β(x) :=
∑
x′∈S

G(x, x′)
(
f(x′)− f(x)

)
.
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The idea is that if α tends to zero and β approximates a nice, Lipschitz
continuous function of f(Xt), then f(Xt) should in the limit be given by the
solution of a differential equation.

We assume that the functions fN all take values in a closed interval I ⊂
R with left and right boundaries I− := inf I and I+ := sup I, which may
be finite or infinite. We also assume that there exists a globally Lipschitz
function b : I → R such that

sup
x∈SN

∣∣βN(x)− b
(
fN(x)

)∣∣ −→
N→∞

0, (3.16)

i.e., the drift function β is uniformly approximated by b ◦ fN . Assuming also
that

b(I−) ≥ 0 if I− > −∞ and b(I+) ≤ 0 if I+ < −∞, (3.17)

the differential equation

∂
∂t
yt = b(yt) (t ≥ 0)

has a unique I-valued solution (yt)t≥0 for each initial state y0 ∈ I. The follow-
ing theorem gives sufficient conditions for the I-valued processes (fN(X

N
t ))t≥0

to approximate a solution of the differential equation.

Theorem 3.2 (Limiting differential equation) Assume that fN(X
N
0 )

converges in probability to y0 and that as well as (3.16), one moreover has

sup
x∈SN

αN(x) −→
N→∞

0. (3.18)

Then, for each T <∞ and ε > 0,

P
[
|fN(XN

t )− yt| ≤ ε ∀t ∈ [0, T ]
]
−→
N→∞

1. (3.19)

Proof We apply [DN08, Thm 4.1]. Fix T < ∞ and ε > 0 and also fix
y0 ∈ I. Let L denote the Lipschitz constant of b. The assumptions of [DN08,
Thm 4.1] allow for the case that fN does not in general take values in I, but
only under the additional condition that fN(x) is not further than ε from
a possible value the solution of the differential equation. In our case, these
more general assumptions are automatically satisfied. Set δ := 1

3
εe−LT . We

consider the events

Ω0 :=
{
|f(X0)− y0| ≤ δ

}
and Ω1 :=

{∫ T

0

|β(Xt)− b
(
f(Xt)

)
| dt ≤ δ

}
.
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For K > 0, we also define

ΩK,2 :=
{∫ T

0

α(Xt) dt ≤ KT
}
.

Then [DN08, Thm 4.1] tells us that

P
[
sup
t∈[0,T ]

|f(Xt)− yt| > ε
]
≤ 4KTδ−2 + P

(
Ωc

0 ∪ Ωc
1 ∪ Ωc

K,2

)
. (3.20)

Our assumption that fN(X
N
0 ) → y0 in probability implies that P(Ωc

0) → 0
as N → ∞. Set

AN := sup
x∈SN

αN(x) and BN := sup
x∈SN

∣∣βN(x)− b
(
fN(x)

)∣∣
Then AN → 0 by (3.18) and BN → 0 by (3.16). Since∫ T

0

|β(Xt)− b
(
f(Xt)

)
| dt ≤ BNT ≤ δ

for N sufficiently large, we see that P(Ωc
1) = 0 for N sufficiently large. Also,

since ∫ T

0

α(Xt) dt ≤ ANT,

we see that P(Ωc
AN ,2

) = 0 for all N . Inserting K = AN in (3.20), we see that
the right-hand side tends to zero as N → ∞.

Using Theorem 3.2, we can make the approximation of the mean-field
Ising model by the differential equation (3.4) rigorous. Let XN = (XN

t )t≥0

denote the Markov process with state space {−1,+1}ΛN , where ΛN is a set
containing N elements and the jump rates of XN are given in (3.1). By

Propositon 3.1, the process X
N

t := 1
N

∑
i∈ΛN

Xt(i) is itself a Markov process
with jump rates as in (3.2). We can either apply Theorem 3.2 directly to
the Markov processes XN and the functions fN(x) :=

1
N

∑
i∈ΛN

x(i), or we

can apply Theorem 3.2 to the Markov processes X
N

and choose for fN the
identity function fN(x) = x. In either case, the assumption (3.16) is already
verified in (3.3). To check also (3.18), we calculate

αN(x) = r+(x)
( 2

N

)2

+ r−(x)
( 2

N

)2

=
2

N

(
1 + x

e−βx/2 − eβx/2

e−βx/2 + eβx/2

)
,

which clearly tends uniformly to zero as N → ∞.
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3.5 The mean-field contact process

Recall the definition of the generator of the contact process from (1.8). We
slightly reformulate this as

Gcontf(x) :=λ
∑
i∈Zd

1

|Ni|
∑
j∈Ni

{
f(
(
braij(x))− f

(
x
)}

+
∑
i∈Zd

{
f(
(
deathi(x))− f

(
x
)}

(x ∈ {0, 1}Λ),
(3.21)

where as customary we have set the death rate to δ = 1, and we have
also reparametrized the infection rate so that λ denotes the total rate of
all outgoing infections from a given site, instead of the infection rate per
neighbor.

We will be interested in the contact process on the complete graph, which
means that we take for Λ = ΛN a set with N elements, which we equip with
the structure of a complete graph with (undirected) edge set E = EN :=
{{i, j} : i, j ∈ ΛN} and corresponding set of oriented edges E = EN . We will
be interested in the fraction of infected sites

X t = X
N

t :=
1

N

∑
i∈ΛN

Xt(i) (t ≥ 0),

which jumps with the following rates

x 7→ x+ 1
N

with rate r+(x) := λNx(1− x),

x 7→ x− 1
N

with rate r−(x) := Nx.
(3.22)

Here N(1 − x) is the number of healthy sites, each of which gets infected
with rate λx, and Nx is the number of infected sites, each of which recovers
with rate one. Note that since these rates are a function of x only, by
Proposition 3.1, the process (X t)t≥0 is an autonomous Markov chain.

We wish to apply Theorem 3.2 to conclude that X can, for large N be
approximated by the solution of a differential equation. To this aim, we
calculate the drift β and quadractic variation function α.

αN(x)= r+(x)
1
N2 + r−(x)

1
N2 =

1

N

(
λx(1− x) + x

)
,

βN(x)= r+(x)
1
N
− r−(x)

1
N

= λx(1− x)− x.

By Theorem 3.2, it follows that in the mean-field limit N → ∞, the fraction
of infected sites can be approximated by solutions of the differential equation

∂
∂t
X t = bλ(X t) (t ≥ 0), where bλ(x) := λx(1− x)− x. (3.23)
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The equation bλ(x) = 0 has the solutions

x = 0 and x = 1− λ−1.

The second solution lies inside the interval [0, 1] of possible values of X t if
and only if λ ≥ 1. Plotting the function bλ for λ < 1 and λ > 1 yields the
following pictures.

bλ(x)

xλ = 0.5

0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2 bλ(x)

xλ = 2

0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

We see from this that the fixed point x = 0 is stable for λ ≤ 1 but
becomes unstable for λ > 1, in which case x = 1 − λ−1 is the only stable
fixed point that attracts all solutions started in a nonzero initial state. The
situation is summarized in Figure 3.5.

λ

x

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

xupp(λ)

Figure 3.5: Mean-field analysis of the contact process.

Letting xupp(λ) := 0 ∨ (1 − λ−1) denote the stable fixed point, we see
that the mean-field contact process exhibits a second-order phase transition
at the critical point λc = 1. Since

xupp(λ) ∝ (λ− λc) as λ ↓ λc,

the associated critical point is c = 1, in line with what we know for contact
processes in dimensions d ≥ 4 (see the discussion in Section 1.5).
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3.6 The mean-field voter model

Recall the definition of the generator of the voter model from (1.5). For
simplicity, we will only consider the two-type model and as the local state
space we will choose S = {0, 1}. Specializing to the complete graph Λ = ΛN
with N vertices, the generator becomes

Gvotf(x) =
1

|Λ|
∑

(i,j)∈E

{
f(
(
votij(x))− f

(
x
)}

(x ∈ {0, 1}Λ). (3.24)

Note that the factor |Λ|−1 says that each site i updates its type with rate
one, and at such an event chooses a new type from a uniformly chosen site j
(allowing for the case i = j, which has no effect).

We are interested in the fraction of sites of type 1,

X t = X
N

t :=
1

N

∑
i∈ΛN

Xt(i) (t ≥ 0),

which jumps as (compare (3.22))

x 7→ x+ 1
N

with rate r+(x) := Nx(1− x),

x 7→ x− 1
N

with rate r−(x) := Nx(1− x).

Note that N(1 − x) is the number of sites of type 0, and that each such
site adopts the type 1 with rate x. The derivation of r−(x) is similar. We
calculate the drift β and quadractic variation function α.

αN(x)= r+(x)
1
N2 + r−(x)

1
N2 =

2

N
x(1− x),

βN(x)= r+(x)
1
N
− r−(x)

1
N

= 0.

Applying Theorem 3.2, we see that in the limit N → ∞, the process (X t)t≥0

is well approximated by solutions to the differential equation

∂
∂t
X t = 0 (t ≥ 0),

i.e., X t is approximately constant as a function of t.
Of course, if we go to larger time scales, then X t will no longer be con-

stant; compare Figure 3.4. In fact, we can determine the time scale at which
X t fluctuates quite precisely. Scaling up time by a factor |Λ| = N is the same
as multiplying all rates by a factor |Λ|. If we repeat our previous calculations
for the process with generator

Gvotf(x) =
∑

(i,j)∈E

{
f(
(
votij(x))− f

(
x
)}

(x ∈ {0, 1}Λ), (3.25)
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Figure 3.6: The fraction of type 1 individuals in the mean-field voter model
from (3.25) on N = 100 sites. This process approximates the Wright-Fisher
diffusion.

then the drift and quadractic variation are given by

αN(x)= 2x(1− x),

βN(x)= 0.

In this case, the quadratic variation does not go to zero, so Theorem 3.2 is
no longer applicable. One can show, however, that in the limit N → ∞ the
new, sped-up process is well approximated by solutions to the (Itô) stochastic
differential equation (SDE)

dX t =

√
2X t(1−X t) dBt (t ≥ 0),

where 2X t(1−X t) = α(Xt) is of course the quadratic variation function we
have just calculated. Solutions to this SDE are Wright-Fisher diffusions, i.e.,
Markov processes with continuous sample paths and generator

Gf(x) = x(1− x) ∂
2

∂x2
f(x). (3.26)

These calculations can be made rigorous using methods from the theory of
convergence of Markov processes; see, e.g., the book [EK86]. See Figure 3.6
for a simulation of the process X when X has the generator in (3.25) and
N = 100.
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3.7 Exercises

Exercise 3.3 Do a mean-field analysis of the process with generator

Gf(x)= b|Λ|−2
∑
ii′j

{
f
(
coopii′jx

)
− f

(
x
)}

+
∑
i

{
f
(
deathix

)
− f

(
x
)}
,

where the maps coopii′j and deathi are defined in (1.25) and (1.7), respec-
tively. Do you observe a phase transition? Is it first- or second order? Hint:
Figure 3.7.

xupp(b)
x

b

2 4 6 8 10
0

0.2

0.4

0.6

0.8

Figure 3.7: Mean-field analysis of a model with cooperative branching and
deaths.

Exercise 3.4 Same as above for the model with generator

Gf(x)= b|Λ|−2
∑
ii′j

{
f
(
coopii′jx

)
− f

(
x
)}

+|Λ|−1
∑
ij

{
f
(
rwijx

)
− f

(
x
)}
.

Exercise 3.5 Derive an SDE in the limit |Λ| → ∞ for the density of the
mean-field voter model with small bias and death rates, with generator

Gf(x)=
∑
ij∈Λ

{
f
(
votijx

)
− f

(
x
)}

+s|Λ|−1
∑
ij∈Λ

{
f
(
braijx

)
− f

(
x
)}

+d
∑
i∈Λ

{
f
(
deathix

)
− f

(
x
)}
.
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Hint: You should find expressions of the form

Ex
[
(X t − x)

]
= b(x) · t+O(t2),

Ex
[
(X t − x)2

]
= a(x) · t+O(t2),

which leads to a limiting generator of the form

Gf(x) = 1
2
a(x) ∂

2

∂x2
f(x) + b(x) ∂

∂x
f(x).

Exercise 3.6 Do a mean-field analysis of the following extension of the
voter model, introduced in [NP99]. In this model, the site i flips

0 7→ 1 with rate
(
f0 + α01f1

)
f1,

1 7→ 0 with rate
(
f1 + α10f0

)
f0,

where α01, α10 > 0 and fτ = |Ni|−1
∑

j∈Ni
1{x(j)=τ} is the relative frequency

of type τ in the neigborhood of i.

Find all stable and unstable fixed points of the mean-field model in the
regimes: I. α01, α10 < 1, II. α01 < 1 < α10, III. α10 < 1 < α01, IV. 1 <
α01, α10.



Chapter 4

Construction and ergodicity

4.1 Introduction

Throughout this chapter, S is a finite set called the local state space, Λ is
a countable set called the lattice, G is a countable collection of local maps
m : SΛ → SΛ, and (rm)m∈G are nonnegative rates. Our aim is to construct a
Markov process with state space SΛ and formal generator of the form

Gf(x) =
∑
m∈G

rm
{
f
(
m(x)

)
− f

(
x
)}

(x ∈ SΛ). (4.1)

Recall that D(m), defined in Section 2.7, is the set of lattice points whose
values can be changed by m. Under the assumption∑

m:D(m)∋i

rm <∞ (i ∈ Λ)

one can show that Gf is well-defined for all functions f : SΛ → R that
depend on finitely many coordinates (see Lemma 4.23 below). In general, we
will need stronger conditions on the rates (rm)m∈G to ensure that G generates
the Markov process. Most of the interacting particle systems introduced in
Chapter 1 have a generator that can naturally be written in the form (4.1).
The only processes for which this is not so obvious are the stochastic Ising
and Potts models. Nevertheless, we will show in Section 4.6 below that also
the generator of the stochastic Ising model with Glauber dynamics can be
written in the form (4.1), and we will use this random mapping representation
of G to prove ergodicity for small values of β.

The space SΛ is uncountable except in the trivial case that S has car-
dinality one. This means that we cannot use the theory of continuous-time
Markov chains. Instead, we will rely on the theory of Feller processes. In

83



84 CHAPTER 4. CONSTRUCTION AND ERGODICITY

Section 4.2, we will collect some general facts about Feller processes, which
are a class of Markov processes with compact, metrizable state spaces, that
are uniquely characterized by their generators. Since this is rather functional
analytic material, which is moreover well-known, we will state the main facts
without proof, but give references to places where proofs can be found.

In Section 4.3, we then give Poisson construction of interacting parti-
cle systems (including proofs) that is similar to the Poisson construction of
continuous-time Markov chains. To some degree, this provides a probabilistic
alternative to the functional analytic approach via Feller processes. To get
the full picture, however, one needs both approaches, so in Section 4.4, we
show that our Poisson construction yields a Feller process and determine its
generator.

Luckily, all this abstract theory gives us more than just the information
that the systems we are interested in are well defined. In Section 4.5, we will
see that as a side-result of our proofs, we can derive sufficient conditions for
an interacting particle system to be ergodic, i.e., to have a unique invariant
law that is the long-time limit starting from any initial state. In Section 4.6
we apply this to derive lower bounds on the critical points of the Ising model.

4.2 Feller processes

In Section 2.1, we showed how the semigroup of a Markov process on a finite
state space can be characterised in terms of its generator and in Section 2.3
we generalized this to countable state spaces. In the present section, we will
treat a class of Markov processes with compact metrizable state spaces. The
basic assumption we will make is that the transition probabilities (Pt)t≥0

are continuous, which means that we will be discussing Feller processes. We
will later apply the theory of Feller processes to state spaces of the form
SΛ equipped with the product topology, which are compact by Tychonoff’s
theorem. It is easy to see that the product topology on SΛ is metrizable.
For example, if (ai)i∈Λ are strictly positive constants such that

∑
i∈Λ ai <∞,

then

d(x, y) :=
∑
i∈Λ

ai1{x(i) ̸=y(i)}

defines a metric that generates the product topology.
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Let E be a compact metrizable space.1 We use the notation

B(E) := the Borel-σ-field on E,
B(E) := the space of bounded, Borel-measurable functions f : E → R,
C(E) := the space of continuous functions f : E → R,

M1(E) := the space of probability measures µ on E.

We equip C(E) with the supremumnorm

∥f∥∞ := sup
x∈E

|f(x)| (f ∈ C(E)),

making C(E) into a Banach space. We equip M1(E) with the topology of
weak convergence, where by definition,2 µn converges weakly to µ, denoted
µn ⇒ µ, if

∫
f dµn →

∫
f dµ for all f ∈ C(E). With this topology, M1(E)

is a compact metrizable space.
A probability kernel on E is a function K : E × B(E) → R such that

(i) K(x, · ) is a probability measure on E for each x ∈ E,

(ii) K( · , A) is a real measurable function on E for each A ∈ B(E).

This is equivalent to the statement that x 7→ K(x, · ) is a measurable map
from E to M1(E) (where the latter is equipped with the topology of weak
convergence and the associated Borel-σ-field). By definition, a probability
kernel is continuous if the map x 7→ K(x, · ) is continuous (with respect
to the topologies with which we have equipped these spaces). A probability
kernel is deterministic if it is of the formK(x, · ) = δm(x) for some measurable
mapm : E → E, where δm(x) denotes the delta-measure atm(x). It is easy to
see that a deterministic kernel is continuous if and only if m is a continuous
map. A random mapping representation of a probability kernelK is a random
measurable map3 M : E → E such that K(x, · ) = P[M(x) ∈ · ] (x ∈ E).4

If K(x, dy) is a probability kernel on a Polish space E, then setting

Kf(x) :=

∫
E

K(x, dy)f(y)
(
x ∈ E, f ∈ B(E)

)
1Such spaces are always separable and complete in any metric that generates the topol-

ogy; in particular, they are Polish spaces.
2More precisely, the topology of weak convergence is the unique metrizable topology

with this property. Since in metrizable spaces, convergent subsequences uniquely charac-
terize the topology, such a definition is unambiguous.

3More formally, this means that M : Ω × E → E is measurable with respect to the
product-σ-field F ⊗ B(E), where (Ω,F ,P) is the underlying probability space.

4For infinite spaces, it is not so clear if every probability kernel has a random mapping
representation. One could also ask if every continuous probability kernel has a representa-
tion in terms of continuous maps. Although these questions are interesting, we will neglect
them here.
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defines a linear operator K : B(E) → B(E). We define the composition of
two probability kernels K,L as

(KL)(x,A) :=

∫
E

K(x, dy)L(y, A)
(
x ∈ E, A ∈ B(E)

)
.

Then KL is again a probability kernel on E and the linear operator (KL) :
B(E) → B(E) associated with this kernel is the composition of the linear
operators K and L. It follows from the definition of weak convergence that a
kernel K is continuous if and only if its associated linear operator maps the
space C(E) into itself. If µ is a probability measure and K is a probability
kernel, then

(µK)(A) :=

∫
µ(dx)K(x,A)

(
A ∈ B(E)

)
defines another probability measure µK. Introducing the notation µf :=∫
f dµ, one has (µK)f = µ(Kf) for all f ∈ B(E).
By definition, a continuous transition probability on E is a collection

(Pt)t≥0 of probability kernels on E, such that

(i) (x, t) 7→ Pt(x, · ) is a continuous map from E × [0,∞) into M1(E),

(ii) P0 = 1 and PsPt = Ps+t (s, t ≥ 0).

In particular, (i) implies that each Pt is a continuous probability kernel, so
each Pt maps the space C(E) into itself. One has

(i) limt→0 Ptf = P0f = f (f ∈ C(E)),
(ii) PsPtf = Ps+tf (s, t ≥ 0),

(iii) f ≥ 0 implies Ptf ≥ 0,

(iv) Pt1 = 1,

and conversely, each collection of linear operators Pt : C(E) → C(E) with
these properties corresponds to a unique continuous transition probability on
E. Such a collection of linear operators Pt : C(E) → C(E) is called a Feller
semigroup. We note that in (i), the limit is (of course) with respect to the
topology we have chosen on C(E), i.e., with respect to the supremumnorm.

By definition, a function w : [0,∞) → E is cadlag if it is right-continuous
with left limits,5 i.e.,

(i) lim
t↓s

wt = ws (s ≥ 0),

(ii) lim
t↑s

wt =: ws− exists (s > 0).

5The word cadlag is an abbreviation of the French continue à droit, limite à gauche.



4.2. FELLER PROCESSES 87

Let (Pt)t≥0 be a Feller semigroup. By definition a Feller process with semi-
group (Pt)t≥0 is a stochastic process X = (Xt)t≥0 with cadlag sample paths6

such that

P
[
Xu ∈ ·

∣∣ (Xs)0≤s≤t
]
= Pu−t(Xt, · ) a.s. (0 ≤ t ≤ u). (4.2)

Here we condition on the σ-field generated by the random variables (Xs)0≤s≤t.
Formula (4.2) is equivalent to the statement that the finite dimensional dis-
tributions of X are given by

P
[
X0 ∈ dx0, . . . , Xtn ∈ dxn

]
= P[X0 ∈ dx0]Pt1−t0(x0, dx1) · · ·Ptn−tn−1(xn−1, dxn)

(4.3)

(0 < t1 < · · · < tn). Formula (4.3) is symbolic notation, which means that

E
[
f(X0, . . . , Xtn)

]
=

∫
P[X0 ∈ dx0]

∫
Pt1−t0(x0, dx1) · · ·

∫
Ptn−tn−1(xn−1, dxn)f(x0, . . . , xn)

for all f ∈ B(En+1). By (4.3), the law of a Feller process X is uniquely
determined by its initial law P[X0 ∈ · ] and its transition probabilities (Pt)t≥0.
Existence is less obvious than uniqueness, but the next theorem says that
this holds in full generality.

Theorem 4.1 (Construction of Feller processes) Let E be a compact
metrizable space, let µ be a probability measure on E, and let (Pt)t≥0 be a
Feller semigroup. Then there exists a Feller process X = (Xt)t≥0 with initial
law P[X0 ∈ · ] = µ, and such a process is unique in distribution.

Just as in the case for finite state space, we would like to characterize a
Feller semigroup by its generator. This is somewhat more complicated than
in the finite setting since in general, it is not possible to make sense of the
exponential formula Pt = etG :=

∑∞
n=0

1
n!
(tG)n. This is related to the fact

that if G is the generator of a Feller semigroup, then in general it is not
possible to define Gf for all f ∈ C(E), as we now explain.

6It is possible to equip the space DE [0,∞) of cadlag functions w : [0,∞) → E with
a (rather natural) topology, called the Skorohod topology, such that DE [0,∞) is a Polish
space and the Borel-σ-field on DE [0,∞) is generated by the coordinate projections w 7→ wt

(t ≥ 0). As a result, we can view a stochastic process X = (Xt)t≥0 with cadlag sample
paths as a single random variable X taking values in the space DE [0,∞). The law of such
a random variable is then uniquely determined by the finite dimensional distributions of
(Xt)t≥0.
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Let V be a Banach space. (In our case, the only Banach spaces that we
will need are spaces of the form C(E), equipped with the supremumnorm.)
By definition, a linear operator on V is a pair (A,D(A)) where D(A) is a
linear subspace of V , called the domain and A is a linear map A : D(A) → V .
Even though a linear operator is really a pair (A,D(A)), one often writes
sentences such as “let A be a linear operator” without explicitly mentioning
the domain. This is similar to phrases like: “let V be a Banach space”
(without mentioning the norm) or “let M be a measurable space” (without
mentioning the σ-field).

We say that a linear operator A (with domain D(A)) on a Banach space
V is closed if and only if its graph {(f, Af) : f ∈ D(A)} is a closed subset of
V × V . By definition, a linear operator A (with domain D(A)) on a Banach
space V is closable if the closure of its graph (as a subset of V × V) is the
graph of a linear operator A with domain D(A). This operator is then called
the closure of A. We mention the following theorem.

Theorem 4.2 (Closed graph theorem) Let V be a Banach space and let
A be a linear operator that is everywhere defined, i.e., D(A) = V. Then the
following statements are equivalent.

(i) A is continuous as a map from V into itself.

(ii) A is bounded, i.e., there exists a constant C < ∞ such that ∥Af∥ ≤
C∥f∥ (f ∈ V).

(iii) A is closed.

Theorem 4.2 shows in particular that if A is an unbounded operator
(i.e., there exists 0 ̸= fn ∈ D(A) such that ∥Afn∥/∥fn∥ → ∞) and A is
closable, then its closure A will not be everywhere defined. Closed (but
possibly unbounded) linear operators are in a sense “the next good thing”
after bounded operators.

As before, let E be a compact metrizable space and let (Pt)t≥0 be a
continuous transition probability (or equivalently Feller semigroup) on E.
By definition, the generator of (Pt)t≥0 is the linear operator

Gf := lim
t→0

t−1
(
Ptf − f),

with domain

D(G) :=
{
f ∈ C(E) : the limit lim

t→0
t−1

(
Ptf − f) exists

}
.

Here, when we say that the limit exists, we mean (of course) with respect to
the topology on C(E), i.e., w.r.t. the supremumnorm. The following lemma
says that generators are closed, densely defined operators.
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Lemma 4.3 (Elementary properties of generators) Let G be the gen-
erator of a Feller semigroup (Pt)t≥0. Then G is closed and D(G) is a dense
subspace of C(E).

Since G is closed, Theorem 4.2 tells us that G is everywhere defined (i.e.,
D(G) = C(G)) if and only if G is bounded. For bounded generators, it is not
hard to show that the exponential formula etG :=

∑∞
n=0

1
n!
(tG)n converges in

the norm on C(G) and that the Feller semigroup with generator G is given
by Pt = etG. On the other hand, if G is unbounded, then it is in general
not possible to make sense of the exponential formula.7 In the context of
interacting particle systems, it is not hard to show that a generator of the
form (4.1) is bounded if

∑
m∈G rm < ∞. For the particle systems we will

be interested in, this sum will usually be infinite and the generator will be
unbounded.

Since we cannot use the exponential formula Pt = etG, we need another
way to characterize (Pt)t≥0 in terms of G. Similar to what we did in Sec-
tion 2.3, we will use the backward equation instead. Let A be a linear oper-
ator on C(E). By definition, we say that a function [0,∞) ∋ t 7→ ut ∈ C(E)
solves the Cauchy equation

∂
∂t
ut = Aut (t ≥ 0) (4.4)

if ut ∈ D(A) for all t ≥ 0, the maps t 7→ ut and t 7→ Aut are continuous
(w.r.t. the topology on C(E)), the limit ∂

∂t
ut := lims→0 s

−1(ut+s − us) exists
(w.r.t. the topology on C(E)) for all t ≥ 0, and (4.4) holds. The following
proposition shows that a Feller semigroup is uniquely characterized by its
generator.

Proposition 4.4 (Cauchy problem) Let G be the generator of a Feller
semigroup (Pt)t≥0. Then, for each f ∈ D(G), the Cauchy equation ∂

∂t
ut =

Gut (t ≥ 0) has a unique solution (ut)t≥0 with initial state u0 = f . Denoting
this solution by Utf := ut defines for each t ≥ 0 a linear operator Ut with
domain D(G), of which Pt = U t is the closure.

We need a way to check that (the closure of) a given operator is the
generator of a Feller semigroup. For a given linear operator A, constant
λ > 0, and f ∈ C(E), we say that a function p ∈ C(E) solves the Laplace
equation

(λ− A)p = f (4.5)

7In order for
∑∞

n=0
1
n! t

nGnf to make sense, we need that Gnf is well-defined for all
n ≥ 0. For n = 1 this already requires that f ∈ D(G) but for higher n we need even more
since it is in general not true that G maps D(G) into itself. Thus, it is not even clear for
which class of functions we can make sense of each term in the expansion seperately.
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if p ∈ D(A) and (4.5) holds. The following lemma shows how solutions to
Laplace equations typically arise.

Lemma 4.5 (Laplace equation) Let G be the generator of a Feller semi-
group (Pt)t≥0 on C(E), let λ > 0 and f ∈ C(E). Then the Laplace equation
(λ−G)p = f has a unique solution, that is given by

p =

∫ ∞

0

Ptf e
−λtdt.

We say that an operator A on C(E) with domain D(A) satisfies the pos-
itive maximum principle if, whenever a function f ∈ D(A) assumes its max-
imum over E in a point x ∈ E and f(x) ≥ 0, we have Af(x) ≤ 0. The
following proposition gives necessary and sufficient conditions for a linear
operator G to be the generator of a Feller semigroup.

Theorem 4.6 (Generators of Feller semigroups) A linear operator G
on C(E) is the generator of a Feller semigroup (Pt)t≥0 if and only if

(i) 1 ∈ D(G) and G1 = 0.

(ii) G satisfies the positive maximum principle.

(iii) D(G) is dense in C(E).

(iv) For every f ∈ C(E) and λ > 0, the Laplace equation (λ−G)p = f has
a solution.

In practice, it is rarely possible to give an explicit description of the (full)
domain of a Feller generator. Rather, one often starts with an operator that
is defined on a smaller domain of “nice” functions and then takes its closure.
In general, if G is a closed linear operator and D′ ⊂ D(G), then we let G|D′

denote the restriction of G to D′, i.e., G|D′ is the linear operator with domain
D(G|D′) := D′ defined as G|D′f := Gf for all f ∈ D′. We say that D′ is a
core for G if G|D′ = G.

Lemma 4.7 (Core of a generator) Let G be the generator of a Feller
semigroup and let D′ ⊂ D(G). Assume that D′ is dense in C(E). Then the
following conditions are equivalent:

(i) D′ is a core for G,

(ii) the set {(λ− A)p : p ∈ D′} is dense in C(E) for some λ > 0,

(iii) the set {(λ− A)p : p ∈ D′} is dense in C(E) for all λ > 0.
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Note that by condition (ii) of Lemma 4.7, to check that a dense set
D′ ⊂ C(E) is a core for G, it suffices to show that for some λ > 0, there
exists a dense subspace R ⊂ C(E) such that for every f ∈ R, the Laplace
equation (λ − A)p = f has a solution p ∈ D′. Using Lemma 4.7, one can
prove the following alternative version of the Hille-Yosida theorem.

Theorem 4.8 (Hille-Yosida) A linear operator A on C(E) with domain
D(A) is closable and its closure G := A is the generator of a Feller semigroup
if and only if

(i) There exist fn ∈ D(A) such that fn → 1 and Afn → 0.

(ii) A satisfies the positive maximum principle.

(iii) D(A) is dense in C(E).

(iv) For some (and hence for all) λ ∈ (0,∞), there exists a dense subspace
R ⊂ C(E) such that for every f ∈ R, the Laplace equation (λ−A)p = f
has a solution p.

Conditions (i)–(iii) are usually easy to verify for a given operator A, but
condition (iv) is the “hard” condition since this means that one has to prove
existence of solutions to the Laplace equation (λ − G)p = f for a dense set
of functions f .

If K is a probability kernel on E and r > 0, then

Gf := r(Kf − f)
(
f ∈ C(E)

)
(4.6)

defines a Feller generator that is everywhere defined (i.e., D(G) = C(E))
and hence, in view of Theorem 4.2, a bounded operator. For generators
of this simple form, one can construct the corresponding semigroup by the
exponential formula

Ptf = e tGf :=
∞∑
n=0

1

n!
(tG)nf,

where the infinite sum converges in C(E). The corresponding Markov process
has a simple description: with rate r, the process jumps from its current
position x to a new position chosen according to the probability law K(x · ).

As soon as Feller processes get more complicated in the sense that “the
total rate of all things that can happen” is infinite (as will be the case for
interacting particle systems), one needs the more complicated Hille-Yosida
theory. To demonstrate the strength of Theorem 4.8, consider E := [0, 1]
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and the linear operator A defined by D(A) := C2[0, 1] (the space of twice
continuously differentiable functions on [0, 1]) and

Af(x) := x(1− x) ∂
2

∂x2
f(x)

(
x ∈ [0, 1]

)
. (4.7)

One can show that A satisfies the conditions of Theorem 4.8 and hence A
generates a Feller semigroup. The corresponding Markov process turns out
to have continuous sample paths and is indeed the Wright-Fisher diffusion
that we met before in formula (3.26).

Exercise 4.9 (Brownian motion) Let (Pt)t≥0 denote the transition ker-
nels of Brownian motion on Rd. Let E := Rd ∪ {∞} denote the one-point
compactification of Rd and extend Pt (t ≥ 0) to probability kernels on E by
setting Pt(∞, · ) := δ∞. Show that (Pt)t≥0 is a Feller semigroup.

In Chapter 2, we viewed (possibly explosive) continuous-time Markov
chains with a countable state space S as Markov processes on the extended
state space S∞, where S∞ is the one-point compactification of S. It is nat-
ural to ask if they are in fact Feller processes on S∞. The answer is, in
general, negative. The reason is that the extended transition kernels (P t)t≥0

on S∞ may fail to be continuous at ∞, i.e., P t(xn, · ) may fail to converge
to P t(∞, · ) if xn → ∞. In many cases where this problem occurs, it can
be solved by choosing another compactification of S (i.e., by adding more
points at infinity). Whether this can be done in general I don’t know.

Exercise 4.10 (Wright-Fisher diffusion) Show that the operator A de-
fined in (4.7) satisfies the conditions of Theorem 4.8. Hint: show that if f
is a polynomial of order n, then so is Af . Use this to show that the Cauchy
equation ∂

∂t
ut = Aut has a solution for each initial state u0 = f that is a

polynomial. Then show that p :=
∫∞
0
ut e

−λt dt solves the Laplace equation
(λ− A)p = f .

Some notes on the proofs

In the remainder of this section, we indicate where proofs of the stated the-
orems can be found. Readers who are more interested in interacting particle
systems than in functional analysis may skip from here to the next section.

The fact that there is a one-to-one correspondence between continu-
ous transition probabilities and collections (Pt)t≥0 of linear operators sat-
isfying the assumptions (i)–(iv) of a Feller semigroup follows from [Kal97,
Prop. 17.14].
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Theorem 4.1 (including a proof) can be found in [Kal97, Thm 17.15] and
[EK86, Thm 4.2.7]. Theorem 4.2 (the closed graph theorem and character-
ization of continuous linear maps) can be found in many places (including
Wikipedia).

Lemma 4.3 follows from [EK86, Corollary I.1.6]. The statements of this
lemma can also easily be derived from the Hille-Yosida theorem (see below).
Proposition 4.4 summarizes a number of well-known facts. The fact that
ut := Ptf solves the Cauchy equation if f ∈ D(G) is proved in [EK86,
Prop 1.1.5 (b)], [Kal97, Thm 17.6], and [Lig10, Thm 3.16 (b)]. To see that
solutions to the Cauchy equation are unique, we use the following fact.

Lemma 4.11 (Positive maximum principle) Let A be a linear operator
on C(E) and let u = (ut)t≥0 be a solution to the Cauchy equation ∂

∂t
ut = Aut

(t ≥ 0). Assume that A satisfies the positive maximum principle and u0 ≥ 0.
Then ut ≥ 0 for all t ≥ 0.

Proof By linearity, we may equivalently show that u0 ≤ 0 implies ut ≤ 0.
Assume that ut(x) > 0 for some x ∈ E. By the compactness of E, the
function (x, t) 7→ e−tut(x) must assume its maximum over E × [0, t] in some
point (y, s). Our assumptions imply that e−sus(y) > 0 and hence s > 0. But
now, since A satisfies the positive maximum principle,

0 ≤ ∂
∂s

(
e−sus(y)

)
= −e−sus(y) + e−sAus(y) ≤ −e−sus(y) < 0,

so we arrive at a contradiction.

By linearity, Lemma 4.11 implies that if u, v are two solutions to the same
Cauchy equation and u0 ≤ v0, then ut ≤ vt for all t ≥ 0. In particular, since
by Theorem 4.6, Feller generators satisfy the positive maximum principle,
this implies uniqueness of solutions of the Cauchy equation in Proposition 4.4.
Again by Theorem 4.6, the domain of a Feller semigroup is a dense subspace
of of C(E), so the final statement of Proposition 4.4 follows from the following
simple lemma and the fact that ∥Ptf∥∞ ≤ ∥f∥∞.

Lemma 4.12 (Closure of bounded operators) Let (V , ∥ · ∥) be a Banach
space and let A be a linear operator on V such that D(A) is dense and ∥Af∥ ≤
C∥f∥ (f ∈ D(A)) for some C < ∞. Then A is closable, D(A) = V, and
∥Af∥ ≤ C∥f∥ (f ∈ V).

Proof (sketch) Since D(A) is dense, for each f ∈ V we can choose D(A) ∋
fn → f . Using the fact that A is bounded, it is easy to check that if (fn)n≥0

is a Cauchy sequence and fn ∈ D(A) for all n, then (Afn)n≥0 is also a
Cauchy sequence. By the completeness of V , it follows that the limit Af :=
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limn→∞Afn exists for all f ∈ V . To see that this defines A unambiguously,
assume that fn → f and gn → f and observe that ∥Afn − Agn∥ ≤ C∥fn −
gn∥ → 0. The fact that ∥Af∥ ≤ C∥f∥ (f ∈ V) follows from the continuity
of the norm.

Lemma 4.5 follows from [EK86, Prop 1.2.1]. Theorems 4.6 and 4.8 both
go under the name of the Hille-Yosida theorem. Often, they are stated in
a more general form without condition (i). In this generality, the operator
G generates a semigroup of subprobability kernels (Pt)t≥0, i.e., Pt(x, · ) is a
measure with total mass Pt(x,E) ≤ 1. In this context, a Feller semigroup
with Pt(x,E) = 1 for all t, x is called conservative. It is clear from Proposi-
tion 4.4 that condition (i) in Theorems 4.6 and 4.8 is necessary and sufficient
for the Feller group to be conservative.

The versions of the Hille-Yosida theorem stated in [EK86, Kal97] are more
general than Theorems 4.6 and 4.8 since they allow for the case that E is not
compact but only locally compact. This is not really more general, however,
since what these books basically do if E is not compact is the following. First,
they construct the one-point compactification E = E∪{∞} of E. Next, they
extend the transition probabilities to E by putting Pt(∞, · ) := δ∞ for all
t ≥ 0. Having proved that they generate a conservative Feller semigroup on E
of this form, they then still need to prove that the associated Markov process
does not explode in the sense that Px[Xt ∈ E ∀t ≥ 0] = 1. In practical
situations (such as when constructing Markov processes with state space Rd)
it is usually better to explicitly work with the one-point compactification of
Rd instead of trying to formulate theorems for locally compact spaces that
try hide this compactification in the background.

Theorems 4.6 and 4.8 are special cases of more general theorems (also
called Hille-Yosida theorem) for strongly continuous contraction semigroups
taking values in a general Banach space. In this context, the positive max-
imum principle is replaced by the assumption that the operator under con-
sideration is dissipative. In this more general setting, Theorems 4.6 and
4.8 correspond to [EK86, Thms 1.2.6 and 1.2.12]. Lemma 4.7 follows from
[EK86, Lemma 1.2.11 and Prop 1.3.1]. In the more specific set-up of Feller
semigroups, versions of Theorem 4.8 can be found in [EK86, Thm 4.2.2]
and [Kal97, Thm 17.11]. There is also an account of Hille-Yosida theory for
Feller semigroups in [Lig10, Chap 3], but this reference does not mention the
positive maximum principle (using a dissipativity assumption instead).

Feller semigroups with bounded generators such as in (4.6) are treated in
[EK86, Sect 4.2] and [Kal97, Prop 17.2]. The fact that the operator A in (4.7)
satisfies the assumptions of Theorem 4.8 is proved in [EK86, Thm 8.2.8].



4.3. POISSON CONSTRUCTION 95

4.3 Poisson construction

We briefly recall the set-up introduced in Section 4.1. S is a finite set, called
the local state space, and Λ is a countable set, called the lattice. We equip
the product space SΛ with the product topology, making it into a compact
metrizable space. Elements of SΛ are denoted x = (x(i))i∈Λ. We fix a
countable set G whose elements are local maps m : SΛ → SΛ as well as
nonnegative rates (rm)m∈G. Our aim is to construct a Markov process with
formal generator of the form (4.1). Our approach is very similar to the Pois-
son construction of continuous-time Markov chains described in Section 2.6.
We equip the space G × R with the measure

ρ
(
{m} × A

)
:= rm ℓ(A)

(
m ∈ G, A ∈ B(R)

)
, (4.8)

where B(R) denotes the Borel-σ-field on R and ℓ denotes the Lebesgue mea-
sure. Let ω be a Poisson point set with intensity ρ. We call ω the graphical
representation associated with the random mapping representation (2.14).
Since G is countable, by the argument used in Section 2.6, the time coordi-
nates of points (m, t) ∈ ω are all different. Therefore, as we did in the case
of continuous-time Markov chains, we can unambiguously define a random
function R ∋ t 7→ mω

t by setting

mω
t :=

{
m if (m, t) ∈ ω,

1 otherwise,
(4.9)

where we write 1 to denote the identity map. By definition, we say that a
random function X : [s,∞) → SΛ solves the evolution equation

Xt = mω
t (Xt−) (t > s), (4.10)

if [s,∞) ∋ t 7→ Xt ∈ SΛ is cadlag and (4.10) holds. We recall that for any
local map m and site i ∈ Λ, the set R↓

i (m) has been defined in Section 2.8.
Here is the main result of the present section.

Theorem 4.13 (Poisson construction) Assume that the rates (rm)m∈G
satisfy

sup
i∈Λ

∑
m∈G

rm
(
1D(m)(i) + |R↓

i (m)|
)
<∞. (4.11)

Then almost surely, for each s ∈ R and x ∈ SΛ, there exists a unique solution
(Xs,x

t )t≥s to the evolution equation (4.10) with initial state Xs,x
s = x. Setting

Xs,t(x) := Xs,x
t (s ≤ t, x ∈ SΛ) (4.12)
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defines a collection of continuous maps (Xs,t)s≤t from SΛ into itself such that

Xs,s = 1 and Xt,u ◦Xs,t = Xs,u (s ≤ t ≤ u). (4.13)

Setting
Pt(x, · ) := P

[
X0,t(x) ∈ ·

]
(t ≥ 0, x ∈ SΛ) (4.14)

defines the semigroup of a Feller process with state space SΛ. If s ∈ R and
X0 is an SΛ-valued random variable with law µ, independent of ω, then the
process (Xt)t≥0 defined as

Xt := Xs,s+t(X0) (t ≥ 0) (4.15)

is distributed as the Feller process with semigroup (Pt)t≥0 and initial law µ.

The proof of Theorem 4.13 will take up the rest of this section. At first,
it may be surprising that solutions of the evolution equation (4.10) with a
given initial state are unique. After all, if we replace the compact set SΛ by
[0, 1], then there are many cadlag functions X : [s,∞) → [0, 1] with a given
initial state that make no jumps at all. The following exercise shows that at
least in the case when ω = ∅, the equation (4.10) has a unique solution.

Exercise 4.14 (Total disconnectedness) A topological space E is totally
disconnected if for each x1, x2 ∈ E with x1 ̸= x2, there exist open sets O1 ∋ x1
and O2 ∋ x2 such that O1 ∩ O2 = ∅ and O1 ∪ O2 = E. Prove that SΛ is
totally disconnected. Prove that if E is a totally disconnected space, then
each continuous function f : [0,∞) → E is constant.

The difficulty with proving existence and uniqueness of solutions of (4.10)
is that we will typically have that

∑
m∈G rm = ∞. As a result, {t : (m, t) ∈ ω}

will be a dense subset of R, so it will no longer possible to order the elements
of ω according to their times, and solutions (Xt)t≥s to (4.10) will not be
piecewise constant. However, most of the jumps of (Xt)t≥s will involve sites
that are far away, and t 7→ Xt(i) will still be piecewise constant for each fixed
i ∈ Λ.

The trick for proving uniqueness of solutions of (4.10) is to look backwards
in time. One may notice the similarity between condition (4.11) and the
condition (2.26) from Chapter 2, the only difference being that R↑

i (m) is
replaced byR↓

i (m), which looks “downwards” in time. (Here we use our usual
convention of plotting time upwards in pictures of graphical representations
so that downwards means back in time.) We recall from Lemma 2.18 that if
T is a finite set and f : SΛ → T is a continuous function, then f depends on
finitely many coordinates. A consequence of this is that the space C(SΛ, T )
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of continous functions ϕ : SΛ → T is countable. It turns out that if we fix
ϕ ∈ C(SΛ, T ) and a time u ∈ R, then the stochastic flow (Xs,t)s≤t that we
are about to construct has the property that the process

Φt := ϕ ◦Xu−t,u (t ≥ 0)

is a nonexplosive continuous-time Markov chain with countable state space
C(SΛ, T ). We call (Φt)t≥0 the backward in time process. The first step towards
proving Theorem 4.13 is showing that this continuous-time Markov chain is
nonexplosive.

Proposition 4.15 (Backward in time process) Assume (4.11). Let T
be a finite set. Then there exists a generator H of a nonexplosive continuous-
time Markov chain with state space C(SΛ, T ) such that

Hf(ϕ) =
∑
m∈G

rm
{
f(ϕ ◦m)− f(ϕ)

}
(4.16)

for all bounded f : C(SΛ, T ) → [0,∞). Almost surely, for each u ∈ R and ϕ ∈
C(SΛ, T ), there exists a unique cadlag function Φu,ϕ : (−∞, u] → C(SΛ, T )
such that Φu,ϕ

u = ϕ and

Φu,ϕ
t− =

{
Φu,ϕ
t ◦m if (m, t) ∈ ω,

Φu,ϕ
t otherwise

(t ≤ u). (4.17)

One has

E
[∣∣R(Φu,ϕ

t )
∣∣] ≤ |R(ϕ)|e−K(u− t) (

t ≤ u, ϕ ∈ C(SΛ, T )
)
, (4.18)

where
K := sup

i∈Λ

∑
m∈G

rm
(
|R(m[i])| − 1

)
<∞. (4.19)

Proof The general idea of the proof is illustrated in Figure 4.1. The function
Φu,ϕ
t , that will in (4.30) below be shown to be equal to ϕ ◦ Xt,u, evolves

backwards in time in such a way that for each point (m, t) ∈ ω of the graphical
representation, at time t, the function Φu,ϕ

t is replaced by Φu,ϕ
t ◦ m. We

will show that the size of the set of relevant points R(Φu,ϕ
t ) grows at most

exponentially in time, so that Φu,ϕ
t corresponds to a nonexplosive continuous-

time Markov chain.
To see that H is the generator of a (possibly explosive) continuous-time

Markov chain with state space C(SΛ, T ), we must check condition (2.13),
which in the present context says that

c(ϕ) :=
∑

m:ϕ◦m̸=ϕ

rm <∞ for all ϕ ∈ C(SΛ, T ).
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time

space Z

0 1 2 3 4 5 6 7 8 9

bra2,1

bra0,1

bra4,3
bra7,8

bra2,3

death4

bra3,4
bra1,2

bra6,5

bra7,6

death8

R(ϕ) = {4}

R(Φu,ϕ
t )

Figure 4.1: Graphical representation of a one-dimensional contact process,
with the backwards in time process (Φu,ϕ

t )t∈(−∞,u] started in the initial con-
dition ϕ(x) := x(4). The green lines show the evolution backwards in time
of the set R(Φu,ϕ

t ) of relevant lattice points for the map Φu,ϕ
t = ϕ ◦Xt,u.

We observe that ϕ(m(x)) ̸= ϕ(x) for some x ∈ SΛ implies thatD(m)∩R(ϕ) ̸=
∅, so we can estimate∑

m:ϕ◦m ̸=ϕ

rm ≤
∑

m:D(m)∩R(ϕ)̸=∅

rm ≤
∑
i∈R(ϕ)

∑
m

1D(m)(i)rm,

which is finite by (4.11) and the finiteness of R(ϕ). To prove that H is
nonexplosive we apply Theorem 2.9 to the Lyapunov function

L(ϕ) := |R(ϕ)|
(
ϕ ∈ C(SΛ, T )

)
.

Our previous calculation shows that L satisfies condition (i) of Theorem 2.9,
so it remains to check condition (ii). We have

HL(ϕ) =
∑
m∈G

rm
{
L(ϕ ◦m)− L(ϕ)

}
=

∑
m∈G

rm
{
|R(ϕ ◦m)| − |R(ϕ)|

}
.

Since

R(ϕ ◦m) ⊂
⋃

j∈R(ϕ)

R(m[j]) = R(ϕ)\D(m) ∪
⋃

j∈D(m)∩R(ϕ)

R↓
j(m),
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we can estimate

|R(ϕ ◦m)| − |R(ϕ)| ≤
∑

j∈D(m)∩R(ϕ)

(
|R↓

j(m)| − 1
)
.

This gives

HL(ϕ)≤
∑
m∈G

rm
∑

j∈D(m)∩R(ϕ)

(
|R↓

j(m)| − 1
)
=

∑
j∈R(ϕ)

∑
m∈G

D(m)∋j

rm
(
|R↓

j(m)| − 1
)

≤ |R(ϕ)| sup
j∈Λ

∑
m∈G

D(m)∋j

rm
(
|R↓

j(m)| − 1
)
= K|R(ϕ)|,

where we have used that the terms with i ̸∈ D(m) in (4.19) are zero since in
this case R(m[i]) = {i}. It follows from (4.11) that

K = sup
i∈Λ

∑
m∈G

D(m)∋i

rm
(
|R↓

j(m)| − 1
)
≤ sup

i∈Λ

∑
m∈G

rm|R↓
j(m)|,

so condition (ii) of Theorem 2.9 is satisfied with λ = K. It follows that H is
nonexplosive and the continuous-time Markov chain (Φt)t≥0 with generator
H satisfies

Eϕ
[∣∣R(Φt)

∣∣] ≤ |R(ϕ)|e−Kt
(
t ≥ 0, ϕ ∈ C(SΛ, T )

)
. (4.20)

By Theorem 2.17, we can construct (Φt)t≥0 from a graphical representation,
by applying the maps ϕ 7→ ϕ ◦m at the times of a Poisson point process. In
fact, we can use the Poisson point process ω that we already have, provided we
“read it off downwards in time” and instead of applying the map x 7→ m(x) at
time t for each (m, t) ∈ ω, we apply the map ϕ 7→ ϕ◦m. Thus, Theorem 2.17
implies that for each u ∈ R and ϕ ∈ C(SΛ, T ), there exists a unique cadlag
function (Φt)t≥0 such that Φ0 = ϕ and

Φt =

{
Φt− ◦m if (m,u− t) ∈ ω,

Φt− otherwise
(t > 0).

Moreover, Theorem 2.17 tells us that (Φt)t≥0 is distributed as the continuous-
time Markov chain with initial state ϕ and generator H. We would now like
to say that the process (Φu,ϕ

t )t∈(−∞,u] from the proposition is given by

Φu,ϕ
t := Φu−t

(
t ∈ (−∞, u]

)
(?), (4.21)
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but this is not quite right yet, since the process (Φt)t≥0 is right-continuous
with left limits and as a result, because we are reversing time, the process
defined in (4.21) is left-continuous with right limits. In view of this, we
have to be a bit more careful. To get a right-continuous process, we have to
define (Φu,ϕ

t )t∈(−∞,u] as the right-continuous modification of (Φu−t)t∈(−∞,u].
Moreover, to satisfy the evolution equation (4.17) also at t = u, in the
special case that ω contains a point of the form (m,u), we have to start the
process (Φt)t≥0 in Φ0 = ϕ ◦ m instead of Φ0 = ϕ. Apart from these little
complications, the idea works, however, so Theorem 2.17 implies existence
and uniqueness of the function (Φu,ϕ

t )t∈(−∞,u]. Since the process a.s. does not
jump at deterministic times, (4.20) remains true if we replace (Φt)t≥0 by its
left-continuous modification. It also does not matter if we modify its initial
state on an event of probability zero, so (4.20) implies (4.18).

Proposition 4.15 is the cornerstone of the proof of Theorem 4.13. We
can now start to reap its benefits. For Markov processes that have a Poisson
construction in terms of a set of maps G that is finite, we can simply construct
the process by ordering the elements (m, t) of the Poisson set ω according to
their times and then apply them in the right order. In our present setting, the
set of times t for which ω contains an element of the form (m, t) is typically
dense, so we can no longer simply concatenate the maps associated with
elements of ω in the order described by their times. Since ω is countable,
however, it is natural to approximate ω with finite sets ω′ ⊂ ω and hope that
the construction converges to a limit as ω′ ↑ ω. We will prove that under the
assumptions of Proposition 4.15, this idea indeed works.

If ω is a finite subset of G × R such that there exist no two elements
(m, t), (m′, t′) ∈ ω with m ̸= m′ and t = t′, then we define a maps Xω

s,u :
SΛ → SΛ with s ≤ u by

Xω
s,u := mn ◦ · · · ◦m1

where {(m, t) ∈ ω : t ∈ (s, u]} = {(m1, t1), . . . , (mn, tn)}
with t1 < · · · < tn.

(4.22)

In words, this says that Xω
s,u is the concatenation of the maps m for which

(m, t) ∈ ω with t ∈ (s, u], ordered by their times. We recall from Section 2.7
that for any m : SΛ → SΛ and i ∈ Λ, the map m[i] : SΛ → S is defined as
m[i](x) := m(x)(i).

Proposition 4.16 (Finitely many relevant maps) Assume (4.11). Then
almost surely, for each s ≤ u and i ∈ Λ, there exists a finite set ω′ ⊂ ω such
that Xω′

s′,u′ [i] = Xω′′

s′,u′ [i] for each finite ω′′ ⊃ ω′ and for all s ≤ s′ ≤ u′ ≤ u.
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Proof It suffices to prove the statement for s, t ∈ Q only. Since Q and Λ
are countable, it therefore suffices to prove that the statement holds almost
surely for deterministic s ≤ u and i ∈ Λ. We fix s ≤ u and i ∈ Λ. We
define ϕ ∈ C(SΛ, S) by ϕ(x) := x(i) (x ∈ SΛ) and let (Φu,ϕ)t∈(−∞,u] be
the backwards in time process of Proposition 4.15. Since this backwards in
time process is a nonexplosive continuous-time Markov chain with state space
C(SΛ, S), the set {t ∈ (s, u] : Φu,ϕ

t− ̸= Φu,ϕ
t } is finite. We can order its elements

as t1 < · · · < tn for some n ≥ 0. Then there exist unique m1, . . . ,mn ∈ G
such that

ω′ :=
{
(t1,m1), . . . , (tn,mn)

}
⊂ ω. (4.23)

Clearly
Xω′

t,u[i] = Φu,ϕ
t

(
t ∈ [s, u]

)
. (4.24)

We claim that the same is true with ω′ replaced by any finite ω′′ ⊂ ω such
that ω′ ⊂ ω′′. Indeed, it follows from (4.17) that

Φu,ϕ
t− = Φu,ϕ

t ◦m ∀(m, t) ∈ ω\ω′ with t ∈ (s, u],

so adding points in ω\ω′ to ω′ one at a time has no effect on (Φu,ϕ)t∈[s,u] or
on the maps Xω′

t,u[i] with t ∈ [s, u].
Our arguments so far show that there exists a finite set ω′ ⊂ ω such that

Xω′

s′,u′ [i] = Xω′′

s′,u′ [i] for each finite ω′′ ⊃ ω′ and for all s ≤ s′ ≤ u′ = u. To
generalise this to u′ ≤ u, for each u′ ∈ (s, u], let ω′(u′) be defined as in (4.23)
but with (Φu,ϕ)t∈(−∞,u] replaced by (Φu′,ϕ)t∈(−∞,u′]. To complete the proof, it
suffices to show that ⋃

u′∈(s,u]

ω′(u′) (4.25)

is finite. It follows from (4.11) that the set

ξ :=
{
t ∈ (s, u] : ∃(m, t) ∈ ω s.t. m ∈ D(m[i])

}
is a.s. finite. If s < u′ < u′′ ≤ u are such that ξ ∩ (u′, u′′] =, then
(Φu′,ϕ)t∈(−∞,u′] is the restriction of (Φu′′,ϕ)t∈(−∞,u′′] to (−∞, u′] and as a re-
sult ω′(u′) = ω′(u′′). This means that the function u′ 7→ ω′(u′) is piecewise
constant. By what we have already proved, ω′(u′) is a.s. finite for each fixed
u′ ∈ (s, u], so we conclude that the union in (4.25) is a.s. finite.

For each finite ω′ ⊂ ω, the maps (Xω′
s,u)s≤u form a flow in the sense of

(4.13). Proposition 4.16 says that these flows converge to a limit as ω′ ↑ ω.
To formalize this, let Ω denote the set of all finite subsets of ω and for each
ω′ ∈ Ω, let Xω′

denote the function from the set X := {(s, u) : s, u ∈ R, s ≤
u} × SΛ into SΛ given by (s, u, x) 7→ Xω′

s,u(x). The collection (Xω′
)ω′∈Ω is a
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net in the topological sense of the word.8 Proposition 4.16 says that this net
almost surely has a limit X in a locally uniform sense. Indeed, if d is any
metric generating the topology on SΛ, then:

Almost surely, for every compact C ⊂ X and ε > 0, there exists
an ω′ ∈ Ω such that

sup
(s,u,x)∈C

d
(
Xω′′

s,u(x),Xs,u(x)
)
≤ ε ∀ω′ ⊂ ω′′ ∈ Ω.

We will denote this somewhat less formally as

lim
ω′↑ω

(Xω′

s,u)s≤u = (Xs,u)s≤u locally uniformly a.s. (4.26)

The important thing to remember is that for any finite ∆ ⊂ Λ and S ≤ U ,
there exists a finite ω′ ⊂ ω such that

Xω′′

s,u(x)(i) = Xs,u(x)(i) for all ω′′ ⊃ ω′, S ≤ s ≤ u ≤ U, i ∈ ∆.

We now start to prove the various statements of Theorem 4.13.

Lemma 4.17 (The forward evolution) Assume (4.11) and let (Xs,u)s≤u
be defined in (4.26). Then almost surely, for each s ∈ R and x ∈ SΛ, the
function (Xs,x

t )t≥s defined as

Xs,x
t = Xs,t(x) (t ≥ s) (4.27)

solves the evolution equation (4.10) with initial state Xs,x
s = x.

Proof Fix s ∈ R and x ∈ SΛ and choose finite ωn ↑ ω. For each n, there
exists a unique piecewise constant, right-continuous function Xn : [s,∞) →
SΛ such that

Xn
s = x and Xn

t = mωn
t (Xn

t−) (t > s),

and this function is given by

Xn
t = Xωn

s,t (x) (t ≥ s).

8Readers unfamiliar with this term should look it up in any textbook on topology or
on Wikipedia. Nets generalize sequences. Some statements for metrizable spaces, such
as the statement that a space is compact if and only if each sequence has a convergent
subsequence, generalize to arbitrary topological spaces only if sequences are replaced by
the more general nets.
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By (4.26) the function Xn converges locally uniformly to the function X :
[s,∞) → SΛ given by

Xt = Xs,t(x) (t ≥ s).

In particular, this implies that Xn
t → Xt and Xn

t− → Xt− for all t > s. If
(m, t) ∈ ω, then mωn

t = m for all n large enough and hence Xn
t = m(Xn

t−)
for all n large enough. Taking the limit n → ∞, using the continuity of m,
it follows that Xt = m(Xt−). On the other hand, if there exists no m ∈ ω
such that (m, t) ∈ ω, then mωn

t = 1 for all n and hence Xn
t = Xn

t− for all n,
so letting n → ∞ we see that Xt = Xt−. This shows that X solves (4.10)
with the initial state x.

Lemma 4.18 (Forward and backward equations) Assume (4.11) and
let T be a finite set. Almost surely, if a function X : [s,∞) → SΛ solves
(4.10) for some s ∈ R, then

ϕ(Xu) = Φu,ϕ
s (Xs)

(
u ≥ s, ϕ ∈ C(SΛ, T )

)
, (4.28)

where (Φu,ϕ
t )t∈(−∞,u] is the backward in time process defined in (4.17).

Proof Assume that X : [s,∞) → SΛ solves (4.10) and that u ≥ s and
f ∈ C(SΛ, T ). By the definition of a solution to (4.10), the function [s, u] ∋
t 7→ Xt is cadlag. The function [s, u] ∋ t 7→ Φu,ϕ

s is cadlag with values in the
countable set C(SΛ, T ). It follows9 that the function [s, u] ∋ t 7→ Φu,ϕ

t (Xt) ∈
T is cadlag, and that

lim
t′↑t

Φu,ϕ
t′ (Xt′) = Φu,ϕ

t− (Xt−)
(
t ∈ (s, u]

)
.

We claim that

Φu,ϕ
t− (Xt−) = Φu,ϕ

t (Xt)
(
t ∈ (s, u]

)
. (4.29)

Indeed, if (m, t) ∈ ω for some m ∈ G, (4.29) follows from the fact that

Φu,ϕ
t− (Xt−) = Φu,ϕ

t ◦m(Xt−) = Φu,ϕ
t (Xt),

while at all other times it follows fron the fact that Φu,ϕ
t− = Φu,ϕ

t andXt− = Xt.
Since [s, u] ∋ t 7→ Φu,ϕ

s takes values in the finite set T , we conclude from (4.29)

9A very formal way to see this is to observe that the function C(SΛ, T )×SΛ ∋ (ϕ, x) 7→
ϕ(x) ∈ T is continuous. Since C(SΛ, T ) is countable one can also use that [s, u] ∋ t 7→ Φu,ϕ

s

is piecewise constant for a more elementary argument.
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that this function is constant, so in particular its values in s and u are equal,
which gives us (4.28).

We note that Lemmas 4.17 and 4.18 combine to give us

Φt,ϕ
s (x) = ϕ(Xs,x

t ) = ϕ
(
Xs,t(x)

)
,

proving that
Φt,ϕ
s = ϕ ◦Xs,t

(
s ≤ t, ϕ ∈ C(SΛ, T )

)
. (4.30)

Before we can prove Theorem 4.13 we need one more lemma.

Lemma 4.19 (Almost sure continuity) Assume (4.11). Let xn, x ∈ SΛ

and tn, t ∈ [0,∞) satisfy xn → x (pointwise) and tn → t. Then

X0,tn(xn) −→
n→∞

X0,t(x) a.s.

Proof Since we equip SΛ with the product topology, we need to show that

X0,tn(xn)(i) −→
n→∞

X0,t(x)(i) a.s.

for each i ∈ Λ. Let I := {s ∈ R : ∃ (m, s) ∈ ω s.t. i ∈ D(m)} and let
t− := sup{s : s ∈ I, s ≤ t} and t+ := inf{s : s ∈ I, s ≥ t}. Since t is a
deterministic time, t− < t < t+ a.s. Then X0,tn(xn)(i) = X0,t(x)(i) for all n
large enough such that t− < tn < t+ and xn = x on the finite set R(X0,t[i]),
proving the desired a.s. convergence.

Proof of Theorem 4.13 We claim that almost surely, for each s ∈ R and
x ∈ SΛ, there exists a unique solution (Xs,x

t )t≥s to the evolution equation
(4.10) with initial state Xs,x

s = x, which is given by

Xs,x
t = Xs,t(x) (t ≥ s), (4.31)

where (Xs,u)s≤u is defined in (4.26). Indeed, Lemma 4.17 says that (Xs,x
t )t≥s

defined in (4.31) solves (4.10), and Lemma 4.18 tells us that any solution
(Xt)t≥s to (4.10) with initial state Xs = x satisfies

ϕ(Xt) = Φt,ϕ
s (x)

(
t ≥ s, ϕ ∈ C(SΛ, T )

)
,

which shows that solutions to (4.10) with a given initial state are unique.
By (4.31), the random maps (Xs,t)s≤t defined in (4.12) coincide with those

defined in (4.26). It follows from (4.30) that if T is any finite set, then

ϕ ◦Xs,t ∈ C(SΛ, T ) ∀ϕ ∈ C(SΛ, T ).
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Using this for ϕ(x) := x(i) shows that x 7→ Xs,t(x)(i) is continuous for each
i and hence x 7→ Xs,t(x) is continuous with respect to the product topology.
The fact that (Xs,t)s≤t form a stochastic flow in the sense of (4.13) follows
from (4.26) and the analogue property of (Xω′

s,t)s≤t. This stochastic flow is
clearly stationary. Using the fact that restrictions of a Poisson point set to
disjoint parts of the space are independent, we also see that (Xs,t)s≤t has
independent increments.

We claim that the probability kernels (Pt)t≥0 defined in (4.14) form a
semigroup. Indeed, for each bounded measurable f : SΛ → R,

P0f(x) = E
[
f(X0,0(x))

]
= f(x)

and, for every measurable A ⊂ SΛ,

Ps+t(x,A) = P
[
Xs,s+t ◦X0,s(x) ∈ A

]
=

∫
P
[
X0,s(x) ∈ dy

]
P
[
Xs,s+t(y) ∈ A |X0,s(x) = y

]
=

∫
P
[
X0,s(x) ∈ dy

]
P
[
Xs,s+t(y) ∈ A

]
=

∫
Ps(x, dy)Pt(y, A) = PsPt(x,A),

where we have used the stationarity and independent increments of the
stochastic flow. To prove that (Pt)t≥0 is a Feller semigroup, we need to
show that

Ptn(xn, · ) =⇒
n→∞

Pt(x, · ) ∀(xn, tn) → (x, t),

where⇒ denotes weak convergence of probability measures. By the definition
of weak convergence, this means that we need to show that

Ptnf(xn) −→
n→∞

Ptf(x) as (xn, tn) → (x, t)

for each continuous f : SΛ → R. This follows from Lemma 4.19, which
implies that

Ptnf(xn) = E
[
f
(
X0,tn(xn)

)]
−→
n→∞

E
[
f
(
X0,t(x)

)]
= Ptf(x).

Let (Xt)t≥0 be defined as in (4.15), let 0 = t0 ≤ · · · ≤ tn, and let f : (SΛ)n →
R be bounded and measurable. Then using the stationarity and independent
increments of the stochastic flow, we see that

E
[
f(Xt1 , . . . , Xtn)

]
=

∫
µ(dx0)

∫
Pt1−t0(x0, dx1) · · ·

∫
Ptn−tn−1(xn−1, dxn) f(x1, . . . , xn),
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which proves that (Xt)t≥0 is the Feller process with semigroup (Pt)t≥0 and
inital law µ.

Exercise 4.20 The definitions of the generators Gvot and Gcont of the voter
model and the contact process in (2.28) and (2.29) are of the general form
(4.1), where in the first case G = {votij : i, j ∈ Λ} and rvotij = λ(i, j), and in
the second case G = {contij : i, j ∈ Λ} and rcontij = λ(i, j). Give necessary
and sufficient conditions on the constants λ(i, j) for these rates (rm)m∈G to
satisfy (4.11).

4.4 Generator construction

Although Theorem 4.13 gives us an explicit way how to construct the Feller
semigroup associated with an interacting particle system, it does not tell us
very much about its generator. To fill this gap, we need a bit more theory.
For any continuous function f : SΛ → R and i ∈ Λ, we define

δf(i) := sup
{
|f(x)− f(y)| : x, y ∈ SΛ, x(j) = y(j) ∀j ̸= i

}
.

Note that δf(i) measures how much f(x) can change if we change x only in
the point i. We call δf the variation of f .10

Lemma 4.21 (Variation of a function) Let f ∈ C(SΛ). Then∣∣f(x)− f(y)
∣∣ ≤ ∑

i:x(i)̸=y(i)

δf(i)
(
f ∈ C(SΛ), x, y ∈ SΛ

)
. (4.32)

Proof Let n be the number of sites i where x and y differ. Enumerate these
sites as {i : x(i) ̸= y(i)} = {i1, . . . , in} or = {i1, i2, . . .} depending on whether
n is finite or not. For 0 ≤ k < n+ 1, set

zk(i) :=

{
y(i) if i ∈ {i1, . . . , ik},
x(i) otherwise.

If n is finite, then∣∣f(x)− f(y)
∣∣ ≤ n∑

k=1

∣∣f(zk)− f(zk−1)
∣∣ ≤ n∑

k=1

δf(ik)

10This definition is similar to, but different from the more usual definition of the (total)
variation of a function of one real variable. With functions of one real variable, the total
variation is the maximal sum of all changes in the value of the function as one gradually
increases the real variable. For functions on SΛ, the idea is similar but instead of increasing
a real variable we will gradually change a configuration x by modifying its coordinates one
by one.
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and we are done. If n is infinite, then the same argument gives

∣∣f(x)− f(zm)
∣∣ ≤ m∑

k=1

δf(ik) (m ≥ 1).

Since zm → y pointwise and f is continuous, (4.32) now follows by letting
m→ ∞.

We define spaces of functions by

Csum = Csum(SΛ) :=
{
f ∈ C(SΛ) :

∑
i

δf(i) <∞
}
,

Cfin = Cfin(SΛ) :=
{
f ∈ C(SΛ) : δf(i) = 0 for all but finitely many i

}
.

We say that functions in Csum are of summable variation. The next exercise
shows that functions in Cfin depend on finitely many coordinates only.

Exercise 4.22 Let us say that a function f : SΛ → R depends on finitely
many coordinates if there exists a finite set A ⊂ Λ and a function f ′ : SA →
R such that

f
(
(x(i))i∈Λ

)
= f ′((x(i))i∈A) (

x ∈ SΛ
)
.

Show that each function that depends on finitely many coordinates is contin-
uous, that

Cfin(SΛ) =
{
f ∈ C(SΛ) : f depends on finitely many coordinates

}
,

and that Cfin(SΛ) is a dense linear subspace of the Banach space C(SΛ) of all
continuous real functions on SΛ, equipped with the supremumnorm.

In what follows, we assume that G is a countable collection of local maps
m : SΛ → SΛ and that (rm)m∈G are nonnegative rates. We define constants
K0 and K by

K0 := sup
i∈Λ

∑
m∈G

rm1D(m)(i),

K := sup
i∈Λ

∑
m∈G

rm
(
|R(m[i])| − 1

)
.

(4.33)

Note that K is the same as the constant defined in formula (4.19) of Propo-
sition 4.15, while K0 is an upper bound on the maximal rate at which a site
can change its type. Under the main assumption (4.11) of Theorem 4.13,
both K0 and K are finite.
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Lemma 4.23 (Domain of pregenerator) Assume that the constant K0

defined in (4.33) is finite. Then, for each f ∈ Csum(SΛ),∑
m∈G

rm
∣∣f(m(x))− f(x)| ≤ K0

∑
i∈Λ

δf(i).

In particular, for each f ∈ Csum(SΛ) and x ∈ SΛ, the right-hand side of (4.1)
is absolutely summable and Gf is well-defined.

Proof This follows by writing∑
m∈G

rm
∣∣f(m(x))− f(x)| ≤

∑
m∈G

rm
∑

i∈D(m)

δf(i)

=
∑
i∈Λ

δf(i)
∑
m∈G

D(m)∋i

rm ≤ K0

∑
i∈Λ

δf(i).

The following theorem is the main result of the present section.

Theorem 4.24 (Generator construction of particle systems) Assume
that the rates (rm)m∈G satisfy (4.11), let (Pt)t≥0 be the Feller semigroup de-
fined in (4.14) and let G be the linear operator with domain D(G) := Csum
defined by (4.1). Then G is closable and its closure G is the generator of
(Pt)t≥0. Moreover, Cfin is a core for G.

To prepare for the proof of Theorem 4.24 we need a few lemmas.

Lemma 4.25 (Generator on local functions) Under the asumptions of
Theorem 4.24, one has limt↓0 t

−1(Ptf − f) = Gf for all f ∈ Cfin, where the
limit exists in the topology on C(SΛ).

Proof Since f ∈ Cfin, by Exercise 4.22, there exists some finite A ⊂ Λ such
that f depends only on the coordinates in A. Let GA := {m ∈ G : D(m)∩A ̸=
∅} denote the set of maps m ∈ G that can potentially change the state in
A and for B ⊃ A, let GA,B := {m ∈ GA : R(m[i]) ⊂ B ∀i ∈ A} denote
those maps who only need information from B to update the state in A. We
introduce the notation

ωs,t :=
{
(m, r) ∈ ω : r ∈ (s, t]

}
(s ≤ t).

For s ≤ t, we write ωAs,t and ω
A,B
s,t to denote the sets of Poisson points (m, r) ∈

ωs,t withm ∈ GA resp.m ∈ GA,B. If ωA0,t = ∅, then f(X0,t(x)) = f(x). Also, if
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ωA,B0,t contains a single element (m, s) while ωB0,t contains no further elements,
then f(X0,t(x)) = f(m(x)). Therefore

Ptf(x) =E
[
f
(
X0,t(x)

)]
= f(x)P[ωA0,t = ∅]

+
∑

m∈GA,B

f
(
m(x)

)
P
[
ωA,B0,t = ωB0,t = {(m, s)} for some 0 < s ≤ t

]
+E

[
f
(
X0,t(x)

)
1{ωA0,t\ω

A,B
0,t ̸= ∅ or |ωB0,t| ≥ 2}

]
.

Here P[ωA0,t = ∅] = e−Rt with R :=
∑

m∈GA rm, so

f(x)P[ωA0,t = ∅] = f(x)− t
∑
m∈GA

rmf(x) +O(t2)f(x),

where O(t2) is a function such that lim supt→∞ t−2|O(t2)| <∞. Similarly,∑
m∈GA,B

f
(
m(x)

)
P
[
ωA,B0,t = ωB0,t = {(m, s)} for some 0 < s ≤ t

]
= t

∑
m∈GA,B

rmf
(
m(x)

)
+OB(x, t

2) = t
∑
m∈GA

rmf
(
m(x)

)
+ tεB(x) +OB(x, t

2),

where the error terms satisfy lim supt→∞ t−2 supx∈S |OB(x, t
2)| <∞ for each

fixed B ⊃ A, and limB↑Λ supx∈S |εB(x)| = 0. Similarly

P
[
ωA0,t\ω

A,B
0,t ̸= ∅ or |ωB0,t| ≥ 2

]
= tεB +OB(t

2),

where the term of order t comes from the event that ωA0,t contains exactly one

element, which is not in ωA,B0,t . Combining our last three formulas, we obtain

Pff(x)− f(x) = t
∑
m∈GA

rm
{
f
(
m(x)

)
− f

(
x
)}

+ tεB(x) +OB(x, t
2).

It follows that for each fixed B ⊃ A,

lim sup
t→∞

∥∥t−1
(
Ptf(x)− f(x)

)
−Gf(x)

∥∥ ≤ ∥εB∥.

Since ∥εB∥ → 0 as B ↑ Λ, the claim of the lemma follows.

Lemma 4.26 (Approximation by local functions) Assume that the con-
stant K0 defined in (4.33) is finite. Then for all f ∈ Csum there exist fn ∈ Cfin
such that ∥fn − f∥ → 0 and ∥Gfn −Gf∥ → 0.
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Proof Choose finite Λn ↑ Λ, set Γn := Λ\Λn, fix z ∈ SΛ, and for each x ∈ SΛ

define xn → x by

xn(i) :=

{
x(i) if i ∈ Λn,
z(i) if i ∈ Γn.

Fix f ∈ Csum and define fn(x) := f(xn) (x ∈ SΛ). Then fn depends only on
the coordinates in Λn, hence fn ∈ Cfin. Formula (4.32) tells us that for any
x ∈ SΛ,

|f(xn)− f(x)| ≤
∑
i∈Γn

δf(i) (x ∈ SΛ, n ≥ 1)

Since f ∈ Csum, it follows that

∥fn − f∥ ≤
∑
i∈Γn

δf(i) −→
n→∞

0.

Moreover, we observe that

|Gfn(x)−Gf(x)|

=
∣∣∑
m∈G

rm
(
fn(m(x))− fn(x)

)
−

∑
m∈G

rm
(
f(m(x))− f(x)

)∣∣
≤

∑
m∈G

rm
∣∣f(m(x)n)− f(xn)− f(m(x)) + f(x)

∣∣. (4.34)

On the one hand, we have∣∣f(m(x)n)− f(xn)− f(m(x)) + f(x)
∣∣

≤
∣∣f(m(x)n)− f(xn)

∣∣+ ∣∣f(m(x))− f(x)
∣∣ ≤ 2

∑
i∈D(m)

δf(i),

while on the other hand, we can estimate the same quantity as

≤
∣∣f(m(x)n)− f(m(x))

∣∣+ ∣∣f(xn)− f(x)
∣∣ ≤ 2

∑
i∈Γn

δf(i).

Let A ⊂ Λ be finite. Inserting either of our two estimates into (4.34), de-
pending on whether D(m) ∩ A ̸= ∅ or not, we find that

∥Gfn −Gf∥≤ 2
∑
m∈G

D(m)∩A ̸=∅

rm
∑
i∈Γn

δf(i) + 2
∑
m∈G

D(m)∩A=∅

rm
∑

i∈D(m)

δf(i)

≤ 2K0|A|
∑
i∈Γn

δf(i) + 2
∑
i∈Λ

δf(i)
∑
m∈G

D(m)∩A=∅
D(m)∋i

rm.
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It follows that

lim sup
n→∞

∥Gfn −Gf∥ ≤ 2
∑
i∈Λ\A

δf(i)
∑
m∈G

D(m)∋i

rm ≤ 2K0

∑
i∈Λ\A

δf(i).

Since A is arbitrary, letting A ↑ Λ, we see that lim supn ∥Gfn −Gf∥ = 0.

Lemma 4.27 (Functions of summable variation) Under the asumptions
of Theorem 4.24, one has∑

i∈Λ

δPtf(i) ≤ eKt
∑
i∈Λ

δf(i)
(
t ≥ 0, f ∈ Csum(SΛ)

)
,

where K is the constant from (4.33). In particular, for each t ≥ 0, Pt maps
Csum(SΛ) into itself.

Proof Fix i ∈ Λ. For each j ∈ Λ, define ϕj ∈ C(SΛ, S) by ϕj(x) := x(j)

(x ∈ SΛ), and let (Φ
t,ϕj
s )s∈(−∞,t] denote the backward in time process started

at time t ≥ 0 in the function ϕj. Then for each x, y ∈ SΛ such that x(k) =
y(k) for all k ̸= i, we can estimate using (4.32) and (4.30)

|Ptf(x)− Ptf(y)| =
∣∣E[f(X0,t(x))]− E[f(X0,t(y))]

∣∣
≤ E

[
|f(X0,t(x))− f(X0,t(y))|

]
≤ E

[∑
j:X0,t(x)(j) ̸=X0,t(y)(j)

δf(j)
]

=
∑
j

P
[
X0,t(x)(j) ̸= X0,t(y)(j)

]
δf(j)

=
∑
j

P
[
Φ
t,ϕj
0 (x) ̸= Φ

t,ϕj
0 (y)

]
δf(j)

≤
∑
j

P
[
i ∈ R(Φ

t,ϕj
0 )

]
δf(j).

By formula (4.18) of Proposition 4.15, it follows that∑
i

δPtf(i) ≤
∑
ij

P
[
i ∈ R(Φ

t,ϕj
0 )

]
δf(j)

=
∑
j

E
[
|R(Φ

t,ϕj
0 )|

]
δf(j) ≤ eKt

∑
j

δf(j).

Proof of Theorem 4.24 Let H be the full generator of (Pt)t≥0 and let D(H)
denote it domain. Then Lemma 4.25 shows that Cfin ⊂ D(H) and Gf = Hf
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for all f ∈ Cfin. By Lemma 4.26, it follows that Csum ⊂ D(H) and Gf = Hf
for all f ∈ Csum. To complete the proof, it suffices to show that Cfin, and
hence also the larger Csum, is a core for H.

We first prove that Csum is a core for H. We will apply Lemma 4.7. We
will show that for each r > K, where K is the constant from (4.33), and
for each f ∈ Csum(SΛ), there exists a pr ∈ Csum(SΛ) that solves the Laplace
equation (r −G)pr = f . Since Csum(SΛ) is dense in C(SΛ) by Exercise 4.22,
the claim then follows from Lemma 4.7 (ii).

Fix r > K and f ∈ Csum(SΛ). We need to find a pr ∈ Csum(SΛ) that solves
the Laplace equation (r − G)pr = f . In the light of Lemma 4.5 a natural
candidate for such a function is

pr :=

∫ ∞

0

e−rtPtf dt

and we will show that this pr indeed satisfies pr ∈ Csum(SΛ) and (r−G)pr = f .
It follows from Theorem 4.8 that pr ∈ D(H) and (r − H)pr = f . Thus, it
suffices to show that pr ∈ Csum. To see this, note that if x(j) = y(j) for all
j ̸= i, then

|pr(x)− pr(y)| =
∣∣∣ ∫ ∞

0

e−rtPtf(x) dt−
∫ ∞

0

e−rtPtf(y)dt
∣∣∣

≤
∫ ∞

0

e−rt
∣∣Ptf(x)− Ptf(y)

∣∣ dt ≤ ∫ ∞

0

e−rtδPtf(i) dt,

and therefore, by Lemma 4.27,∑
i

δp(i) ≤
∫ ∞

0

e−rt
∑
i

δPtf(i) dt ≤
(∑

i

δf(i)
) ∫ ∞

0

e−rteKt dt <∞,

which proves that pr ∈ Csum. This completes the proof that Csum is a core
for H, i.e., the closure of G|Csum is H. By Lemma 4.26, the closure of G|Cfin
contains G|Csum , so we see that Cfin is also a core for H.

We conclude this section with the following lemma, that is sometimes
useful.

Lemma 4.28 (Differentiation of semigroup) Assume that the rates
(rm)m∈G satisfy (4.11), let (Pt)t≥0 be the Feller semigroup defined in (4.14)
and let G be the linear operator with domain D(G) := Csum(SΛ) defined by
(4.1). Then, for each f ∈ Csum(SΛ), t 7→ Ptf is a continuously differentiable
function from [0,∞) to C(SΛ) satisfying P0f = f , Ptf ∈ Csum(SΛ), and
∂
∂t
Ptf = GPtf for each t ≥ 0.

Proof This is a direct consequence of Proposition 4.4, Lemma 4.27, and
Theorem 4.24. A direct proof based on our definition of (Pt)t≥0 (not using
Hille-Yosida theory) is also possible, but quite long and technical.
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Some bibliographical remarks

In 1972, several authors published results of various degree of generality
showing that interacting particle systems on infinite lattices are well-defined.
Harris [Har72] used the Poisson approach. His result applies only to nearest-
neighbor interactions on Zd. Instead of using the backward in time process
he argued forwards in time, using percolation theory to show that if t is
small enough, then the lattice can randomly be divided into finite pieces
that mutually do not interact with each other during the time interval (0, t].

Liggett [Lig72], on the other hand, gave a direct proof that the closure of
G generates a Feller semigroup (Pt)t≥0, and then invoked the abstract result
Theorem 4.1 about Feller processes to prove the existence of a correspond-
ing Markov process with cadlag sample paths. This result is more widely
applicable than Harris’ result and made it to Liggett’s famous book [Lig85,
Theorem I.3.9]. This is similar to our Theorem 4.24 but there are also some
differences. Liggett does not write his generators in terms of local maps, but
in terms of local probability kernels. This way of writing the generator is
more general and sometimes (for example, for stochastic Ising models) more
natural than our approach using local maps. It is worth noting that Liggett’s
construction, like ours, depends on a clever way of writing the generator that
is in general not unique.

Liggett’s book [Lig85] does not treat graphical representations in the
generality of our Theorem 4.13 but he does use explicit Poisson constructions
for some specific systems, such as the contact process. He does not actually
prove that these Poisson constructions yield the same process as the generator
construction, but apparently finds this self-evident. (Equivalence of the two
constructions follows from our Theorem 4.24 but alternatively can also be
proved by approximation with finite systems, using approximation results
such as [Lig85, Cor. I.3.14].)

Liggett’s [Lig85, Theorem I.3.9] allows for the case that the local state
space S is a (not necessarily finite) compact metrizable space. This is occa-
sionally convenient. For example, this allows one to construct voter models
with infinitely many types, where at time zero, the types (X0(i))i∈Λ are i.i.d.
and uniformly distributed on S = [0, 1]. For simplicity, we have restricted
ourselves to finite local state spaces.

The backward in time process of Proposition 4.15 will come back in Chap-
ter 6 when we discuss duality of interacting particle systems. It is also inter-
esting to look at the mean-field limit of this process. One can show that in
the mean-field limit, the process(

R(Φu,ϕ
u−t)

)
t≥0
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behaves as a branching process. As a result, solutions to the mean-field equa-
tion can be represented in terms of a stochastic process on the genealogical
tree of a branching process. This is explained in [MSS20].

4.5 Ergodicity

The proof of Theorems 4.13 and 4.24 were quite long. Luckily, they yield
more information than just the fact that the interacting particle systems we
are interested in are well-defined. The basic phenomenon that motivates
the study of interacting particle systems is collective behavior. The general
picture is that for weak strengths of the interaction, different parts of space
behave essentially independently, but for sufficiently strong interaction it may
happen that all sites start to coordinate their behavior, giving rise to multiple
invariant laws or even more exotic phenomena such as periodic behavior.

As a result of the methods of the previous sections, we will be able to
prove results that confirm the “easy” part of this picture, namely the absence
of collective behavior for weak strengths of the interaction.

If X is a Markov process with state space E and transition probabilities
(Pt)t≥0, then by definition, an invariant law of X is a probability measure ν
on E such that

νPt = ν (t ≥ 0).

This says that if we start the process in the initial law P[X0 ∈ · ] = ν,
then P[Xt ∈ · ] = ν for all t ≥ 0. As a consequence, one can construct a
stationary11 process (Xt)t∈R such that (compare (4.2))

P
[
Xu ∈ ·

∣∣ (Xs)−∞<s≤t
]
= Pu−t(Xt, · ) a.s. (t ≤ u), (4.35)

and P[Xt ∈ · ] = ν for all t ∈ R. Conversely, the existence of such a stationary
Markov process implies that the law at any time ν := P[Xt ∈ · ] must be
an invariant law. For this reason, invariant laws are sometimes also called
stationary laws.

Theorem 4.29 (Ergodicity) Let X be an interacting particle system with
state space of the form SΛ and generator G of the form (4.1), and assume
that the rates (rm)m∈G satisfy (4.11). Let T be a finite set with at least two
elements.

(a) Assume that the constant K from (4.33) satisfies K < 0. Then the
backward in time process satisfies

lim
t→−∞

|R(Φu,ϕ
t )| = 0 a.s.

(
u ∈ R, ϕ ∈ C(SΛ, T )

)
. (4.36)

11Recall that a process (Xt)t∈R is stationary if for each s ∈ R, it is equal in distribution
to (X ′

t)t∈R defined as X ′
t := Xt−s (t ∈ R).
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(b) Assume that the backward in time process satisfies (4.36). Then the
interacting particle system X has a unique invariant law ν, and

Px
[
Xt ∈ ·

]
=⇒
t→∞

ν (x ∈ SΛ). (4.37)

Moreover, there exists a unique cadlag process (Xt)t∈R such that

Xt = mω
t (Xt−) (t ∈ R), (4.38)

and (Xt)t∈R is distributed as the stationary Markov process corresponding to
the invariant law ν.

Proof Part (a) is immediate from formula (4.18) of Proposition 4.15. Let
Ψi denote the set of functions ϕ : SΛ → T that depend only on x(i). Note
that this set is finite. By (4.30) and the assumption that T has at least two
elements

R
(
Xs,t[i]

)
⊂

⋃
ϕ∈Ψi

R
(
Φt,ϕ
s

)
(s ≤ t, i ∈ Λ),

so (4.36) implies that

lim
s→−∞

∣∣R(Xs,t[i])
∣∣ = 0 a.s.

(
t ∈ R, i ∈ Λ

)
. (4.39)

It follows from the definition of (Xs,t)s≤t in (4.12) that the function t 7→ Xs,t[i]
jumps only at times for which there exists a (m, t) ∈ ω such that i ∈ D(m).
Sinc this set is locally finite by (4.11), we can replace the order of the “almost
sure” and “for all t” statements, i.e., (4.39) holds almost surely for all t
simultaneously. Formula (4.39) says that for small enough s, the function
Xs,t[i] is constant, which implies that for each z ∈ SΛ the a.s. limit

Xt(i) := lim
s→−∞

Xs,t(z)(i) (i ∈ Λ, t ∈ R) (4.40)

exists and does not depend on the choice of the configuration z ∈ SΛ. Us-
ing the continuity of Xs,u (which is proved in Theorem 4.13) and the flow
property, we see that a.s.

Xt,u(Xt) = lim
s→−∞

Xt,u ◦Xs,t(z) = Xu (t ≤ u),

which implies that (Xt)t∈R solves (4.38). If (X ′
t)t∈R is another solution, then

for all s small enough so that R(Xs,t[i]) = ∅,

X ′
t(i) = Xs,t(X

′
s)(i) = Xs,t(z)(i) = Xt(i),

which shows that solutions to (4.38) are unique.
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We claim that X = (Xt)t∈R is Markov with respect to the transition
probabilities (Pt)t≥0 in the sense of (4.35). Indeed, for almost every trajectory
(xs)−∞<s≤t with respect to the law of (Xs)−∞<s≤t, we have

P
[
Xu ∈ ·

∣∣ (Xs)−∞<s≤t = (xs)−∞<s≤t
]

= P
[

lim
s→−∞

Xt,u ◦Xs,t(z) ∈ ·
∣∣ (Xs)−∞<s≤t = (xs)−∞<s≤t

]
1
= P

[
Xt,u(Xt) ∈ ·

∣∣ (Xs)−∞<s≤t = (xs)−∞<s≤t
]

= P
[
Xt,u(xt) ∈ ·

∣∣ (Xs)−∞<s≤t = (xs)−∞<s≤t
]

2
= P

[
Xt,u(xt) ∈ ·

]
= Pu−t(xt, · ),

where in step 1 we have used the continuity of the map Xt,u and in step 2 we
have used that the random variables Xt,u and (Xs)−∞<s≤t are independent,
since they are functions of the restriction of the Poisson set ω to the disjoint
sets G × (t, u] and G × (−∞, t], respectively. By stationarity,

ν := P
[
Xt ∈ · ] (t ∈ R)

does not depend on t ∈ R, and since X is Markov this defines an invariant
law ν. Since

Px
[
Xt ∈ ·

]
= P

[
X−t,0(x) ∈ ·

]
and since by (4.40), we have

X−t,0(x) −→
t→∞

X0 a.s. (x ∈ SΛ)

with respect to the topology of pointwise convergence, we conclude that
(4.37) holds.

We note that (4.37) says that if we start the process in an arbitrary initial
state x, then the law at time t converges weakly12 as t→ ∞ to the invariant
law ν. This property is often described by saying that the interacting particle
system is ergodic. Indeed, this implies that the corresponding stationary
process (Xt)t∈R is ergodic in the usual sense of that word, i.e., the σ-field of
events that are invariant under translations in time is trivial. The converse
conclusion cannot be drawn, however, so the traditional way of describing
(4.37) as “ergodicity” is a bit of a bad habit.

We have split Theorem 4.29 into a part (a) and (b) since the condition
(4.36) is sometimes satisfied even when the constantK from (4.33) is positive.
Indeed, we will later see that for the contact process, the condition (4.36)

12Here weak convergence is of course w.r.t. our topology on SΛ, i.e., w.r.t. the product
topology.
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is sharp but the condition K < 0 is not. In Exercise 5.12 below, we will
calculate the constant K for the contact process and deduce that this process
is ergodic for small values of the infection rate.

Theorem 4.29 is similar, but not identical to [Lig85, Thm I.4.1]. For
Theorem 4.29 (a) and (b) to be applicable, one needs to be able to express
the generator in terms of local maps such that the constant K from (4.33)
is negative. For [Lig85, Thm I.4.1], one needs to express the generator in
a convenient way in terms of local transition kernels. For certain problems,
the latter approach is more natural and [Lig85, Thm I.4.1] yields sharper
estimates for the regime where ergodicity holds.

4.6 Application to the Ising model

The Ising model with Glauber dynamics has been introduced in Section 1.4.
So far, we have not shown how to represent the generator of this interacting
particle system in terms of local maps. In the present section, we will fill
this gap. As an application of the theory developed so far, we will then show
that the Ising model with Glauber dynamics is well-defined for all values of
its parameter, and ergodic for β sufficiently small. Our construction will also
prepare for the next chapter, where we discuss monotone interacting particle
systems, by showing that the Ising model with Glauber dynamics can be
represented in monotone maps.

We recall from Section 1.4 that the Ising model with Glauber dynamics on
a graph (Λ, E) is the interacting particle system with state space {−1,+1}Λ
and dynamics such that

site i flips to the value σ with rate rσi (x) :=
eβNx,i(σ)

eβNx,i(+1) + eβNx,i(−1)
,

where
Nx,i(σ) :=

∑
j∈Ni

1{x(j) = σ}
(
σ ∈ {−1,+1}

)
denotes the number of neighbors of i that have the spin value σ. For each
i ∈ Λ, let Kβ

i denote the local probability kernel on {−1,+1}Λ defined as

Kβ
i (x, y) :=

{
rσi (x) if y = mσ

i (x)
(
σ ∈ {−1,+1}

)
,

0 otherwise,

where mσ
i (x) is defined in (1.14). Then the generator (1.13) of the Ising

model takes the form

GIsingf =
∑
i∈Λ

{
Kβ
i f − f

}
, (4.41)
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which is an expression of the form (2.6) but not a random mapping repre-
sentation of the form (4.1). To find a random mapping representation for
GIsing in terms of local maps as in (4.1), it suffices to find a random mapping

representation for the kernels Kβ
i . This needs some preparations. Let

Mx,i := Nx,i(+)−Nx,i(−) =
∑
j∈Ni

x(j)

denote the local magnetization in the neighborhood Ni of i. Since Nx,i(+) +
Nx,i(−) = |Ni|, we can rewrite the rate of flipping to the spin value +1 as

r+i (x) =
eβNx,i(+1)

eβNx,i(+1) + eβNx,i(−1)
=

eβ(|Ni|+Mx,i)/2

eβ(|Ni|+Mx,i)/2 + eβ(|Ni|−Mx,i)/2

=
e

1
2
βMx,i

e
1
2
βMx,i + e−

1
2
βMx,i

= 1
2

(
1 +

e
1
2
βMx,i − e−

1
2
βMx,i

e
1
2
βMx,i + e−

1
2
βMx,i

)
= 1

2

(
1 + tanh(1

2
βMx,i)

)
.

Similarly, the rate of flipping to −1 is r−i (x) =
1
2
(1− tanh(1

2
βMx,i)).

For (mainly notational) simplicity, let us assume that each site i has
the same number of neighbors in the graph (Λ, E), so that the size of the
neighborhood

N := |Ni| (i ∈ Λ)

does not depend on i ∈ Λ. Then Mx,i takes values in {−N,−N + 2, . . . , N}.
We observe that the function z 7→ 1

2
(1 + tanh(1

2
βz)) is increasing (see Fig-

ure 4.2). Inspired by this, for L = −N,−N +2, . . . , N , we define local maps
m±
i,L by

m+
i,L(x)(j) :=

{
+1 if j = i and Mx,i ≥ L,

x(j) otherwise.

m−
i,L(x)(j) :=

{
−1 if j = i and Mx,i ≤ L,

x(j) otherwise,

(4.42)

and we try a generator of the form

GIsingf(x) =
∑
i∈Λ

∑
σ∈{−,+}

∑
L∈{−N,−N+2,...,N}

rσi,L
{
f
(
mσ
i,L(x)

)
− f

(
x
)}
, (4.43)

where rσi,L ≥ 0 are probabilities that need to be chosen in such a way that

Kβ
i (x, y) =

∑
σ∈{−,+}

∑
L∈{−N,−N+2,...,N}

rσi,L1{mσ
i,L(x) = y} (4.44)
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is a random mapping representation of the kernel Kβ
i . Let us fix x

−, x+ such
that x−(i) = −1, x+(i) = +1, and x−(j) = x+(j) for all j ̸= i. Setting
x = x− and y = x+ in (4.44) yields the equation

r+i (x) =

Mx,i∑
L=−N

r+i,L

Similarly, setting x = x+ and y = x− in (4.44) yields the equation

r−i (x) =
N∑

L=Mx,i

r−i,L.

From this, we see that setting

r+i,L :=

{
1
2

(
1 + tanh(−1

2
βN)

)
if L = −N,

1
2
tanh(1

2
βL)− 1

2
tanh(1

2
β(L− 2)) otherwise,

r−i,L :=

{
1
2

(
1− tanh(1

2
βN)

)
if L = N,

1
2
tanh(1

2
βL)− 1

2
tanh(1

2
β(L+ 2)) otherwise,

(4.45)

has the effect that the generator in (4.43) equals the one in (4.41).

Mx,i

1
2

(
1 + tanh(1

2
βMx,i)

)

r+i,−6

r+i,0

-6 -4 -2 0 2 4 6

Figure 4.2: Definition of the rates r+i,L from (4.45). In this example N = 6
and β = 0.4.
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Theorem 4.30 (Existence and ergodicity of the Ising model) Con-
sider an Ising model with Glauber dynamics on a countable graph Λ in which
each lattice point i has exactly |Ni| = N neighbors, i.e., the Markov process
X with state space {−1,+1}Λ and generator GIsing given by (4.41). Then,
for each β ≥ 0, the closure of GIsing generates a Feller semigroup. Moreover,
for each β such that

eβN <
N

N − 1
, (4.46)

the Markov process with generator GIsing has a unique invariant law ν, and
the process started in an arbitrary initial state x satisfies

Px
[
Xt ∈ ·

]
=⇒
t→∞

ν
(
x ∈ {−1,+1}Λ

)
.

Proof We use the representation (4.43). We observe that

D(m±
i,L) = {i}

is the set of lattice points whose spin value can be changed by the map m±
i,L.

The set of lattice points that are m±
i,L-relevant for i is given by

R(mσ
i,L[i]) =

{
∅ if σ = +, L = −N or σ = −, L = N,

Ni otherwise.

Here we have used that −N ≤ Mx,i ≤ N holds always, so m+
−N(x)(i) = +1

and m−
N(x)(i) = −1 regardless of what x is. On the other hand, in all other

cases, the value of each lattice point j ∈ Ni can potentially make a difference
for the outcome m±

i,L(x)(i).
By Theorem 4.24, to conclude that the closure of GIsing generates a Feller

semigroup, it suffices to check (4.11), which in our case says that

sup
i∈Λ

∑
σ∈{−,+}

∑
L∈{−N,−N+2,...,N}

rσi,L
(
1 + |R(mσ

i,L[i])|
)

should be finite. Since
∑

L r
σ
i,L ≤ 1

2
(1 + tanh(1

2
βN)) ≤ 1 and |R(mσ

i,L[i])| ≤
|Ni| = N , this expression is ≤ 2(N + 1) <∞ regardless of the value of β.

To prove ergodicity for β small enough, we apply Theorem 4.29. We
calculate the constant K from (4.33). By the symmetry between minus and
plus spins,

K =2
∑

L∈{−N,−N+2,...,N}

r+i,L
(
|R(m+

i,L[i])| − 1
)

=−2r+i,−N + 2
∑

L∈{−N+2,...,N}

r+i,L
(
N − 1

)
=−

(
1 + tanh(−1

2
βN)

)
+
(
tanh(1

2
βN)− tanh(−1

2
βN)

)(
N − 1

)
,
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which is negative if and only if

1 + tanh(−1
2
βN) >

(
tanh(1

2
βN)− tanh(−1

2
βN)

)(
N − 1

)
⇔ 1 +

e−
1
2
βN − e

1
2
βN

e
1
2
βN + e−

1
2
βN

>
(e12βN − e−

1
2
βN

e
1
2
βN + e−

1
2
βN

− e−
1
2
βN − e

1
2
βN

e
1
2
βN + e−

1
2
βN

)(
N − 1

)
⇔ 2e−

1
2
βN > 2

(
e
1
2
βN − e−

1
2
βN

)(
N − 1

)
⇔ e−

1
2
βN

e
1
2
βN − e−

1
2
βN

> N − 1 ⇔ 1

eβN − 1
> N − 1

⇔ eβN − 1 <
1

N − 1
⇔ eβN <

N

N − 1
,

which is condition (4.46).

4.7 Further results

In the present section we collect a number of technical results of a general
nature that will be needed in later chapters. On a first reading, readers are
adviced to skip the present section and refer back to specific results when the
need arises. The only result of the present section that is perhaps of some
intrinsic value is Theorem 4.35 which together with Corollary 4.36 below
implies that the transition probabilities of interacting particle systems on
infinite lattices can be approximated by those on finite lattices, something
that we have been using implicitly when doing simulations.

Let E be a compact metrizable space. By definition, a collection of func-
tions H ⊂ C(E) is distribution determining if

µf = νf ∀f ∈ H implies µ = ν.

We say thatH separates points if for all x, y ∈ E such that x ̸= y, there exists
an f ∈ H such that f(x) ̸= f(y). We say that H is closed under products if
f, g ∈ H implies fg ∈ H.

Lemma 4.31 (Application of Stone-Weierstrass) Let E be a compact
metrizable space. Assume that H ⊂ C(E) separates points and is closed under
products. Then H is distribution determining.

Proof If µf = νf for all f ∈ H, then we can add the constant function 1 to
H and retain this property. In a next step, we can add all linear combinations
of functions in H to the set H; by the linearity of the integral, it will then
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still be true that µf = νf for all f ∈ H. But now H is an algebra that
separates points and vanishes nowhere, so by the Stone-Weierstrass theorem,
H is dense in C(E). If fn ∈ H, f ∈ C(E), and ∥fn−f∥∞ → 0, then µfn → µf
and likewise for ν, so we conclude that µf = νf for all f ∈ C(E). If A ⊂ E
is a closed set, then the function f(x) := d(x,A) is continuous, where d is
a metric generating the topology on E and d(x,A) := infy∈A d(x, y) denotes
the distance of x to A. Now the functions fn := 1 ∧ nf are also continuous
and fn ↑ 1Ac , so by the continuity of the integral with respect to increasing
sequences we see that µ(O) = ν(O) for every open set O ⊂ E. Since the
open sets are closed under intersections, it follows that µ(A) = ν(A) for every
element A of the σ-algebra generated by the open sets, i.e., the Borel-σ-field
B(E).

Lemma 4.32 (Weak convergence) Let E be a compact metrizable space.
Assume that µn ∈ M1(E) have the property that limn→∞ µnf exists for all
f ∈ H, where H ⊂ C(E) is distribution determining. Then there exists a
µ ∈ M1(E) such that µn ⇒ µ.

Proof By Prohorov’s theorem, the space M1(E), equipped with the topol-
ogy of weak convergence, is compact. Therefore, to prove the statement, it
suffices to show that the sequence µn has not more than one cluster point,
i.e., it suffices to show that if µ, µ′ are subsequential limits, then µ′ = µ.
Clearly, µ, µ′ must satisfy µ′f = µf for all f ∈ H, so the claim follows from
the assumption that H is distribution determining.

Lemma 4.33 (Continuous probability kernels) Let E be a compact
metrizable space and let K be a continuous probability kernel on E. Then,
for any µn, µ ∈ M1(E) and fn, f ∈ C(E),

µn =⇒
n→∞

µ implies µnK =⇒
n→∞

µK

and ∥fn − f∥∞ −→
n→∞

0 implies ∥Kfn −Kf∥∞ −→
n→∞

0.

Proof Since K is a continuous probability kernel, its associated operator
maps the space C(E) into itself, so µn ⇒ µ implies that µn(Kf) ⇒ µ(Kf)
for all f ∈ C(E), or equivalently (µnK)f ⇒ (µK)f for all f ∈ C(E), i.e., the
measures µnK converge weakly to µK.

The second statement follows from the linearity and monotonicity of K
and the fact that K1 = 1, which together imply that ∥Kfn − Kf∥∞ ≤
∥fn − f∥∞.



4.7. FURTHER RESULTS 123

Lemma 4.34 (Long-time limits) Let E be a compact metrizable space
and let (Pt)t≥0 be the transition probabilities of a Feller process in E. Let
µ ∈ M1(E) and assume that

µPt =⇒
t→∞

ν

for some ν ∈ M1(E). Then ν is an invariant law of the Feller process with
transition probabilities (Pt)t≥0.

Proof Using Lemma 4.33, this follows by writing

νPt = ( lim
s→∞

µPs)Pt = lim
s→∞

µPsPt = lim
s→∞

µPs+t = ν.

The following theorem follows from [Kal97, Thm 17.25], where it is more-
over shown that the condition (4.47) implies convergence in distribution of
the associated Feller processes, viewed as random variables taking values in
the space DE[0,∞) of cadlag paths with values in E. Note that in (4.47)
below, → (of course) means convergence in the topology we have defined on
C(E), i.e., convergence w.r.t. the supremumnorm.

Theorem 4.35 (Limits of semigroups) Let E be a compact metrizable
space and let Gn, G be generators of Feller processes in E. Assume that there
exists a linear operator A on C(E) such that A = G and

∀f ∈ D(A) ∃fn ∈ D(Gn) such that fn → f and Gnfn → Af. (4.47)

Then the Feller semigroups (P n
t )t≥0 and (Pt)t≥0 with generators Gn and G,

respectively, satisfy

sup
t∈[0,T ]

∥P n
t f − Ptf∥∞ −→

n→∞
0

(
f ∈ C(E), T <∞

)
.

Moreover, if µn, µ ∈ M1(E), then

µn =⇒
n→∞

µ implies µnP
n
t =⇒
n→∞

µPt (t ≥ 0).

We note that in the case of interacting particle systems, Theorem 4.24
implies the following.

Corollary 4.36 (Convergence of particle systems) Let S be a finite
set and let Λ be countable. Let Gn, G be generators of interacting particle
systems in SΛ and assume that Gn, G can be written in the form (4.1) with
rates satisfying (4.11). Assume moreover that

∥Gnf −Gf∥∞ −→
n→∞

0
(
f ∈ Cfin(SΛ)

)
.

Then the generators Gn, G satisfy (4.47).
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Theorem 4.35 has the following useful consequence.

Proposition 4.37 (Limits of invariant laws) Let E be a compact metriz-
able space and let Gn, G be generators of Feller processes in E satisfying
(4.47). Let νn, ν ∈ M1(E) and assume that for each n, the measure νn is an
invariant law of the Feller process with generator Gn. Then νn ⇒ ν implies
that ν is an invariant law of the Feller process with generator G.

Proof Using Theorem 4.35, this follows simply by observing that

νPt = lim
n→∞

νnP
n
t = lim

n→∞
νn = ν

for each t ≥ 0.



Chapter 5

Monotonicity

5.1 The stochastic order

We recall that if S and T are partially ordered sets, then a function f : S → T
is calledmonotone iff x ≤ y implies f(x) ≤ f(y). In particular, this definition
also applies to real-valued functions (where we equip R with the well-known
order). If the local state space S of an interacting particle system is partially
ordered, then we equip the product space with the product order

x ≤ y iff x(i) ≤ y(i) ∀i ∈ Λ.

Many well-known interacting particle systems use the local state space S =
{0, 1}, which is of course equipped with a natural order 0 ≤ 1. Often, it
is useful to prove comparison results, that say that two interacting particle
systems X and Y can be coupled in such a way that Xt ≤ Yt for all t ≥ 0.
Here X and Y may be different systems, started in the same initial state,
or also two copies of the same interacting particle system, started in initial
states such that X0 ≤ Y0.

The following theorem gives necessary and sufficient conditions for it to
be possible to couple two random variables X and Y such that X ≤ Y . A
coupling of two random variables X and Y , in the most general sense of the
word, is a way to construct X and Y together on one underlying probability
space (Ω,F ,P). More precisely, if X and Y are random variables defined
on different underlying probability spaces, then a coupling of X and Y is
a pair of random variables (X ′, Y ′) defined on one underlying probability
space (Ω,F ,P), such that X ′ is equally distributed with X and Y ′ is equally
distributed with Y . Equivalently, since the laws of X and Y are all we really
care about, we may say that a coupling of two probability laws µ, ν defined on
measurable spaces (E, E) and (F,F), respectively, is a probability measure

125
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ρ on the product space (E × F, E ⊗ F) such that the first marginal of ρ is µ
and its second marginal is ν.

Theorem 5.1 (Stochastic order) Let S be a finite partially ordered set,
let Λ be a countable set, and let µ, ν be probability laws on SΛ. Then the
following statements are equivalent:

(i)
∫
µ(dx)f(x) ≤

∫
ν(dx)f(x) ∀ monotone f ∈ C(SΛ),

(ii)
∫
µ(dx)f(x) ≤

∫
ν(dx)f(x) ∀ monotone f ∈ B(SΛ),

(iii) It is possible to couple random variables X, Y with laws
µ = P [X ∈ · ] and ν = P [Y ∈ · ] in such a way that X ≤ Y .

Proof The implication (iii)⇒(ii) is easy: if X and Y are coupled such that
X ≤ Y and f is monotone, then

E
[
f(Y )

]
− E

[
f(X)

]
= E

[
f(Y )− f(X)

]
≥ 0,

since f(Y )− f(X) ≥ 0 a.s. The implication (ii)⇒(i) is trivial.
For the nontrivial implication (i)⇒(iii) we refer to [Lig85, Theorem II.2.4].

For finite spaces, a nice intuitive proof based on the max flow min cut theorem
can be found in [Pre74]. The theorem holds for more general spaces than
spaces of the form SΛ. For example, it holds also for Rn; see [KKO77].

If two probability laws µ, ν satisfy the equivalent conditions of Theo-
rem 5.1, then we say that µ and ν are stochastically ordered and we write1

µ ≤ ν. Clearly µ ≤ ν ≤ ρ implies µ ≤ ρ. In light of this, the next lemma
shows that the stochastic order is a bona fide partial order on M1(S

Λ).

Lemma 5.2 (Monotone functions are distribution determining) Let
S be a finite partially ordered set and let Λ be countable. Then the set {f ∈
C(SΛ) : f is monotone} is distribution determining. In particular, µ ≤ ν
and µ ≥ ν imply µ = ν.

Proof Since the finite-dimensional distributions uniquely determine a prob-
ability measure on SΛ, it suffices to prove the statement for finite Λ. In view
of this, it suffices to show that if S is a finite partially ordered set, then the
space of all monotone functions f : S → R is distribution determining.

1This notation may look a bit confusing at first sight, since, if µ, ν are probability
measures on any measurable space (ω,F), then one might interpret µ ≤ ν in a pointwise
sense, i.e., in the sense that µ(A) ≤ ν(A) for all A ∈ F . In practice, this does not lead
to confusion, since pointwise inequality for probability measures is a very uninteresting
property. Indeed, it is easy to check that probability measures µ, ν satisfy µ ≤ ν in a
pointwise sense if and only if µ = ν.
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By definition, an increasing subset of S is a set A ⊂ S such that A ∋ x ≤ y
implies y ∈ A. If A is increasing, then its indicator function 1A is monotone,
so it suffices to show that {1A : A increasing} is distribution determining.
By Lemma 4.31, it suffices to show that this class separates points and is
closed under products.

If x ̸= y, then either x ̸∈ {z : z ≥ y} or y ̸∈ {z : z ≥ x}, so {1A :
A increasing} separates points. If A,B are increasing, then so is A ∩ B, so
by the fact that 1A1B = 1A∩B we see that {1A : A increasing} is closed under
products.

We continue to consider spaces of the form SΛ where S is a finite partially
ordered set and Λ is countable. In particular, since Λ can be a set with only
one element, this includes arbitrary finite partially ordered sets. By defini-
tion, a probability kernel K on SΛ is monotone if it satisfies the following
equivalent conditions. Note that in (i) below, ≤ denotes the stochastic order.
The equivalence of (i) and (ii) is a trivial consequence of Theorem 5.1.

(i) K(x, · ) ≤ K(y, · ) for all x ≤ y.

(ii) Kf is monotone whenever f ∈ C(SΛ) is monotone.

We note that if K is monotone, then

µ ≤ ν implies µK ≤ νK. (5.1)

Indeed, for each montone f ∈ B(SΛ), the function Kf is also monotone and
hence µ ≤ ν implies that µKf ≤ νKf .

Recall from (2.2) that a random mapping representation of a probability
kernel K is a random map M such that

K(x, · ) = P[M(x) ∈ · ] ∀x. (5.2)

We say thatK can be represented in the class of monotone maps, or thatK is
monotonically representable, if there exists a random monotone map M such
that (5.2) holds. In Chapter 4 we based our construction of an interacting
particle system on a random mapping representation of its generator G in
terms of local maps, of the form

Gf(x) =
∑
m∈G

rm
{
f
(
m(x)

)
− f

(
x
)}
, (5.3)

where the rates satisfy (4.11). If there exists such a random mapping repre-
sentation for which all local maps m ∈ G are monotone, then we say that G
is monotonically representable.
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Lemma 5.3 (Monotone representability) Each monotonically represent-
able probability kernel is monotone. If the generator of an interacting particle
system is monotonically representable, then, for each t ≥ 0, the transition
probability Pt is a monotonically representable probability kernel .

Proof If a probability kernel K can be written in the form (5.2) with M a
random monotone map, then for each x ≤ y, the random variablesM(x) and
M(y) are coupled such thatM(x) ≤M(y) a.s., so their laws are stochastically
ordered as K(x, · ) ≤ K(y, · ). Since this holds for all x ≤ y, the kernel K is
monotone.

Given a random mapping representation of the form (5.3) of the gener-
ator G of an interacting particle system, we can construct a stochastic flow
(Xs,t)s≤t as in Theorem 4.13 based on a graphical representation ω. If all
mapsm ∈ G are monotone, then for each finite ω′ ⊂ ω, the maps (Xω′

s,t)s≤t de-
fined in (4.22) are also monotone, since they are the concatenation of finitely
many maps from G. By (4.26), this implies that the maps (Xs,t)s≤t are also
monotone. It follows that

Pt(x, · ) = P
[
X0,t(x) ∈ ·

]
is a representation of Pt in terms of the random monotone map X0,t, so Pt
is monotonically representable.

We say that an interacting particle system is monotone if its transition
kernels are monotone probability kernels, and we say that it is monotoni-
cally representable if its generator is monotonically representable. Somewhat
surprisingly, it turns out that for probability kernels, “monotonically repre-
sentable” is a strictly stronger concept than being “monotone”. See [FM01]
for an example of a probability kernel on {0, 1}2 that is monotone but not
monotonically representable. Nevertheless, it turns out that (almost) all
monotone interacting particle systems that one encounters in practice are
also monotonically representable.

The following maps are examples of monotone maps:

• The voter map votij defined in (1.4).

• The branching map braij defined in (1.6).

• The death map deathi defined in (1.7).

• The coalescing random walk map rwij defined in (1.20).

• The exclusion map exclij defined in (1.23).
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• The cooperative branching map coopij defined in (1.25).

• The maps m±
i,L defined in (4.42).

As a result, the following interacting particle systems are monotonically rep-
resentable (and hence, in particular, monotone):

• The voter model with generator as in (1.5).

• The contact process with generator as in (1.8).

• The ferromagnetic Ising model with Glauber dynamics, since its gen-
erator can be written as in (4.43).

• The biased voter model with generator as in (1.17).

• Systems of coalescing random walks with generator as in (1.21).

• The exclusion process with generator as in (1.24).

• Systems with cooperative branching and coalescence as in Figure 1.11.

On the other hand, the following maps are not monotone:

• The annihilating random walk map annij defined in (1.22).

• The killing map killij defined in (1.26).

Examples of interacting particle systems that are not monotone2 are:

• The antiferromagnetic Ising model with Glauber dynamics.

• “Rebellious” voter models as in (1.18).

• Systems of annihilating random walks.

• The biased annihilating branching process of [Sud97, Sud99].

2Note that the fact that a given interacting particle system is represented in maps that
are not monotone does not prove that the system is not monotone. Indeed, it is conceivable
that the same system can also be monotonically represented.
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5.2 The upper and lower invariant laws

In the present section, we assume that the local state space is S = {0, 1},
which covers all examples of monotone interacting particle systems mentioned
in the previous section. We use the symbols 0 and 1 to denote the states
in SΛ that are identically 0 or 1, respectively. Below, δ0 denotes the delta
measure at the configuration that is identically 0, so δ0Pt denotes the law at
time t of the process started in X0(i) = 0 a.s. (i ∈ Λ).

Theorem 5.4 (Upper and lower invariant laws) Let X be an interacting
particle system with state space of the form {0, 1}Λ and transition probabilities
(Pt)t≥0. Assume that X is monotone. Then there exist invariant laws ν and
ν such that

δ0Pt =⇒
t→∞

ν and δ1Pt =⇒
t→∞

ν.

If ν is any other invariant law, then ν ≤ ν ≤ ν.

The invariant laws ν and ν from Theorem 5.4 are called lower and upper
invariant law, respectively. Before we give the proof of Theorem 5.4, we start
with two preparatory lemmas.

Lemma 5.5 (Equal mean) Let µ, ν be probability laws on {0, 1}S such that
µ ≤ ν and ∫

µ(dx)x(i) ≥
∫
ν(dx)x(i) (i ∈ Λ).

Then µ = ν.

Proof By Theorem 5.1, we can couple random variables with laws P[X ∈
· ] = µ and P[Y ∈ · ] = ν in such a way that X ≤ Y . Now E[X(i)] ≥ E[Y (i)]
implies E[Y (i) − X(i)] ≤ 0. Since Y (i) − X(i) ≥ 0 a.s., it follows that
X(i) = Y (i). In particular, if this holds for all i ∈ Λ, then µ = ν.

Lemma 5.6 (Monotone convergence of probability laws) Let (νn)n≥0

be a sequence of probability laws on {0, 1}Λ that are stochastically ordered as
νk ≤ νk+1 (k ≥ 0). Then there exists a probability law ν on {0, 1}Λ such that
νn ⇒ ν, i.e., the νn’s converge weakly to ν.

Proof Since νnf increases to a finite limit for each monotone f ∈ C({0, 1}Λ),
this is an immediate consequece of Lemmas 5.2 and 4.32.

Proof of Theorem 5.4 By symmetry, it suffices to prove the statement for
ν. Since 0 is the lowest possible state, for each t ≥ 0, we trivially have

δ0 ≤ δ0Pt
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By (5.1), this implies that

δ0Ps ≤ δ0PtPs = δ0Pt+s (s, t ≥ 0),

which shows that t 7→ δ0Pt is nondecreasing with respect to the stochastic
order. By Lemma 5.6, each monotone sequence of probability laws has a
weak limit, so there exists a probability law ν on {0, 1}Λ such that

δ0Pt =⇒
t→∞

ν.

It follows from Lemma 4.34 that ν is an invariant law.
To complete the proof of the theorem, we observe that if ν is any other

invariant law, then, by (5.1), for any monotone f ∈ C({0, 1}Λ),

δ0 ≤ ν ⇒ δ0Pt ≤ νPt = ν (t ≥ 0).

Letting t → ∞, if follows that νf ≤ νf for all monotone f ∈ C({0, 1}Λ),
which by Theorem 5.1 implies that ν ≤ ν.

Theorem 5.7 (Ergodicity of monotone systems) Let X be a mono-
tone interacting particle system with state space {0, 1}Λ and upper and lower
invariant laws ν and ν. If∫

ν(dx)x(i) =

∫
ν(dx)x(i) ∀i ∈ Λ, (5.4)

then X has a unique invariant law ν := ν = ν and is ergodic in the sense
that

Px
[
Xt ∈ ·

]
=⇒
t→∞

ν (x ∈ {0, 1}Λ).

On the other hand, if (5.4) does not hold, then X has at least two invariant
laws.

Proof By Lemma 5.5, (5.4) is equivalent to the condition that ν = ν. It is
clear that if ν ̸= ν, then X has at least two invariant laws and ergodicity
cannot hold. On the other hand, by Theorem 5.4, any invariant law ν satisfies
ν ≤ ν ≤ ν, so if ν = ν, then ν = ν = ν.

To complete the proof, we must show that ν = ν =: ν implies δxPt ⇒ ν
as t→ ∞ for all x ∈ {0, 1}Λ. Since

δ0Ptf ≤ δxPtf ≤ δ1Ptf

for all monotone f ∈ C({0, 1}Λ), we see that

νf ≤ lim inf
t→∞

Ptf ≤ lim sup
t→∞

Ptf ≤ νf
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The claim now follows from Lemmas 4.32 and 5.2.

To state the final result of this section, we need a bit of theory. We
observe that for any interacting particle system, the set I of all invariant
laws is a compact, convex subset of M1(S

Λ). Indeed, if µ and ν are invariant
laws and p ∈ [0, 1], then clearly(

pµ+ (1− p)ν
)
Pt = pµPt + (1− p)νPt = pµ+ (1− p)ν (t ≥ 0),

proving that pµ + (1 − p)ν is an invariant law. The fact that I is closed
follows from Proposition 4.37. Since M1(S

Λ) is compact, I is also compact.
By definition, an element ν ∈ I is called extremal if it cannot be written

as a nontrivial convex combination of other elements of I, i.e.,

ν = pν1 + (1− p)ν2 (0 < p < 1, ν1, ν2 ∈ I) implies ν1 = ν2 = ν.

We let

Ie := {ν ∈ I : ν is an extremal element of I}.

Since I is compact and convex, Choquet’s theorem implies that each invariant
law ν can be written as

ν =

∫
ρν(dµ)µ,

where ρν is a probability measure on Ie. In practice, it happens quite often3

that Ie is a finite set.4 In this case, Choquet’s theorem simply says that each
invariant law is a convex combination of the extremal invariant laws, i.e.,
each invariant law is of the form

ν =
∑
µ∈Ie

p(µ)µ,

where (p(µ))µ∈Ie are nonnegative constants, summing up to one. In view of
this, we are naturally interested in finding all extremal invariant laws of a
given interacting particle system.

Lemma 5.8 (The lower and upper invariant law are extremal) Let X
be a monotone interacting particle system with state space {0, 1}Λ and upper
and lower invariant laws ν and ν. Then ν and ν are extremal invariant laws
of X.

3The the voter model in dimensions d ≥ 3 is a counterexample. The Ising model in
dimensions d ≥ 3 is also a counterexample, although for the Ising model, it is still true that
ν and ν are the only extremal invariant measures that are moreover translation invariant.

4This may, however, be quite difficult to prove!
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Proof By symmetry, it suffices to prove the statement for ν. Imagine that

ν = pν1 + (1− p)ν2 for some 0 < p < 1, ν1, ν2 ∈ I.

By Theorem 5.4, for each monotone f ∈ B({0, 1}Λ), one has ν1f ≤ νf and
ν2f ≤ νf . Since

p(νf − ν1f) + (1− p)(νf − ν2f) = 0,

it follows that νf = ν1f = ν2f . Since this holds for each monotone f , we
conclude (by Lemma 5.2) that ν = ν1 = ν2.

Exercise 5.9 Let X be an interacting particle system with state space
{0, 1}Λ and generator G. Assume that G has a random mapping represen-
tation in terms of monotone maps and let (Xs,t)s≤t be the corresponding
stochastic flow as in Theorem 4.13. Show that the a.s. limits

X t := lim
s→−∞

Xs,t(0),

X t := lim
s→−∞

Xs,t(1)

}
(t ∈ R)

define stationary Markov processes (X t)t∈R and (X t)t∈R whose invariant laws

ν = P[X t ∈ · ] and ν = P[X t ∈ · ] (t ∈ R)

are the lower and upper invariant law of X, respectively. Show that (5.4)
implies that

lim
s→−∞

Xs,t(x) = X t = X t a.s. (x ∈ {0, 1}Λ, t ∈ R).

5.3 The contact process

We recall the definition of the contact process from (1.8). Since both the
branching and death map are monotone, this is a monotonically representable
interacting particle system, so by Theorem 5.4, it has a lower and upper
invariant law ν and ν. Since braij(0) = 0 and deathi(0) = 0 for each i, j ∈ Λ,
the all-zero configuration 0 is a trap for the contact process, so δ0Pt = δ0 for
all t ≥ 0 and hence

ν = δ0.

Therefore, by Theorem 5.7, the contact process is ergodic if and only if the
function

θ(λ) :=

∫
ν(dx)x(i) (i ∈ Zd) (5.5)
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satisfies θ(λ) = 0. Here λ denotes the infection rate and we stick to the
convention to take the recovery rate δ (1.8) equal to 1. We note that by
translation invariance, for the model on Zd (either nearest-neighbor or range
R), the density

∫
ν(dx)x(i) of the upper invariant law does not depend on

i ∈ Zd. For reasons that will become clear in the next chapter, θ(λ) is
actually the same as the survival probability started from a single occupied
site, i.e., this is the function in Figure 1.4.

By definition, we say that a probability law µ on {0, 1}Λ is nontrivial if

µ({0}) = 0,

i.e., if µ gives zero probability to the all-zero configuration.

Lemma 5.10 (Nontriviality of the upper invariant law) For the con-
tact process, if ν ̸= δ0, then ν is nontrivial.

Proof We can always write ν = (1 − p)δ0 + pµ where p ∈ [0, 1] and µ is a
nontrivial law. By assumption, ν ̸= δ0, so p > 0. Since ν and δ0 are invariant
laws, µ must be an invariant law too. By Lemma 5.8, ν cannot be written as
a nontrivial convex combination of other invariant laws, so we conclude that
p = 1.

Proposition 5.11 (Monotonicity in the infection rate) Let νλ denote
the upper invariant law of the contact process with infection rate λ. Then λ ≤
λ′ implies νλ ≤ νλ′. In particular, the function λ 7→ θ(λ) is nondecreasing.

Proof Let X and X ′ be contact processes started in the initial state X0 =
1 = X ′

0 and with infection rates λ and λ′. It suffices to prove that X and X ′

can be coupled such that Xt ≤ X ′
t for all t ≥ 0.

We use a Poisson construction, based on the random mapping represen-
tation (1.8). We write G = Gbra ∪ Gdeath where

Gbra := {braij : (i, j) ∈ Ed} and Gdeath := {deathi : i ∈ Zd}.

Then X can be constructed as in Theorem 4.13 from a Poisson point set ω
on

G × R = (Gbra ∪ Gdeath)× R,

with intensity measure ρλ given by

ρλ({m} × A) :=

{
λℓ(A) if m ∈ Gbra,

ℓ(A) if m ∈ Gdeath,

(
A ∈ B(R)

)
,
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where ℓ denotes the Lebesgue measure. Likewise, X ′ can be constructed from
a Poisson point set ω′ with intensity ρλ′ . We claim that we can couple ω and
ω′ in such a way that the latter has more branching incidents, and the same
death incidents as ω. This can be done as follows. Let ω′′ be a Poisson point
set on G × R, independent of ω, with intensity measure ρ′′ := ρλ′ − ρλ, i.e.,

ρ′′({m} × A) :=

{
(λ′ − λ)ℓ(A) if m ∈ Gbra,

0 if m ∈ Gdeath,

(
A ∈ B(R)

)
.

Since the sum of two independent Poisson sets yields another Poisson set,
setting

ω′ := ω + ω′′

defines a Poisson point set with intensity ρλ′ . We observe that

x ≤ x′ implies braij(x) ≤ braij(x
′),

x ≤ x′ implies deathi(x) ≤ deathi(x
′),

x ≤ x′ implies x ≤ braij(x
′).

The first two statements just say that the maps braij and deathi are mono-
tone. The third statement says that if we apply a branching map only to the
larger configuration x′, then the order between x and x′ is preserved.

Since ω′ has the same branching and death incidents as ω, plus some
extra branching incidents, using (4.26) we conclude that the stochastic flows
(Xs,t)s≤t and (X′

s,t)s≤t constructed from ω and ω′ satisfy

x ≤ x′ implies Xs,t(x) ≤ X′
s,t(x

′) (s ≤ t).

In particular, setting Xt := X0,t(1) and X ′
t := X′

0,t(1) yields the desired
coupling between X and X ′.

Exercise 5.12 Let X be a contact process on a graph Λ where each site i
has exactly |Ni| = N neighbors. Calculate the constant K from (4.33) and
apply Theorem 4.29 to conclude that

λN < 1 implies ν = δ0.

In Chapter 7, we will prove that θ(λ) > 0 for λ sufficienty large.
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5.4 Other examples

The Ising model with Glauber dynamics

We have seen in (4.43) that the generator of the Ising model with Glauber
dynamics is monotonicaly representable, so by Theorem 5.4,5 it has a lower
and upper invariant law ν and ν. We let

m∗(β) :=

∫
ν(dx)x(i),

which is independent of i if the processes has some translation invariant
structure (like the nearest neighbor or range R processes on Zd). For reasons
that cannot be explained here, this function is actually the same as the
one defined in (1.15), i.e., this is the spontaneous magnetization of the Ising
model, see Figure 1.6. By the symmetry between +1 and −1 spins, we clearly
have ∫

ν(dx)x(i) = −m∗(β).

By Theorem 4.30, we have

eβN <
N

N − 1
implies ν = ν,

from which we conclude that m∗(β) = 0 for β sufficiently small,
The function β 7→ m∗(β) is nondecreasing, but this cannot be proved

with the sort of techniques used in Proposition 5.11. The lower and upper
invariant laws of the Ising model with Glauber dynamics are infinite volume
Gibbs measures, and much of the analysis of the Ising model is based on this
fact. In fact, the Ising model with Glauber dynamics is just one example of
an interacting particle system that has these Gibbs measures as its invariant
laws. In general, interacting particle systems with this property are called
stochastic Ising models, and the Gibbs measures themselves are simply called
the Ising model. We refer to [Lig85, Chapter IV] for an exposition of this
material. In particular, in [Lig85, Thm IV.3.14], it is shown that for the
nearest-neighbor model on Z2, one has m∗(β) > 0 for β sufficiently large.

The voter model

Consider a voter model with local state space S = {0, 1}. Since the voter
maps votij from (1.4) are monotone, the voter model is monotonically rep-

5The difference between the local state space {−1, 1} of the Ising model and {0, 1} of
Theorem 5.4 is of course entirely notational.
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resentable. Since both the constant configurations 0 and 1 are traps,

ν = δ0 and ν = δ1,

so we conclude (recall Theorem 5.7) that the voter model is never ergodic.
For the model on Zd, it is proved in [Lig85, Thm V.1.8] that if d = 1, 2, then δ0
and δ1 are the only extremal invariant laws. On the other hand, in dimensions
d ≥ 3, the set Ie of extremal invariant laws is of the form {νp : p ∈ [0, 1]}
where the invariant measure νn has intensity

∫
νp(dx)x(i) = p. We will give

a partial proof of these statements in Chapter 6.

5.5 Exercises

Exercise 5.13 Give an example of two probability measures µ, ν on a set
of the form {0, 1}Λ that satisfy∫

µ(dx)x(i) ≤
∫
ν(dx)x(i) (i ∈ Λ),

but that are not stochastically ordered as µ ≤ ν.

Exercise 5.14 Let (Xλ
t )t≥0 denote the contact process with infection rate λ

(and death rate one), started in Xλ
0 = 1. Apply Corollary 4.36 to prove that

for each fixed t ≥ 0, the function

θt(λ) := P[Xλ
0,t(1)(i) = 1] (5.6)

depends continuously on λ. Use this to conclude that the function θ(λ) from
(5.5) is right-continuous. Hint: Use that the decreasing limit of continuous
functions is upper semi-continuous.

For the next exercise, let us define a double death map

deathijx(k) :=

{
0 if k ∈ {i, j},

x(k) otherwise.
(5.7)

Recall the branching map braij defined in (1.6), the death map deathi de-
fined in (1.7), and the cooperative branching map coopij defined in (1.25).

Consider the cooperative branching process X with values in {0, 1}Z with
generator

GXf(x)=λ
∑
i∈Z

∑
σ∈{−1,+1}

{
f
(
coopi,i+σ,i+2σx

)
− f

(
x
)}

+
∑
i∈Z

{
f
(
deathix

)
− f

(
x
)}
,
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and the contact process with double deaths Y with generator

GY f(y)=λ
∑
i∈Z

∑
σ∈{−1,+1}

{
f
(
brai,i+σy

)
− f

(
y
)}

+
∑
i∈Z

{
f
(
deathi,i+1y

)
− f

(
y
)}
,

Exercise 5.15 Let X be the process with cooperative branching defined above
and set

X
(2)
t (i) := 1{Xt(i)=1=Xt(i+1)} (i ∈ Z, t ≥ 0).

Show that X can be coupled to a contact process with double deaths Y (with
the same parameter λ) in such a way that

Y0 ≤ X
(2)
0 implies Yt ≤ X

(2)
t (t ≥ 0).

Exercise 5.16 Show that a system (Xt)t≥0 of annihilating random walks
can be coupled to a system (Yt)t≥0 of coalescing random walks such that

X0 ≤ Y0 implies Xt ≤ Yt (t ≥ 0).

Note that the annihilating random walks are not a monotone particle system.

Exercise 5.17 Let X be a system of branching and coalescing random walks
with generator

GXf(x)=
1
2
b
∑
i∈Z

∑
σ∈{−1,+1}

{
f
(
brai,i+σx

)
− f

(
x
)}

+1
2

∑
i∈Z

∑
σ∈{−1,+1}

{
f
(
rwi,i+σx

)
− f

(
x
)}
,

and let Y be a system of coalescing random walks with positive drift, with
generator

GY f(y)=
1
2
(1 + b)

∑
i∈Z

{
f
(
rwi,i+1y

)
− f

(
y
)}

+1
2

∑
i∈Z

{
f
(
rwi,i−1y

)
− f

(
y
)}
.

Show that X and Y can be coupled such that

Y0 ≤ X0 implies Yt ≤ Xt (t ≥ 0).

Exercise 5.18 Let d < d′ and identify Zd with the subset of Zd′ consisting
of all (i1, . . . , id′) with (id+1, . . . , id′) = (0, . . . , 0). Let X and X ′ denote the
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nearest-neighbor contact processes on Zd and Zd′, respectively, with the same
infection rate λ. Show that X and X ′ can be coupled such that

X0(i) ≤ X ′
0(i) (i ∈ Zd)

implies
Xt(i) ≤ X ′

t(i) (t ≥ 0, i ∈ Zd).

Prove the same when X is the nearest-neighbor process and X ′ is the range
R process (both on Zd).
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Chapter 6

Duality

6.1 Basic definitions

Let S be a finite set, let Λ be countable, let G be a collection of local maps
m : SΛ → SΛ, and let (rm)m∈G be nonnegative rates satusfying (4.11). Then
Theorem 4.13 tells us how the interacting particle system with generator G
defined in (4.1) can be constructed from a graphical representation ω, which
is a Poisson point set on G × R with intensity as in (4.8). More precisely,
in (4.12) or alternatively (and equivalently) in (4.26), we have seen how in
terms of ω it possible to define a stationary stochastic flow (Xs,t)s≤t with
independent increments, so that if s ∈ R and X0 is an SΛ-valued random
variable with law µ independent of ω, then setting

Xt := Xs,s+t(X0) (t ≥ 0) (6.1)

defines a Feller process (Xt)t≥0 whose generator is (the closure of) G defined
in (4.1). We call this the interacting particle system with generator G.

Key to the proof of Theorem 4.13 was the backward in time process. Let
T be a finite set and let C(SΛ, T ) be the space of continuous maps ϕ : SΛ → T .
We have seen in Lemma 2.18 that elements of C(SΛ, T ) are functions that
depend on finitely many coordinates. As a result, C(SΛ, T ) is countable.
By Proposition 4.15 and formula (4.30), for each u ∈ R and ϕ ∈ C(SΛ, T ),
setting

Φt := ϕ ◦Xu−t,u (t ≥ 0) (6.2)

defines a nonexplosive continuous-time Markov chain (Φt)t≥0 with state space
C(SΛ, T ) and generator as in (4.16). We call this the backward in time pro-
cess. Somewhat unusually, the process (Φt)t≥0 has left-continuous sample
paths. This is a result of the fact that in (4.22), we concatenate all maps

141



142 CHAPTER 6. DUALITY

m for which (m, t) ∈ ω′ with t ∈ (s, u]. We could alternatively have con-
catenated the maps with t ∈ [s, u). This would make the process in (6.2)
right-continuous, but the forward process in (6.1) left-continuous. We will
stick to the definitions we have and just accept the fact that (Φt)t≥0 is left-
continuous.

Clearly, a lot can be learned about the interacting particle system (Xt)t≥0

from a good understanding of the backward in time process (Φt)t≥0. It follows
from (6.1) and (6.2) that

ϕ(Xu−s) = ϕ ◦Xs,u(X0) = Φu−s(X0) (s ≤ u),

so Φu−s tells us how a local function ϕ of the process at time u− s depends
on the initial state X0. A lot of the most studied interacting particle systems
have the property that the backward in time process is particularly simple,
which allows for a good understanding of these interacting particle systems.
This idea can be formalized via the concept of duality, which we now explain.

Recall the definition of a stochastic flow in (2.18). We can similarly define
a backward stochastic flow on a set R to be a collection (Yt,s)t≥s of random
maps1 Yt,s : R → R such that

Ys,s = 1 and Yt,s ◦Yu,t = Ys,u (u ≥ t ≥ s).

Stationarity and independent increments are defined for backward stochas-
tic flows just as in the forward case. If (Yt,s)t≥s is a stationary backward
stochastic flow with independent increments, u ∈ R, and Y0 is an R-valued
random variable, independent of (Yt,s)t≥s, then setting

Yt := Yu,u−t(Y0) (t ≥ 0) (6.3)

defines a Markov process (Yt)t≥0 in R with initial state Y0.
Let S,R, and T be sets and let ψ : S × R → T be a function. Then we

say that two maps m : S → S and m̂ : R → R are dual to each other with
respect to the duality function ψ if

ψ
(
m(x), y

)
= ψ

(
x, m̂(y)

)
(x ∈ S, y ∈ R).

If (Xs,t)s≤t is a stochastic flow on S and (Yt,s)t≥s is a backward stochastic
flow on R, then we say that (Xs,t)s≤t and (Yt,s)t≥s are dual to each other
with respect to the duality function ψ if

ψ
(
Xs,t(x), y

)
= ψ

(
x,Yt,s(y)

)
(s ≤ t, x ∈ S, y ∈ R). (6.4)

1We are deliberately a bit vague here. If R is a finite set, then our definitions are
complete. More generally, R could be any measurable space in which case one would want
Ys,t to be jointly measurable both as a function of R and of the underlying probability
space. Usually, one also imposes some conditions on the way Yt,s depends on s and t,
such as right-continuity.
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Fix s < u and let (Xt)t≥0 be defined in terms of the stochastic flow (Xs,t)s≤t
as in (6.1) and let (Yt)t≥0 be defined in terms of the backward stochastic flow
(Yt,s)t≥s as in (6.3). Then we claim that

the function [s, u] ∋ t 7→ ψ(Xt−s, Yu−t) is constant. (6.5)

Indeed, the duality of (Xs,t)s≤t and (Yt,s)t≥s implies

ψ(Xt−s, Yu−t) = ψ
(
Xs,t(X0),Yu,t(Y0)

)
= ψ

(
Xt,u ◦Xs,t(X0), Y0

)
= ψ

(
Xs,u(X0), Y0

)
,

which clearly does not depend on t. A relation of the form (6.5) is called a
pathwise duality.2 In particular, setting t = s, u in (6.5) we see that

ψ(Xu, Y0) = ψ(X0, Yu).

In the special case that ψ takes values in a linear space such as R or C, we
can take expectations and conclude that

E
[
ψ(Xu, Y0)

]
= E

[
ψ(X0, Yu)

]
(u ≥ 0), (6.6)

whenever Xu is independent of Y0 and X0 is independent of Yu. A relation of
the form (6.6) is called a duality between the Markov processes (Xt)t≥0 and
(Yt)t≥0.

We claim that any interacting particle system of the type described at
the beginning of this section has a pathwise dual, which is the backward in
time process. To see this, we define a backward stochastic flow (Ft,s)t≥s on
C(SΛ, T ) by

Ft,s(ϕ) := ϕ ◦Xs,t

(
s ≤ t, ϕ ∈ C(SΛ, T )

)
, (6.7)

and we define a duality function ψ : SΛ × C(SΛ, T ) → T by

ψ(x, ϕ) := ϕ(x)
(
x ∈ SΛ, ϕ ∈ C(SΛ, T )

)
. (6.8)

Then it is straightforward to check that the stochastic flow (Xs,t)s≤t and the
backward stochastic flow (Ft,s)t≥s are dual with respect to the duality func-
tion ψ, and hence the interacting particle system (Xt)t≥0 and the backward
in time process (Φt)t≥0 are pathwise dual.

Although formally, we have now found a pathwise dual for each interact-
ing particle system, this dual is of little use in practice since the backward
in time process is in general very complicated and the space C(SΛ, T ) is very
large. As we will see in the coming sections, however, it sometimes happens
that C(SΛ, T ) contains subspaces of “nice” functions that are mapped into
themselves under the backward stochastic flow (Ft,s)t≥s, and this leads to
more useful pathwise dualities.

2This terminology was first introduced in [JK14b].
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6.2 Additive systems

Recall that if E is any topological space, then a function f : E → R is called
lower semi-continuous if one (and hence both) of the following equivalent
conditions are satisfied:

(i) lim inf
n→∞

f(xn) ≥ f(x) whenever xn → x,

(ii) the level set {x ∈ E : f(x) ≤ a} is closed for each a ∈ R.
Using (ii), it is easy to see that if a sequence fn of lower semi-continuous
functions has an increasing limit fn ↑ f , then f is lower semi-continuous. Let
Λ and ∆ be countable sets. We equip {0, 1}Λ and {0, 1}∆ with the product
topology and we let C = C({0, 1}Λ, {0, 1}∆) and L = L({0, 1}Λ, {0, 1}∆)
denote the spaces of functions m : {0, 1}Λ → {0, 1}∆ that are continuous and
lower semi-continuous, respectively. We set

Cmon :=
{
m ∈ C : m is monotone

}
,

Lmon :=
{
m ∈ L : m is monotone

}
.

We observe that

m ∈ Lmon and xn ↑ x imply m(xn) −→
n→∞

m(x). (6.9)

Indeed, lim supn→∞m(xn) ≤ m(x) by monotonicity while the reverse inequal-
ity follows from lower semi-continuity. By definition, a map m : {0, 1}Λ →
{0, 1}∆ is additive iff

(i) m(0) = 0,

(ii) m(x ∨ y) = m(x) ∨m(y)
(
x, y ∈ S(Λ)

)
.

Each additive map is monotone, as follows by observing that y ≥ x implies
that m(y) = m(x ∨ y) = m(x) ∨m(y) ≥ m(x). We set

Cadd :=
{
m ∈ C : m is additive

}
and Ladd :=

{
m ∈ L : m is additive

}
.

We observe that

m ∈ Ladd implies m
( ∞∨
k=1

xk

)
=

∞∨
k=1

m(xk), (6.10)

which follows from (6.9) by writing

m
( ∞∨
k=1

xk

)
= m

(
lim
n→∞

n∨
k=1

xk

)
= lim

n→∞
m
( n∨
k=1

xk

)
= lim

n→∞

n∨
k=1

m(xk) =
∞∨
k=1

m(xk).
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A lot of local maps we have already seen are additive. Examples are:

• The voter map votij defined in (1.4).

• The branching map braij defined in (1.6).

• The death map deathi defined in (1.7).

• The coalescing random walk map rwij defined in (1.20).

• The exclusion map exclij defined in (1.23).

On the other hand, the following local maps are monotone, but not additive:

• The cooperative branching map coopijk defined in (1.25).

• The maps m±
i,L used to construct the Ising model with Glauber dynam-

ics in (4.43).

An interacting particle system is called additive if its generator can be rep-
resented in additive local maps. Examples of additive particle systems are:

• The voter model with generator as in (1.5).

• The contact process with generator as in (1.8).

• The biased voter model with generator as in (1.17).

• Systems of coalescing random walks with generator as in (1.21).

• The exclusion process with generator as in (1.24).

Define ei ∈ S(Λ) by ei(j) := 1 if i = j and := 0 otherwise. By (6.10),
each m ∈ Ladd({0, 1}Λ, {0, 1}∆) satisfies

m(x) =
∨

i:x(i)=1

m(ei) =
∨
i∈Λ

x(i)m(ei)
(
x ∈ {0, 1}Λ

)
, (6.11)

and hence is uniquely characterized by its action on the “basis vectors” ei.

Lemma 6.1 (Matrix formulation) Let Λ and ∆ be countable sets and
let M : Λ × ∆ → {0, 1} be a function. Then there exists a unique m ∈
Ladd({0, 1}Λ, {0, 1}∆) such that m(ei)(j) = M(i, j) (i ∈ Λ, j ∈ ∆), which is
given by

m(x)(j) :=
∨
i∈Λ

x(i)M(i, j)
(
j ∈ ∆, x ∈ {0, 1}Λ

)
. (6.12)

This map m is continuous if and only if
∑

i∈ΛM(i, j) <∞ for all j ∈ ∆.
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Proof Given M , we define m by (6.12). It is easy to see that m is additive
and satisfies m(ei)(j) =M(i, j) (i ∈ Λ, j ∈ ∆). We need to prove that m is
lower semi-continuous, and continuous if and only if

∑
i∈ΛM(i, j) <∞ for all

j ∈ ∆. The latter claim follows from Lemma 2.18 and the observation that
m(x)(j) depends on finitely many coordinates if and only if

∑
i∈ΛM(i, j) <

∞. To see that m defined in (6.12) is in general lower semi-continuous, let
Λn be finite sets such that Λn ↑ Λ, define Mn(i, j) := M(i, j) if i ∈ Λn
and := 0 otherwise, and define mn as in (6.12) with M replaced by Mn.
Then the functions mn are continuous and increase to m, which implies
that m is lower semi-continuous. By (6.11), the function m in (6.12) is
the unique function in Ladd({0, 1}Λ, {0, 1}∆) such that m(ei)(j) = M(i, j)
(i ∈ Λ, j ∈ ∆), completing the proof.

We now specialize to the case Λ = ∆. There is a useful graphical way to
describe a lower semi-continuous additive map m : {0, 1}Λ → {0, 1}Λ, that
works as follows:

• For each i, j ∈ Λ with i ̸= j such that m(ei)(j) = 1, we draw an arrow
from i to j.

• For each i ∈ Λ such that m(ei)(i) = 0, we draw a blocking symbol
at i.

The following lemma says that additive local maps are fully described by
their arrows and blocking symbols.

Lemma 6.2 (Graphical description) If m ∈ Ladd({0, 1}Λ, {0, 1}Λ) and
x ∈ {0, 1}Λ, then m(x)(j) = 1 if and only if at least one of the following
conditions is satisfied:

(i) there is an i ∈ Λ such that x(i) = 1 and there is an arrow from i to j,

(ii) x(j) = 1 and there is no blocking symbol at j.

A mapm ∈ Ladd({0, 1}Λ, {0, 1}Λ) is local if and only if its description involves
only finitely many arrows and blocking symbols.

Proof The desciption of m in points (i) and (ii) is just a reformulation of
(6.11). A map m is local if and only it is continous and D(m) is finite. By
Lemma 6.1 m is continuous if and only if the number of incoming arrows at
each i ∈ Λ is finite, while D(m) is the set of all i ∈ Λ that are the endpoint
of an arrow or where there is a blocking symbol.

In terms of arrows and blocking symbols, the branching map braij, the
death map deathi, the voter map votij, the coalescing random walk map
rwij, and the exclusion map exclij look as follows:
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bra1,2 death1

vot1,2 rw1,2 excl1,2

We use our conventions of representing additive maps in terms of arrows
and blocking symbols to depict the graphical representation of an additive
interacting particle system in a more suggestive way. In Figure 4.1, we drew
the graphical representation of a contact process in the following fashion:

time

space Z

0 1 2 3 4 5 6 7 8 9

bra0,1

bra0,1

bra3,4
bra7,8

bra3,2

bra5,4

bra3,4
bra1,2

bra6,5

bra7,6

bra9,8

death2

death5

death7

With our new conventions, the same graphical representation looks as follows:
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time

space Z

0 1 2 3 4 5 6 7 8 9

It is easy to see that the concatenation of two additive maps is again
additive. As a result, using (4.26), we see that if (Xs,t)s≤t is the stochas-
tic flow associated with the graphical representation of an additive particle
system, then the functions Xs,t : {0, 1}Λ → {0, 1}Λ are additive maps. By
Theorem 4.13 they are also continuous. We claim that Xs,t(x)(j) = 1 if and
only if there is an i ∈ Λ with x(i) = 1 and it is possible to walk through the
graphical representation from the space-time point (i, s) to the space time
point (j, t) along a path that may use arrows, but must avoid the blocking
symbols. We now make this claim more precise.

For any i, j ∈ Λ and s < u, by definition, an open path from (i, s) to (j, u)
is a cadlag function γ : [s, u] → Λ such that γs = i, γu = j, and

(i) if γt− ̸= γt for some t ∈ (s, u], then there is an
arrow from (γt−, t) to (γt, t),

(ii) there exist no t ∈ (s, u] such that γt− = γt
while there is a blocking symbol at (γt, t).

(6.13)

We write (i, s)⇝ (j, u) if there exists an open path from (i, s) to (j, u). With
these definitions, we can make our earlier claim precise. We claim that:

Xs,t(x)(j) = 1 iff ∃i ∈ Λ s.t. x(i) = 1 and (i, s)⇝ (j, t). (6.14)

To prove (6.14), it suffices to observe that if we define Xt(j) := 1 iff the con-
dition on the right-hand side of (6.14) is satisfied, then the function (Xt)t≥s
solves the evolution equation (4.10). For example, for the graphical repre-
sentation of the contact process that we earlier used as an example, the time
evolution of the process Xt := X0,t(X0) (t ≥ 0) might look as follows:
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time

X0

Xt

0 0 0 1 0 0 1 0 0 0

0 0 1 1 1 0 1 0 0 0

6.3 Additive duality

There exists a useful duality theory for additive systems. We first formulate
the main results and then set out to prove them. Throughout this section,
we set

S(Λ) := {0, 1}Λ and Sfin(Λ) :=
{
x ∈ S(Λ) : |x| <∞

}
,

where in line with notation introduced in Section 2.8, we set

|x| :=
∑
i∈Λ

x(i)
(
x ∈ S(Λ)

)
.

We define a function ψadd : S(Λ)× S(Λ) → {0, 1} by

ψadd(x, y) := 1{x ∧ y ̸= 0}
(
x, y ∈ S(Λ)

)
, (6.15)

where x∧ y denotes the pointwise minimum of x and y and 0 denotes the all
zero configuration. With this notation, the main results of this section are
as follows.

Lemma 6.3 (Dual maps) Each lower semi-continuous additive map m :
S(Λ) → S(Λ) has a unique dual map m̂ with respect to the duality function
ψadd. The dual map m̂ : S(Λ) → S(Λ) is also a lower semi-continuous
additive map and given by

m̂(ej)(i) = m(ei)(j) (i, j ∈ Λ). (6.16)

If m is local, then so is m̂.
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Theorem 6.4 (Additive duality) Let G be the generator of an interacting
particle system (Xt)t≥0 with state space S(Λ). Assume that G has a random
mapping representation of the form (4.1) such that all local maps m ∈ G are
additive and the rates (rm)m∈G satisfy (4.11). Set Ĝ := {m̂ : m ∈ G} and
rm̂ := rm (m ∈ G). Then

Ĝ :=
∑
m̂∈Ĝ

rm̂
{
f
(
m̂(y)

)
− f

(
y
)} (

y ∈ Sfin(Λ)
)

(6.17)

is the generator of a nonexplosive continuous-time Markov chain (Yt)t≥0 with
state space Sfin(Λ). The Markov processes (Xt)t≥0 and (Yt)t≥0 are dual with
respect to the duality function ψadd, i.e.,

E
[
ψadd(Xt, Y0)

]
= E

[
ψadd(X0, Yt)

]
(t ≥ 0) (6.18)

whenever Xt is independent of Y0 and X0 is independent of Yt. If the dual
rates (rm̂)m̂∈Ĝ also satisfy (4.11) so that Ĝ defined as in (6.17) for all y ∈
S(Λ) generates an interacting particle system, then (6.18) remains true if
(Yt)t≥0 is this interacting particle system started in an arbitrary initial state
in S(Λ).

We observe that in terms of our graphical way of depicting additive maps,
formula (6.16) has the following interpretation:

m̂ is obtained from m by keeping the blocking symbols
and reversing the direction of all arrows.

(6.19)

In applications of Theorem 6.4 and in particular of the duality relation (6.18),
if is important to know that knowing E[ψadd(Xt, y)] for all y ∈ S(Λ) deter-
mines the law of Xt uniquely. This is guaranteed by the following lemma,
which shows that in fact it suffices to know E[ψadd(Xt, y)] for all y ∈ Sfin(Λ).

Lemma 6.5 (Distribution determining functions) The functions {fy :
y ∈ Sfin(Λ)} with fy(x) := 1{x∧y ̸=0} are distribution determining on S(Λ).

Proof We may equivalently prove that the functions gy(x) := 1 − fy(x) =
1{x∧y=0} are distribution determining. Since x ∧ ei(i) = x(i), the class {gy :
y ∈ Sfin(Λ)} separates points, and since gygy′ = gy∨y′ , this class is closed
under products. The claim now follows from Lemma 4.31.

We now set out to prove Lemma 6.3 and Theorem 6.4. We start with the
lemma.
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Proof of Lemma 6.3 It follows from Lemma 6.1 that there exists a unique
m̂ ∈ Ladd({0, 1}Λ, {0, 1}Λ) such that (6.16) holds. Now, using (6.11) we see
that for each x, y ∈ S(Λ)

ψadd

(
m(x), y

)
= 1{m(x) ∧ y ̸= 0} =

∨
j∈Λ

m(x)(j)y(j)

=
∨
i,j∈Λ

x(i)m(ei)(j) y(j) =
∨
i,j∈Λ

x(i) m̂(ej)(i) y(j)

=
∨
i∈Λ

x(i)m̂(y)(i) = 1{x ∧ m̂(y) ̸= 0} = ψadd

(
x, m̂(y)

)
,

which proves that m and m̂ are dual with respect to the duality function
ψadd. The latter implies in particular that

m̂(y)(i) = ψadd

(
ei, m̂(y)

)
= ψadd

(
m(ei), y

)
(i ∈ Λ),

which shows that m̂ is the unique map from S(Λ) into itself with this prop-
erty. (In particular, each such map must be lower semi-continuous and ad-
ditive.) It is clear from (6.19) that if m is local, then so is m̂.

Proof of Theorem 6.4 Let (Ft,s)t≥s be defined as

Ft,s(ϕ) := ϕ ◦Xs,t

(
s ≤ t, ϕ ∈ C({0, 1}Λ, {0, 1})

)
,

i.e., this is the backward stochastic flow defined in (6.7) (with S = T =
{0, 1}). We have already seen that Xs,t is a continuous additive map for each
s ≤ t. Therefore, since the concatenation of two continuous additive maps is
again continuous and additive, we see that

Ft,s(ϕ) ∈ Cadd
(
{0, 1}Λ, {0, 1}

) (
s ≤ t, ϕ ∈ Cadd({0, 1}Λ, {0, 1})

)
. (6.20)

By Proposition 4.15 and formula (4.30), it follows that for each u ∈ R and
ϕ ∈ Cadd({0, 1}Λ, {0, 1}), setting

Φt := Fu,u−t(ϕ) (t ≥ 0) (6.21)

defines a nonexplosive continuous-time Markov chain (Φt)t≥0 with left-con-
tinuous sample paths and state space Cadd({0, 1}Λ, {0, 1}).

It follows from (6.11) that each ϕ ∈ Ladd({0, 1}Λ, {0, 1}) can be written
in the form

ϕ(x) = ψadd(x, y) =
∨
i∈Λ

x(i)y(i)
(
x ∈ S(Λ)

)
, (6.22)
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where y ∈ S(Λ) is defined as y(i) := ϕ(ei) (i ∈ Λ). Conversely, by Lemma 6.1,
each y ∈ S(Λ) defines via (6.22) a function ϕ ∈ Ladd({0, 1}Λ, {0, 1}), and this
function is continuous if and only if y ∈ Sfin(Λ). This means that

Sfin(Λ) ∋ y 7→ ψadd( · , y) ∈ Cadd
(
{0, 1}Λ, {0, 1}

)
(6.23)

is a bijection. We can use this bijection to identify the continuous-time
Markov chain (Φt)t≥0 with state space Cadd

(
{0, 1}Λ, {0, 1}

)
from (6.21) with

a continuous-time Markov chain (Yt)t≥0 with state space Sfin(Λ). We will

show that this is precisely the process with generator Ĝ as in (6.17).
Formally, we proceed as follows. Combining (6.20) with the fact that the

map in (6.23) is a bijection, we see that we can define a backward stochastic
flow (Yt,s)t≥s on Sfin(Λ) by

Ft,s
(
ψadd( · , y)

)
=: ψadd

(
· ,Yt,s(y)

) (
t ≥ s, y ∈ Sfin(Λ)

)
. (6.24)

We claim that for each u ∈ R and y ∈ Sfin(Λ), setting

Yt := Yu,u−t(y) (t ≥ 0)

defines a nonexplosive continuous-time Markov chain (Yt)t≥0 with left-con-
tinuous sample paths and state space Sfin(Λ). Indeed, if we identify Sfin(Λ)
with Cadd

(
{0, 1}Λ, {0, 1}

)
via the bijection in (6.23), then (Yt,s)t≥s corre-

sponds to (Ft,s)t≥s and the process (Yt)t≥0 corresponds to (Φt)t≥0. Recall
from Proposition 4.15 that the process (Φt)t≥0 jumps from ϕ to ϕ ◦m with
rate rm, for each m ∈ G. In view of the bijection in (6.23), this means that
the process (Yt)t≥0 jumps from y with rate rm to m′(y) defined as

ψadd( · , y) ◦m =: ψadd

(
· ,m′(y)

) (
y ∈ Sfin(Λ)

)
.

This says that

ψadd

(
x,m′(y)

)
= ψadd( · , y) ◦m(x) = ψadd

(
m(x), y

)
(
x ∈ S(Λ), y ∈ Sfin(Λ)

)
. Knowing ψadd

(
x,m′(y)

)
for all x clearly uniquely

determines m′(y), so we see that m′ = m̂, the dual map from Lemma 6.3.
This proves that (Yt)t≥0 is the continuous-time Markov chain with state space

Sfin(Λ) and generator Ĝ from (6.17). In particular, the latter is nonexplosive
since (Φt)t≥0 is nonexplosive by Proposition 4.15.

We claim that the stochastic flow (Xs,t)s≤t and the backward stochastic
flow (Yt,s)t≥s are dual with respect to ψadd, i.e.,

ψadd

(
Xs,t(x), y

)
= ψadd

(
x,Yt,s(y)

) (
s ≤ t, x ∈ S(Λ), y ∈ Sfin(Λ)

)
.

(6.25)
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Indeed, this follows from (6.7) by writing

ψadd

(
x,Yt,s(y)

)
= ψadd

(
· ,Yt,s(y)

)
(x) = Ft,s

(
ψadd( · , y)

)
(x)

= ψadd( · , y) ◦Xs,t(x) = ψadd

(
Xs,t(x), y

)
.

By the general arguments given in Section 6.1, the duality of the flows
(Xs,t)s≤t and (Yt,s)t≥s implies that (Xt)t≥0 is pathwise dual to (Yt)t≥0 and
(6.18) holds.

We note that for each u ∈ R and y ∈ Sfin(Λ), if we set

Y u,y
t := Yu,t

(
t ∈ (−∞, u], y ∈ S(Λ)

)
,

then by formula (4.17) of Proposition 4.15, translated via the bijection in
(6.23) into our present setting, the function (Y u,y

t )t∈(−∞,u] is the unique solu-
tion with initial state Y u,y

u = y to the evolution equation

Y u,y
t− = m̂ω

t (Y
u,y
t ) (t ≤ u), (6.26)

where m̂ω
t is the dual of the map mω

t defined in (4.9) (with 1̂ = 1). If the dual
rates (rm̂)m̂∈Ĝ satisfy condition (4.11) of Theorem 4.13, then3 the evolution
equation (6.26) has a unique solution for each y ∈ S(Λ), and setting

Yu,t := Y u,y
t

(
u ≥ t, y ∈ S(Λ)

)
defines a backward stochastic flow (Yu,t)u≥t on S(Λ) that extends the back-
ward stochastic flow on Sfin(Λ) that we had so far. We claim that (6.25) now
holds for all x, y ∈ S(Λ). To see this, we choose yn ∈ Sfin(Λ) such that yn ↑ y.
By the continuity and monotonicity ofYt,s this implies thatYt,s(yn) ↑ Yt,s(y)
which in turn implies that ψadd

(
x,Yt,s(yn)

)
↑ ψadd

(
x,Yt,s(y)

)
. On the other

side of the equation, ψadd

(
Xs,t(x), yn

)
↑ ψadd

(
Xs,t(x), y

)
, proving the claim.

It follows that (6.18) holds for general S(Λ) valued initial states Y0, complet-
ing the proof of Theorem 6.4.

Remark The key to the proof of Theorem 6.4 was formula (6.20), which
says that the backward in time process from Propostion 4.15 leaves the
space Cadd

(
{0, 1}Λ, {0, 1}

)
of additive functions invariant. Via the bijection

in (6.23), the dual process (Yt)t≥0 with generator Ĝ simply corresponds to the
backward in time process restricted to the space of additive functions. We
will see later that for cancellative duality, a very similar picture holds, except

3We apply Theorem 4.13 backwards in time here and use a “left-continuous” version
of Theorem 4.13. This “left-continuous” version of Theorem 4.13 can easily be derived
from Theorem 4.13 in the same way as in the proof of Proposition 4.15 when we used
Theorem 2.17 to show that (4.17) has a unique solution.
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that here the space of cancellative functions is an invariant subspace for the
backward in time process. Generalizing the results of the present section,
one can show that each interacting particle system that can be represented
in monotone local maps has a dual that arises from the fact that in this case,
the space of monotone functions is an invariant subspace for the backward in
time process. This idea is worked out in [LS23b]. The earlierst formulation
of this monotone duality is due to Gray [Gra86].

The proof of Theorem 6.4 yields a useful corollary.

Corollary 6.6 (Pathwise additive duality) Under the assumptions of
Theorem 6.4, for each u ∈ R and y ∈ Sfin, there exists a unique solution
(Y u,y

t )t∈(−∞,u] with initial state Y u,y
u = y to the evolution equation

Y u,y
t− = m̂ω

t (Y
u,y
t ) (t ≤ u).

Setting

Yu,t := Y u,y
t

(
u ≥ t, y ∈ S(Λ)

)
defines a backward stochastic flow (Yu,t)u≥t on Sfin(Λ) that is dual to (Xs,t)s≤t
with respect to ψadd, i.e.,

ψadd

(
Xs,t(x), y

)
= ψadd

(
x,Yt,s(y)

) (
s ≤ t, x ∈ S(Λ), y ∈ Sfin(Λ)

)
.

If u ∈ R and Y0 is an Sfin(Λ)-valued random variable, independent of ω, then
setting

Yt := Yu,u−t(Y0) (t ≥ 0)

defines a continuous-time Markov chain (Yt)t≥0 with left-continuous sample

paths, generator Ĝ as in (6.17), and state space Sfin(Λ). If the dual rates
(rm̂)m̂∈Ĝ satisfy (4.11), then all previous statements remain true if Sfin(Λ) is
replaced by S(Λ) and (Yt)t≥0 is the interacting particle system with generator

Ĝ.

The additive duality of Theorem 6.4 and its pathwise formulation in
Corollary 6.6 have a simple graphical interpretation. We recall from (6.19)
that we can obtain the dual of an additive local map by reversing the di-
rection of all arrows and keeping all blocking symbols. In Section 6.2, we
constructed a contact process (Xt)t≥0 from its graphical representation in
terms of open paths, as follows:
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time

X0

Xs,u(X0)

0 0 0 1 0 0 1 0 0 0

0 0 1 1 1 0 1 0 0 0

Using the recipe “reverse the arrows, keep the blocking symbols” we can
construct the dual process (Yt)t≥0 as follows.

time Yu,s(Y0)

Y0

0 0 0 1 1 1 1 0 0 0

0 0 0 0 1 1 0 1 0 0

The duality relation between the forward and backward stochastic flows
has a simple interpretation in terms of open paths. Indeed

ψadd

(
Xs,u(x), y

)
= 1

⇔ ∃i, j ∈ Λ s.t. x(i) = 1, y(j) = 1, (i, s)⇝ (j, u)

⇔ ψadd

(
x,Yu,s(y)

)
= 1.

In our previous example of the contact process, the dual process is also a
contact process, but in general, the dual process can have a different dynamics
from the forward in time process. Applying the principle “reverse the arrows
and keep the blocking symbols” to the voter model map voti,j, we obtain
the coalescing random walk map rwj,i, and vice versa:
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vot1,2 rw2,1

We see from this that the additive dual of the voter model is a system of
coalescing random walks.

Exercise 6.7 Give an example of an additive particle system for which the
forward generator G satisfies the summability condition (4.11) but the dual
generator Ĝ does not satisfy (4.11). Hint: consider a contact process and
its dual contact process on a binary tree where for the forward process all
infections point away from the root and for the dual process all infections
point in the direction of the root.

6.4 Cancellative systems

Let ⊕ denote addition modulo two, i.e.,

0⊕ 0 := 0, 0⊕ 1 := 1, 1⊕ 0 := 1, and 1⊕ 1 := 0.

Let Λ and ∆ be countable sets. For x, y ∈ S(Λ), we define (x ⊕ y)(i) :=
x(i)⊕y(i) (i ∈ Λ) in a pointwise way. By definition, a mapm : S(Λ) → S(∆)
is cancellative iff

(i) m(0) = 0,

(ii) m(x⊕ y) = m(x)⊕m(y)
(
x, y ∈ S(Λ)

)
.

We will later also sometimes need maps m : Sfin(Λ) → S(∆) that satisfy (i)
and (ii) but cannot reasonably be extended to S(Λ). We call these maps
cancellative too. An interacting particle system is called cancellative if its
generator can be represented in cancellative local maps. Examples of can-
cellative maps are:

• The voter map votij defined in (1.4).

• The annihilating branching map branij defined in (6.27) below.

• The death map deathi defined in (1.7).

• The annihilating random walk map arwij defined in (1.22).
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• The exclusion map exclij defined in (1.23).

Here, we define an annihilating branching map branij : {0, 1}Λ → {0, 1}Λ as

branij(x)(k) :=

{
x(i)⊕ x(j) if k = j,

x(k) otherwise.
(6.27)

We let C = C({0, 1}Λ, {0, 1}∆) as before denote the space of continuous func-
tions m : {0, 1}Λ → {0, 1}∆, and se set

Ccanc = Ccanc
(
{0, 1}Λ, {0, 1}∆

)
:=

{
m ∈ C : m is cancellative

}
.

The following lemma is similar to Lemma 6.1.

Lemma 6.8 (Matrix formulation) Let Λ and ∆ be countable sets and
let M : Λ × ∆ → {0, 1} be a function such that

∑
i∈ΛM(i, j) < ∞ for all

j ∈ ∆. Then there exists a unique m ∈ Ccanc({0, 1}Λ, {0, 1}∆) such that
m(ei)(j) =M(i, j) (i ∈ Λ, j ∈ ∆), which is given by

m(x)(j) :=
⊕
i∈Λ

x(i)M(i, j)
(
j ∈ ∆, x ∈ {0, 1}Λ

)
. (6.28)

Proof Given M , we define m by (6.28). It is easy to see that m is can-
cellative and satisfies m(ei)(j) = M(i, j) (i ∈ Λ, j ∈ ∆). The condition∑

i∈ΛM(i, j) <∞ guarantees that m(x)(j) depends on finitely many coordi-
nates, so m is continuous by Lemma 2.18. To prove uniqueness, assume that
m′ ∈ Cadd({0, 1}Λ, {0, 1}∆) also satisfies m′(ei)(j) = M(i, j) (i ∈ Λ, j ∈ ∆).
Then

m′(x)(j) =
⊕

i:x(i)=1

m(ei)(j) =
⊕
i∈Λ

x(i)M(i, j)
(
j ∈ ∆, x ∈ Sfin(Λ)

)
.

Since Sfin(Λ) is dense in S(Λ), by the continuity of m and m′, it follows that
m′ = m.

We now specialize to the case Λ = ∆. We represent continuous cancella-
tive maps by arrows and blocking symbols exactly in the same way as we did
for additive maps:

• For each i, j ∈ Λ with i ̸= j such that m(ei)(j) = 1, we draw an arrow
from i to j.

• For each i ∈ Λ such that m(ei)(i) = 0, we draw a blocking symbol
at i.
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The following lemma, which is similar to Lemma 6.2, shows that cancellative
local maps are fully described by their arrows and blocking symbols.

Lemma 6.9 (Cancellative local maps) Letm be a continuous cancellative
map, let j ∈ Λ, and let J ⊂ Λ be defined as:

J :=
{
i ∈ Λ : i ̸= j and there is an arrow from i to j

or i = j and there is no blocking symbol at j
}
.

Then for each x ∈ S(Λ), one has m(x)(j) = 1 if and only if |{i ∈ J : x(i) =
1}| is odd. Moreover, a cancellative map m : {0, 1}Λ → {0, 1}Λ is local if
and only if its description involves only finitely many arrows and blocking
symbols.

Proof The proof is very similar to the the proof of Lemma 6.2. In partic-
ular, the definition of a continuous cancellative map in terms of arrows and
blocking symbols is just a reformulation of (6.28).

Every graphical representation involving arrows and blocking symbols
that can be used to define an additive particle system can also be used to
define a cancellative particle system. The cancellative maps mentioned above
have the following representations in terms of arrows and blocking symbols:

bran1,2 death1

vot1,2 arw1,2 excl1,2

If we interpret the graphical representation of a contact process in a can-
cellative way, then it becomes a graphical representation for an interacting
particle system involving the annihilating branching map branij and the
death map deathi, that has been studied in [BDD91].
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time

X0

Xt

0 0 0 1 0 0 1 0 0 0

0 0 1 1 1 0 1 0 0 0

We define a cancellative duality function ψcanc : S(Λ) × Sfin(Λ) → {0, 1}
by

ψcanc(x, y) :=
⊕
i∈Λ

x(i)y(i)
(
x ∈ S(Λ), y ∈ Sfin(Λ)

)
. (6.29)

Note that since y ∈ Sfin(Λ), all but finitely many of the summands are zero,
so the infinite sum modulo two is well-defined. Unlike in the additive case,
there is no way to make sense of ψcanc(x, y) for general x, y ∈ S(Λ).4 The
following lemma is similar to Lemma 6.3 but there are some complications
since infinite sums modulo two are in general undefined.

Lemma 6.10 (Dual cancellative maps) For each continuous cancellative
map m : S(Λ) → S(Λ), there exists a unique dual map m̂ : Sfin(Λ) → Sfin(Λ)
such that

ψcanc

(
m(x), y

)
= ψcanc

(
x, m̂(y)

) (
x ∈ S(Λ), y ∈ Sfin(Λ)

)
. (6.30)

The dual map m̂ is cancellative and can be extended to a continuous can-
cellative map m̂ : S(Λ) → S(Λ) if and only if the matrix M of m satisfies∑

jM(i, j) <∞ for all i ∈ Λ. If m is local then so is m̂.

Proof Let M be the space of {0, 1}-valued matrices (M(i, j))i,j∈Λ indexed
by Λ and let

M1 :=
{
M ∈ M :

∑
i∈Λ

M(i, j) <∞ ∀j ∈ Λ
}
,

M2 :=
{
M ∈ M :

∑
j∈Λ

M(i, j) <∞ ∀i ∈ Λ
}
.

4For interacting particle systems on Λ = Z, it is sometimes useful to consider the case
that sup{i : x(i) = 1} <∞ and inf{i : y(i) = 1} > −∞. Clearly, ψcanc(x, y) is well-defined
for such x, y, even though both may be infinite.
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Lemma 6.8 says that there is a one-to-one correspondence between M1 and
the space Ccanc(S(Λ),S(Λ)) of continuous cancellative maps m : S(Λ) →
S(Λ). We claim that similarly, there is a one-to-one correspondence be-
tween M2 and the space Fcanc(Sfin(Λ),Sfin(Λ)) of all cancellative maps m :
Sfin(Λ) → Sfin(Λ). Indeed, this follows by writing

m(x)(j) = m
( ⊕
i:x(i)=1

ei

)
=

⊕
i∈Λ

x(i)m(ei)(j) =:
⊕
i∈Λ

x(i)M(i, j),

and observing that m(x) ∈ Sfin(Λ) for all x ∈ Sfin(Λ) if and only if M ∈ M2.
Inserting x = ei and y = ej in (6.30) yields the condition

m(ei)(j) = m̂(ej)(i) (i, j ∈ Λ), (6.31)

which suggests that we define

m̂(y) :=
∑
j∈Λ

y(j)M̂(j, i) with M̂(j, i) :=M(i, j) (i, j ∈ Λ).

Since M ∈ M1 we have M̂ ∈ M2 so by our earlier remarks, this defines
a cancellative map m : Sfin(Λ) → Sfin(Λ). This map can be extended to a
continuous cancellative map m̂ : S(Λ) → S(Λ) if and only if M ∈ M2.

Since

ψcanc

(
m(x), y

)
=

∑
i,j

x(i)M(i, j)y(j) = ψcanc

(
x, m̂(y)

)
for all x ∈ S(Λ) and y ∈ Sfin(Λ) we see that m̂ satisfies (6.30). Formula
(6.30) implies that

m̂(y)(i) = ψcanc

(
ei, m̂(y)

)
= ψcanc

(
m(ei), y

) (
i ∈ Λ, y ∈ Sfin(Λ)

)
,

so m̂ is the only map from Sfin(Λ) into itself that satisfies (6.30). By (6.31),
the graphical representation of m̂ can be constructed from the graphical
representation ofm by reversing all arrows and keeping the blocking symbols.
It follows that if m is local then so is m̂.

The duality theory for cancellative systems is very similar to the additive
case. We note that the duality of stochastic flows (6.35) below implies that
The Markov processes (Xt)t≥0 and (Yt)t≥0 are dual with respect to the duality
function ψcanc, i.e.,

E
[
ψcanc(Xt, Y0)

]
= E

[
ψcanc(X0, Yt)

]
(t ≥ 0) (6.32)

whenever Xt is independent of Y0 and X0 is independent of Yt.
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Theorem 6.11 (Cancellative duality) Let G be the generator of an in-
teracting particle system (Xt)t≥0 with state space S(Λ). Assume that G
has a random mapping representation of the form (4.1) such that all lo-
cal maps m ∈ G are cancellative and the rates (rm)m∈G satisfy (4.11). Set
Ĝ := {m̂ : m ∈ G} and rm̂ := rm (m ∈ G), where m̂ denots the cancellatove
dual of m. Then

Ĝ :=
∑
m̂∈Ĝ

rm̂
{
f
(
m̂(y)

)
− f

(
y
)} (

y ∈ Sfin(Λ)
)

(6.33)

is the generator of a nonexplosive continuous-time Markov chain (Yt)t≥0 with
state space Sfin(Λ). Almost surely, for each u ∈ R and y ∈ Sfin, there exists
a unique solution (Y u,y

t )t∈(−∞,u] with initial state Y u,y
u = y to the evolution

equation

Y u,y
t− = m̂ω

t (Y
u,y
t ) (t ≤ u).

Setting

Yu,t := Y u,y
t

(
u ≥ t, y ∈ S(Λ)

)
(6.34)

defines a backward stochastic flow (Yu,t)u≥t on Sfin(Λ) that is dual to (Xs,t)s≤t
with respect to ψcanc, i.e.,

ψcanc

(
Xs,t(x), y

)
= ψcanc

(
x,Yt,s(y)

) (
s ≤ t, x ∈ S(Λ), y ∈ Sfin(Λ)

)
.

(6.35)
If u ∈ R and Y0 is an Sfin(Λ)-valued random variable, independent of ω, then
setting

Yt := Yu,u−t(Y0) (t ≥ 0)

defines a continuous-time Markov chain (Yt)t≥0 with left-continuous sample

paths, generator Ĝ as in (6.33), and state space Sfin(Λ).

Proof The proof is basically identical to the proof of Theorem 6.4 and
Corollary 6.6. The basic observation is that the backward stochastic flow
defined in (6.7) maps the space Ccanc(S(Λ), {0, 1}) into itself. By Lemma 6.8,

Sfin(Λ) ∋ y 7→ ψcanc( · , y) ∈ Ccanc
(
S(Λ), {0, 1}

)
is a bijection. Using this bijection, we can identify the backward in time pro-
cess (Φt)t≥0 restricted to Ccanc

(
S(Λ), {0, 1}

)
with the continuous-time Markov

chain (Yt)t≥0 with generator Ĝ as in (6.33). Since everything is completely
analogous to the proof of Theorem 6.4, we skip the details.

The following lemma is similar to Lemma 6.5.
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Lemma 6.12 (Distribution determining functions) The functions {fy :
y ∈ Sfin(Λ)} with fy(x) :=

⊕
i∈Λ x(i)y(i) are distribution determining on

S(Λ).

Proof We may equivalently prove that the functions gy(x) := 1 − 2fy =
(−1)fy(x) = (−1)

∑
i x(i)y(i) are distribution determining. Since gygy′ = gy⊕y′ ,

the class {gy : y ∈ Sfin(Λ)} is closed under products and since gei(x) =
(−1)x(i) this class separates points. The claim now follows from Lemma 4.31.

Formulas (6.31) and (6.34) say that as in the additive case, the graphical
representation of the dual process can be obtained from the graphical repre-
sentation of the forward process by reversing all arrows, keeping the blocking
symbols, and then reading the graphical representation backwards in time
(downwards in our pictures). From this, we see that

b̂ranij = branji, d̂eathi = deathi, v̂otij = arwji, êxclij = exclij.

In terms of the graphical representation, the duality between the forward and
backward stochastic flows has a nice interpretation in terms of open paths.
Indeed

ψadd

(
Xs,u(x), y

)
= 1

⇔ the number of open path γ : [s, t] → Λ

s.t. X0(γs) = 1 and Y0(γu) = 1 is odd

⇔ ψadd

(
x,Yu,s(y)

)
= 1.

The similarity between additive and cancellative duality is so large that one
wonders if they can be treated in a unified way. This is indeed the case. For
local state spaces with three or more elements, an obvious thing one can do
is to replace the addition modulo two from cancellative systems by addition
modulo three or more. There are also less obvious other possibilities. The
paper [LS21] explores dualities where ({0, 1},∨) or ({0, 1},⊕) are replaced
by commutative monoids or semirings.

Exercise 6.13 Show that the map rebelijk is cancellative. Show that the
generator of the Neuhauser-Pacala model defined in (1.18) can be represented
as

GNPf(x)=
α

|Ni|
∑
i

∑
j∈Ni

{
f
(
votji(x)

)
− f

(
x
)}

=
1− α

|Ni|2
∑
i

∑
j,k∈Ni

j ̸=k

{
f
(
rebelkji(x)

)
− f

(
x
)}
.
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Exercise 6.14 In the threshold voter model, the site i changes its type x(i)
from 0 to 1 with rate one as long as at least one site in its neighborhood Ni

has type 1, and likewise, i flips from 1 to 0 with rate one as long as at least
one site in Ni has type 0. Show that the generator of the threshold voter
model can be written as

Gthreshf(x) = 2−|Ni|+1
∑
i

∑
∆⊂Ni∪{i}

|∆| is even

{
f
(
m∆,i(x)

)
− f

(
x
)}
,

where m∆,i is the cancellative map defined by

m∆,i(x)(k) :=

{
x(i)⊕

⊕
j∈∆ x(j) if k = i,

x(k) otherwise.

Exercise 6.15 Show that the threshold voter model is monotone.

6.5 Other dualities

The additive systems duality function (6.15) and cancellative systems duality
function (6.29) are not the only choices of ψ that lead to useful dualities.
There are two approaches to finding useful duality functions: the pathwise
approach, that aims to find dualities between stochastic flows in the sense
of (6.4), and the algebraic approach, that only aims to prove distributional
relations of the form (6.6). There has been a lot of recent work using the
algebraic approach, starting with the paper [GK+09], linking dualities to
representations of Lie algebras. For an overview of this work, we refer to
[GF24]. We will below present some older results, based on the algebraic
approach, due to Lloyd and Sudbury [SL95, SL97, Sud99].

The pathwise approach always depends on finding a clever stochastic
flow and then finding a suitable space of functions on SΛ that is mapped into
itself by the stochastic flow of the backward in time process. As we have
seen, for additive and cancellative systems, the spaces Cadd({0, 1}Λ, {0, 1})
and Ccanc({0, 1}Λ, {0, 1}) are invariant, and this naturally leads to additive
and cancellative duality.

To explain a bit about the algebraic approach, which only aims to prove
relations of the form (6.6) without proving a duality of stochastic flows,
for technical simplicity, for the remainder of this section we will restrict
ourselves to finite state spaces. In general, when trying to prove a duality
for interacting particle systems on infinite lattices, it is often a good idea to
first prove the result on finite lattices and then extend it to infinite lattices
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using approximation results such as Theorem 4.35 and Corollary 4.36. We
will demonstrate this method in Section 6.6 below.

In the following lemma, Ex (resp. Ey) denotes expectation with respect
to the law of the process X started in X0 = x (resp. Y started in Y0 = y).

Lemma 6.16 (Duality of finite Markov processes) Let (Xt)t≥0 and
(Yt)t≥0 be Markov processes with finite state spaces S and R, generators G
and H, and Markov semigroups (Pt)t≥0 and (Qt)t≥0. Then one has

Ex
[
ψ(Xt, y)

]
= Ey

[
ψ(x, Yt)

]
(x ∈ S, y ∈ R, t ≥ 0) (6.36)

if and only if
Gψ( · , y)(x) = Hψ(x, · )(y). (6.37)

Proof The duality relation (6.36) says that∑
x′∈S

Pt(x, x
′)ψ(x′, y) =

∑
y′∈R

ψ(x, y′)Qt(y, y
′) (x ∈ S, y ∈ R, t ≥ 0),

which can in matrix form be written as

Ptψ = ψQ†
t (t ≥ 0), (6.38)

where Q†
t(y

′, y) := Qt(y, y
′) denotes the transpose of Qt. Differentiating with

respect to t and setting t = 0, it follows that

Gψ = ψH†

which is just a more formal way of writing (6.37). Conversely, if (6.37) holds,
then G2ψ = GψH† = ψ(H†)2 and by induction Gnψ = ψ(H†)n for all n ≥ 0.
Using the fact that

Pt =
∞∑
n=0

1

n!
tnGn and Qt =

∞∑
n=0

1

n!
tnHn,

it follows that Ptψ = ψQ†
t (t ≥ 0) and hence (6.36) holds.

Let (Xt)t≥0 and (Yt)t≥0 be Markov processes with finite state spaces S
and R, generators G and H, and Markov semigroups (Pt)t≥0 and (Qt)t≥0.
Let K be a probability kernel from S to R. A relation of the form (compare
(6.38))

PtK = KQt (t ≥ 0) (6.39)

is called an intertwining of Markov processes. Note that (6.39) says that the
following two procedures are equivalent for each S-valued random variable
X0:
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• Evolve the stateX0 for time t under the evolution of the Markov process
(Xt)t≥0, then map the outcome Xt into a random variable Yt using the
kernel K.

• Map X0 into a random variable Y0 using the kernel K, then evolve Y0
for time t under the evolution of the Markov process (Yt)t≥0.

We can summarize the situation in the following commutative diagram:

X0 Xt

Y0 Yt

Pt

Qt

K K

Lemma 6.17 (Intertwining of finite Markov processes) The inter-
twining relation (6.39) is equivalent to

GK = KH. (6.40)

Proof Analogue to the proof of Lemma 6.16.

As one might guess, there is a close relationship between duality and
intertwining. If (Pt)t≥0, (Qt)t≥0, and (Rt)t≥0 are Markov semigroups, K is a
probability kernel, and ψ a duality function such that

PtK = KQt and Qtψ = ψR†
t (t ≥ 0),

then trivially
Pt(Kψ) = KQtψ = (Kψ)R†

t (t ≥ 0), (6.41)

which says that the Markov processes with semigroups (Pt)t≥0 and (Rt)t≥0

are dual with duality function Kψ.
To see these general principles at work, let us look at interacting particle

systems with state space of the form {0, 1}Λ where Λ is finite. For each r > 0,
we let ψr denote the duality function

ψr(x, y) :=
∏
i∈Λ

(1− r)x(i)y(i)
(
x, y ∈ {0, 1}Λ

)
. (6.42)

Using the fact that 0n = 1{n=0}, we observe that

ψ1(x, y)= 1− ψadd(x, y)

ψ2(x, y)= (−1)ψcanc(x, y)

} (
x, y ∈ {0, 1}Λ

)
.
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Therefore, duality with respect to duality functions of the form (6.42) in-
cludes additive and cancellative duality as special cases. Duality functions
of the form (6.42) arose from the work of Lloyd and Sudbury [SL95, SL97].
Accordingly, we will call ψr the Lloyd-Sudbury duality function.

There is a close connection between duality functions of the form (6.42)
and thinning, as we now explain. Thinning has already been introduced in
Section 2.5 but for convenience we repeat the definition here. Let (χp(i))i∈Λ
be i.i.d. with P[χp(i) = 1] = p and P[χp(i) = 0] = 1− p. Then

Kp(x, y) := P
[
y(i) = χp(i)x(i) ∀i ∈ Λ

] (
x, y ∈ {0, 1}Λ

)
(6.43)

defines a thinning kernel. Note that if we interpret sites i with x(i) = 1
as being occupied by a particle, then the effect of Kp is to independently
throw away some of these particles, where each particle has a probability p
to remain. We claim that

KpKq = Kpq and Kpψr = ψpr (0 ≤ p, q ≤ 1, r > 0). (6.44)

The first relation is clear from the interpretation in terms of thinning, while
the second relation follows by writing

Kpψr(x, z) =
∑
y

Kp(x, y)
∏
i∈Λ

(1− r)y(i)z(i) = E
[∏
i∈Λ

(1− r)χp(i)x(i)z(i)
]

=
∏
i∈Λ

E
[
(1− r)χp(i)x(i)z(i)

]
=

∏
i∈Λ

(1− pr)x(i)z(i) = ψpr(x, z).

The following lemma says that if a particle system has two duals, one with
respect to the duality function ψr1 and the other with respect to the duality
function ψr2 , then one of these duals is a thinning of the other.

Lemma 6.18 (Lloyd-Sudbury duals and thinning) Let G,H1 and H2

be generators of Markov processes with state space {0, 1}Λ where Λ is finite.
Let 0 < r1 ≤ r2 and set p := r1/r2. Then of the relations

(i) H1ψr1 = ψr1G
†, (ii) H2ψr2 = ψr2G

†, and (iii) H1Kp = KpH2

any two imply the third.

Proof Using all tree relations (i)–(iii) as well as (6.44), we have the “circular”
sequence of equalities:

H1ψr1
(i)
= ψr1G

† = Kpψr2G
† (ii)
= KpH2ψr2

(iii)
= H1Kpψr2 = H1ψr1 .
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From this, we immediately see that of the relations

(i) H1ψr1 = ψr1G
†, (ii)′ KpH2ψr2 = Kpψr2G

†, (iii)′ H1Kpψr2 = KpH2ψr2

any two imply the third. To complete the proof, it suffices to show that Kp

and ψr are invertible as matrices for all p ∈ (0, 1] and r > 0, since we can
then multiply (ii)’ from the left with K−1

p and (iii)’ from the right with ψ−1
r2

to obtain (ii) and (iii).
We can view the linear space of all functions f : {0, 1}Λ → R as the tensor

product
⊗

i∈ΛR{0,1}. In this picture, the matrices Kp and ψr are the tensor
product over Λ of single-site matrices of the form(

1 0
1− p p

)
and

(
1 1
1 1− r

)
,

respectively. These single-site matrices are invertible for all p ∈ (0, 1] and
r ∈ (0,∞) and hence the same is true for their tensor products Kp and ψr.

It is useful to look at a concrete example. Let (Λ, E) be a finite graph, as
in (1.2) let Ni :=

{
j ∈ Λ : {i, j} ∈ E

}
denote the neighborhood of a vertex

i ∈ Λ, let and assume that N := |Ni| does not depend on i ∈ Λ. In line with
notation introduced in Section 1.1, we let E :=

{
(i, j) ∈ Λ2 : {i, j} ∈ E

}
denote the set of directed edges associated with E. Let Gvot, Grw Garw be
the Markov generators defined by

Gvotf(x) :=N−1
∑

(i,j)∈E

{
f
(
votij(x)

)
− f

(
x
)}
,

Grwf(x) :=N−1
∑

(i,j)∈E

{
f
(
rwij(x)

)
− f

(
x
)}
,

Garwf(x) :=N−1
∑

(i,j)∈E

{
f
(
arwij(x)

)
− f

(
x
)}
,

where the voter model map votij, the coalescing random walk map rwij,
and the annihilating random walk map arwij are defined in (1.4), (1.20),
and (1.22), respectively. In words, Gvot is the generator of a voter model in
which each site i ∈ Λ adopts with rate one the type of a randomly chosen
neighbor. The processes with generators Grw and Garw consist of coalescing
and annihilating particles that jump to a randomly chosen neighboring site
with rate one. We claim that

(i) Grwψ1 = ψ1G
†
vot, (ii) Garwψ2 = ψ2G

†
vot, (iii) GrwK1/2 = K1/2Garw.

Indeed, the voter model map is both additive and cancellative, so (i) follows
from Theorem 6.4 since the coalescing random walk map is the additive dual
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of the voter model map and likewise (ii) follows from Theorem 6.11 since the
annihilating random walk map is the cancellative dual of the voter model
map. By Lemma 6.18, (i) and (ii) imply (iii), which says that annihilating
random walks are a 1/2-thinning of coalescing random walks. In other words,
for each t ≥ 0, the following two procedures are equivalent:

• Run coalescing random walk dynamics for time t and then thin the
resulting configuration with 1/2.

• Thin the initial configuration with 1/2 and then run coalescing random
walk dynamics for time t.

One can also verify this directly and use this to deduce (ii) from (i) or vice
versa. In Proposition 6.21 below we will see a less trivial example of a
thinning relation between two interacting particle systems.

Surprisingly, there exist many duality relations between interacting parti-
cle systems with respect to the Lloyd-Sudbury duality function ψr for other
values of r than r = 1, 2. These dualities can usually not be obtained as
pathwise dualities.

Let (Λ, E) be a finite graph. The paper [Sud00] considers interacting
particle systems on graphs where the configuration along each edge makes
the following transitions with the following rates:5

“annihilation” 11 7→ 00 at rate a,

“branching” 01 7→ 11 and 10 7→ 11 each at rate b,

“coalescence” 11 7→ 01 and 11 7→ 10 each at rate c,

“death” 01 7→ 00 and 10 7→ 00 each at rate d,

“exclusion” 01 7→ 10 and 10 7→ 01 each at rate e.

More formally, for each i, j ∈ Λ, we can define a map m017→11
ij on {0, 1}Λ as

follows:

m017→11
ij (x)(k) =


1 if k = i and

(
x(i), x(j)

)
= (0, 1),

1 if k = j and
(
x(i), x(j)

)
= (0, 1),

x(k) in all other cases.

5The meaning of the words “annihilation”, “branching”,. . . here is a bit different from
the way we have used these words so far. In particular, the “death” rate d refers only to
“deaths while the neighboring site is empty”, while “deaths while the neighboring site is
occupied” are called “coalescence”.
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Defining m117→00
ij etc. in a similar way, the generator of the process we are

interested in can be written as

Gf(x)=
∑
{i,j}

a
{
f
(
m117→00
ij (x)

)
− f

(
x
)}

+
∑
(i,j)

[
b
{
f
(
m017→11
ij (x)

)
− f

(
x
)}

+ c
{
f
(
m117→01
ij (x)

)
− f

(
x
)}

+ d
{
f
(
m017→00
ij (x)

)
− f

(
x
)}

+ e
{
f
(
m017→10
ij (x)

)
− f

(
x
)}]

,

(6.45)
where the first sum runs over all (unordered) edges {i, j} ∈ E and the second
sum runs over all ordered pairs (i, j) such that {i, j} ∈ E.

Theorem 6.19 (Lloyd-Sudbury duality) Let G and G′ be defined as in
(6.45) in terms of rates a, b, c, d, e and a′, b′, c′, d′, e′, respectively, and let
r > 0. Then one has

Gψr = ψrG
′† (6.46)

if and only if a′ = a + 2(1 − r)γ, b′ = b + γ, c′ = c − (2 − r)γ, d′ = d + γ,
and e′ = e− γ, where γ := (a+ c− d+ (1− r)b)/r.

Proof This follows from Lemma 6.16 by checking (6.37). The calculations
are a bit tedious, so we omit them here. They can be found in [Sud00,
formula (9)], which is a simplification of [SL95, formula (21)].

6.6 The contact-voter model

As we have already seen, ψ1 = 1 − ψadd and ψ2 = (−1)ψcanc correspond to
additive and cancellative duality. It seems that for r ̸= 1, 2, dualities of
the form (6.46) are almost never6 pathwise dualities. To give an example
with r ̸= 1, 2, consider an interacting particle system on a (possibly infinite)
graph (Λ, E) whose dynamics are a mixture of contact process and voter
model dynamics, with generator of the form:

Gcovof(x) :=λ
∑

(i,j)∈E

{
f
(
braij(x)

)
− f

(
x
)}

+
∑
i∈Λ

{
f
(
deathi(x)

)
− f

(
x
)}

+α
∑

(i,j)∈E

{
f
(
votij(x)

)
− f

(
x
)}

(x ∈ {0, 1}Λ),

(6.47)

6Except some very trivial and pathological cases.
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where E denotes the set of oriented edges associated with E. Letting Ni :={
j ∈ Λ : {i, j} ∈ E

}
denote the set of neighbors of i, we assume that Λ is

countable and
sup
i∈Λ

|Ni| <∞,

which implies that the generator in (6.47) satisfies the summability condition
(4.11) of Theorem 4.13 and hence corresponds to a well-defined interacting
particle system. Such systems are studied in [DLZ14], who are especially in-
terested in the fast-voting limit α → ∞. The contact-voter model is additive
(but not cancellative, because the branching map is not), and by Theorem 6.4
dual with respect to the duality function ψ1 = 1 − ψadd to the interacting
particle system with generator

Gcorwf(y) :=λ
∑

(i,j)∈E

{
f
(
braij(y)

)
− f

(
y
)}

+
∑
i∈Λ

{
f
(
deathi(y)

)
− f

(
y
)}

+α
∑

(i,j)∈E

{
f
(
rwij(y)

)
− f

(
y
)}

(y ∈ {0, 1}Λ),

(6.48)

which corresponds to a system of branching and coalescing random walks.
Perhaps surprisingly, the contact-voter model is also self-dual.

Proposition 6.20 (Self-duality of the contact-voter model) Assume
that λ > 0. Then the contact-voter model with generator as in (6.47) is
self-dual with respect to the duality function ψr with r := λ/(α + λ).

Proof We first consider the case that the graph (Λ, E) is finite. The gener-
ator Gcovo is a special case of the generators considered in Theorem 6.19 and
corresponds to the choice of parameters

a = 0, b = λ+ α, c = 1, d = 1 + α, e = 0.

We observe that setting r := λ/(α + λ) makes the parameter γ from Theo-
rem 6.19 zero, which has the effect that a′ = a, b′ = b, c′ = c, d′ = d, and
e′ = e, i.e., we have found a self-duality.

To extend the result to infinite graphs, we use an approximation argu-
ment. We need to show that

E
[
ψr

(
X0,t(x), x

′)] = E
[
ψr

(
x,X0,t(x

′)
)] (

t ≥ 0, x, x′ ∈ {0, 1}Λ
)
, (6.49)

where (Xs,u)s≤u = (X+
s,u)s≤u denotes the stochastic flow defined by the graph-

ical representation of the contact-voter model, and

ψr(x, y) :=
∏
i∈Λ

(1− r)x(i)y(i)
(
x, y ∈ {0, 1}Λ

)
. (6.50)
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Let (Λn, En) be finite subgraphs of (Λ, E) that increase to the whole graph.
For each n, let xn(i) := x(i) if i ∈ Λn and := 0 otherwise, and define x′n
similarly in terms of x′. Note that if x and y are zero outside Λn, then in
(6.50) it does not matter if we take the product over Λ or Λn. If we restrict
the sums in the definition of the generator (6.47) to vertices and edges in
(Λn, En), then for the restricted process (Xn

t )t≥0, the coordinates X
n
t (i) with

i ∈ Λ\Λn do not evolve (keep their initial value) while the coordinates in
Λn form a contact-voter model on a finite graph for which Theorem 6.19 is
applicable. Thus, letting (Xn

s,u)s≤u denote the stochastic flow of the restricted
process, we see that for each n, we have

E
[
ψr

(
Xn

0,t(xn), x
′
n

)]
= E

[
ψr

(
xn,X

n
0,t(x

′
n)
)] (

t ≥ 0, x, x′ ∈ {0, 1}Λ
)
.

(6.51)
Since the contact-voter model is additive, we can express its stochastic flow
in terms of open paths as in (6.14). There is a natural coupling of the
graphical representations of the finite processes and the infinite process. In
this coupling, Xn

s,t(xn)(j) = 1 if and only if there exists an i ∈ Λn such that
x(i) = 1 and an open path from (i, s) to (j, t) that never leaves the finite
set Λn. Using this, we see that in this coupling, Xn

s,t(xn) a.s. increases to
Xs,t(x), i.e.,

Xn
s,t(xn) ≤ Xn+1

s,t (xn+1) ∀n and Xn
s,t(xn) −→

n→∞
Xs,t(x) pointwise. (6.52)

Since r ≤ 1, it is easy to check that if xn increases to x and yn increases to y,
then ψr(xn, yn) decreases to ψr(x, y). Using this, taking the limit in (6.51),
we arrive at (6.49).

Note that although the duality function ψr is continuous with respect to
increasing sequences in the way we have just described, it is in general not
true that xn → x and yn → y pointwise imply that ψr(xn, yn) → ψr(x, y).
This is why we based our approximation argument on a clever monotone
coupling and did not use the more general Corollary 4.36 to approximate
infinite systems with finite systems.

We have already seen in Lemma 6.18 that there is a close connection
between the Llyod-Sudbury duality functions ψr and thinning. The following
proposition demonstrates this on our example of the contact-voter model.

Proposition 6.21 (Thinning of the contact-voter model) Let (Pt)t≥0

and (Qt)t≥0 denote the semigroups of the contact-voter model with generator
as in (6.47) and the system of branching and coalescing random walks with
generator as in (6.48), respectively. Let Kr denote the thinning kernel defined
in (6.43) with p := λ/(α + λ). Then

PtKp = KpQt (t ≥ 0). (6.53)
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1 2 3 4 5 1 2 3 4 5

Figure 6.1: Graphical representation of a one-dimensional voter model and its
dual system of coalescing random walks. At the final time, the points 2,3,4,
and 5 have the same type, because they descend from the same ancestor.

Proof We first prove the statement for finite graphs. Additive duality tells us
that (i) Gcovoψ1 = ψ1G

†
corw, and Proposition 6.20 tells us that (ii) Gcovoψp =

ψpG
†
covo. By Lemma 6.18, this implies (iii) GcovoKp = KpGcorw, which implies

(6.53).

To also get the result for infinite graphs, we use approximation with
finite graphs. In this case, the argument is simpler than in the proof of
Proposition 6.20 since thinning is a continuous operation in the sense that
if Xn are random variables with values in {0, 1}Λ that converge weakly in
law to X, and Y n and Y are obtained from Xn and X by thinning with the
kernel Kr, then the Yn converge weakly in law to Y . As a result, we can use
Corollary 4.36 to approximate infinite systems with finite systems and take
the limit to get the result for infinite systems.

We will continue our study of the contact-voter model in Section 6.9.

6.7 Invariant laws of the voter model

By Theorem 6.4 and Corollary 6.6,, the voter model X is pathwise dual,
with respect to the additive duality function ψadd from (6.15), to a collection
Y of coalescing random walks. Due to the fact that |Yt| is a nonincreasing
function of t (i.e., the number of walkers can only decrease), it is much easier
to work with this dual system than with the voter model itself, so duality is
really the key to understanding the voter model.
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Proposition 6.22 (Clustering in low dimensions) Let X be a nearest-
neighbor or range R voter model on Zd. Assume that d = 1, 2. Then, regard-
less of the initial law,

P[Xt(i) = Xt(j)] −→
t→∞

1 ∀i, j ∈ Zd.

Moreover, the delta measures δ0 and δ1 on the constant configurations are the
only extremal invariant laws.

Proof In the graphical representation of the voter model, for each (i, t) ∈
Zd × R and s ≥ 0, there is a unique site

j =: ξ(i,t)s ∈ Zd such that (j, t− s)⇝ (i, t).

Here (ξ
(i,t)
s )s≥0 is the path of a random walk starting at ξ

(i,t)
0 = i and “running

downwards in the graphical representation”. Two such random walks started
from different space-time points (i, t) and (i′, t′) are independent up to the
first time they meet, and coalesce as soon as they meet. Moreover, if Xt =
X0,t(X0), then, as demonstrated in Figure 6.1,

Xt(i) = Xt−s(ξ
(i,t)
s ) (0 ≤ s ≤ t),

i.e., ξ
(i,t)
s traces back where the site i at time t got its type from.7

Since the difference ξ
(i,t)
s − ξ

(j,t)
s of two such random walks is a random

walk with absoption in the origin, and since random walk on Zd in dimensions
d = 1, 2 is recurrent, we observe that

P[Xt(i) = Xt(j)] ≥ P[ξ(i,t)t = ξ
(j,t)
t ] = P[ξ(i,0)t = ξ

(j,0)
t ] −→

t→∞
1 ∀i, j ∈ Zd.

This clearly implies that all invariant laws must be concentrated on constant
figurations, i.e., a general invariant law is of the form pδ0 + (1 − p)δ1 with
p ∈ [0, 1].

For product initial laws we can be more precise. Although we state the
following theorem for two-type processes only, it is clear from the proof that
the statement generalizes basically unchanged to multitype voter models.

Theorem 6.23 (Process started in product law) Let X be a nearest
neighbor or range R voter model on Zd. Assume that the (X0(i))i∈Zd are
i.i.d. with intensity P[X0(i) = 1] = p ∈ [0, 1]. Then

P[Xt ∈ · ] =⇒
t→∞

νp, (6.54)

7This construction works in fact generally for multitype voter models, where the local
state space S can be any finite set, and which are in general of course not additive systems.
For simplicity, we will focus on the two-type voter model here.
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where νp is an invariant law of the process. If d = 1, 2, then

νp = (1− p)δ0 + pδ1. (6.55)

On the other hand, if d ≥ 3 and 0 < p < 1, then the measures νp are
concentrated on configurations that are not constant.

Proof As in the proof of Proposition 6.22, let (ξ
(i,t)
s )s≥0 be the backward ran-

dom walk in the graphical representation starting at (i, t). Define a random
equivalence relation ∼ on Zd by

i ∼ j iff ξ(i,0)s = ξ(j,0)s for some s ≥ 0.

We claim that if we color the equivalence classes of ∼ in an i.i.d. fashion
such that each class gets the color 1 with probability p and the color 0 with
probability 1−p, then this defines an invariant law νp such that (6.54) holds.
Since random walk in dimensions d = 1, 2 is recurrent, there is a.s. only
one equivalence class, and νp = (1 − p)δ0 + pδ1. On the other hand, since
random walk in dimensions d ≥ 3 is transient, there are a.s. infinitely many8

equivalence classes and hence for p ̸= 0, 1 the measure νp is concentrated on
configurations that are not constant.

To prove (6.54), we use coupling. Let (χ(i))i∈Zd be i.i.d. {0, 1}-valued
with P[χ(i) = 1] = p. For each t ≥ 0, we define a random equivalence
relation ∼t on Zd by

i ∼t j iff ξ(i,0)s = ξ(j,0)s for some 0 ≤ s ≤ t.

We enumerate the elements of Zd in some arbitrary way and define

X̃t(i) := χ(j) where j is the smallest element of {k ∈ Zd : i ∼t k}. (6.56)

Then X̃t is equally distributed with Xt and converges a.s. as t → ∞ to a
random variable with law νp.

Remark In dimensions d ≥ 3, it is in fact known that the measures νp are
extremal, and each extremal invariant law of the voter model is of this form.
See [Lig85, Thm V.1.8].

8Although this is intuitively plausible, it requires a bit of work to prove this. A quick
proof, that however requires a bit of ergodic theory, is as follows: since Poisson point
processes are spatially ergodic, and the number N of equivalence classes is a translation-
invariant random variable, this random number N must in fact be a.s. constant. Since the
probability that two paths coalesce tends to zero as the distance between their starting
points tends to infinity, for each finite n we can find n starting points sufficiently far from
each other so that with positive probability, none of the paths started at these points
coalesce. This implies that P[N ≥ n] > 0 for each finite n and hence by the fact that N
is a.s. constant P[N = ∞] = 1.



6.8. HOMOGENEOUS INVARIANT LAWS 175

6.8 Homogeneous invariant laws

In the present section, we show how the self-duality of the contact process
can be used to prove that for contact processes with some sort of translation
invariant structure, the upper invariant law is the limit law started from
any nontrivial translation invariant initial law, and we will show that this
in turn implies that the function θ(λ) from (5.5) is continuous everywhere,
except possibly at the critical point. The methods of the present section
are not restricted to additive particle systems. Applications of the technique
to cancellative systems can be found in [BDD91, SS08, CP14] while [LS23a]
treats a coupling of an additive and a cancellative system.

We start with a simpler observation, that has been anticipated before,
and which says that the functions θ(λ) from (1.9) and (5.5) are the same.

Lemma 6.24 (The function theta) Let X denote the contact process with
infection rate λ on a graph Λ and let ν denote its upper invariant law. Then∫

ν(dx)x(i) = Pei [Xt ̸= 0 ∀t ≥ 0] (i ∈ Λ).

More generally, for any y ∈ {0, 1}Λ such that |y| <∞,∫
ν(dx) 1{x ∧ y ̸= 0} = Py[Xt ̸= 0 ∀t ≥ 0].

Proof By Theorem 6.4, the contact process X is self-dual with respect to
the additive systems duality function, i.e.,

Px[Xt ∧ y = 0] = Py[x ∧Xt = 0] (t ≥ 0).

In particular, setting x = 1, we see that∫
ν(dx) 1{x ∧ y ̸= 0} = lim

t→∞
P1[Xt ∧ y ̸= 0]

= lim
t→∞

Py[1 ∧Xt ̸= 0] = Py[Xt ̸= 0 ∀t ≥ 0],

where in the first step we have used that |y| <∞ and the measures P1[Xt ∈ · ]
converge weakly to ν as t → ∞. The condition |y| < ∞ can be removed by
doing this step more carefully, using monotone convergence instead of weak
convergence, but since contact processes started in infinite initial states a.s.
do not die out in finite time, this case is less interesting.

In what follows, we will be interested in contact processes that have some
sort of translation invariant structure. For simplicity, we will concentrate on
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processes on Zd with a nearest-neighbor or range R graph structure, even
though the arguments can be generalized to other graphs such as infinite
regular trees.

We define translation operators Ti : {0, 1}Z
d → {0, 1}Zd

by

Ti(x)(j) := x(j − i) (i ∈ Zd).

We say that a probability law µ on {0, 1}Zd
is homogeneous or translation

invariant if µ ◦ T−1
i = µ for all i ∈ Zd.

The main aim of the present section is to prove the following result, which
is originally due to Harris [Har76]. We can think of this result as a sort of
spatial analogue of the observation in Section 3.5 that for the mean-field
contact process, solutions of the differential equation (3.23) started in any
nonzero initial state converge to the upper fixed point. Recall from Chapter 5
that a probability law µ on {0, 1}Zd

is nontrivial if µ({0}) = 0, i.e., if µ gives
zero probability to the all-zero configuration.

Theorem 6.25 (Convergence to upper invariant law) Let (Xt)t≥0 be
a contact process started in a homogeneous nontrivial initial law P[X0 ∈ · ].
Then

P[Xt ∈ · ] =⇒
t→∞

ν,

where ν is the upper invariant law.

We start with two preparatory lemmas. We will use the graphical rep-
resentation of the contact process as an additive particle system (see Sec-
tion 6.2) and use the shorthand

Xx
t := X0,t(x)

(
t ≥ 0, x ∈ {0, 1}Zd)

,

where (Xs,t)s≤t is the stochastic flow constructed from the graphical repre-
sentation as in (6.14). We continue to use the notation |x| :=

∑
i x(i). We

say that x is finite if |x| <∞.

Lemma 6.26 (Extinction versus unbounded growth) For each finite
x ∈ {0, 1}Zd

, one has

Xx
t = 0 for some t ≥ 0 or |Xx

t | −→
t→∞

∞ a.s. (6.57)

Proof Define

ρ(x) := P
[
Xx
t ̸= 0 ∀t ≥ 0

]
(x ∈ {0, 1}Zd

, |x| <∞).
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It is not hard to see that for each N ≥ 0 there exists an ε > 0 such that

|x| ≤ N implies ρ(x) ≤ 1− ε. (6.58)

We first argue why it is plausible that this implies (6.57) and then give a
rigorous proof. Imagine that |Xx

t | ̸→ ∞. Then, in view of (6.58), the process
infinitely often gets a chance of at least ε to die out, hence eventually it
should die out.

To make this rigorous, let

Ax := {Xx
t ̸= 0 ∀t ≥ 0} (x ∈ {0, 1}Zd

, |x| <∞).

denote the event that the process (Xx
t )t≥0 survives and let Ft be the σ-field

generated by the Poisson point processes used in our graphical representation
till time t. Then

ρ(Xx
t ) = P

[
Ax

∣∣Ft

]
−→
t→∞

1Ax a.s., (6.59)

where we have used an elementary result from probability theory that says
that if Fn is an increasing sequence of σ-fields and F∞ = σ(

⋃
nFn), then

limn P[A|Fn] = P[A|F∞] a.s. for each measurable event A. (See [Loe63, § 29,
Complement 10 (b)].) In view of (6.58), formula (6.59) implies (6.57).

Lemma 6.27 (Nonzero intersection) Let (Xt)t≥0 be a contact process
with a homogeneous nontrivial initial law P[X0 ∈ · ]. Then for each s, ε > 0
there exists an N ≥ 1 such that for any x ∈ {0, 1}Zd

|x| ≥ N implies P
[
x ∧Xs = 0

]
≤ ε.

Proof By duality,

P
[
x ∧Xs = 0

]
= P

[
Xx
s ∧X0 = 0

]
where X0 is independent of the graphical representation used to define Xx

s .
Set ΛM := {−M, . . . ,M}d. It is not hard to see that for each x ∈ {0, 1}Zd

with |x| ≥ N we can find an x′ ≤ x with |x′| ≥ N/|ΛM | such that the sets{
i+ ΛM : x′(i) = 1

}
are disjoint, where we define i + ΛM := {i + j : j ∈ ΛM}. Write ⇝i+ΛM

to
indicate the presence of an open path that stays in i+ ΛM and set

X{i} (M)
s :=

{
j ∈ Zd : (i, 0)⇝i+ΛM

(j, s)
}
.
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Then, using Hölder’s inequality9 in the inequality marked with an exclama-
tion mark, we have

P
[
Xx
s ∧X0 = 0

]
=

∫
P[X0 ∈ dy]P

[
Xx
s ∧ y = 0

]
≤

∫
P[X0 ∈ dy]P

[ ∨
i:x′(i)=1

X{i} (M)
s ∧ y = 0

]
=

∫
P[X0 ∈ dy]

∏
i:x′(i)=1

P
[
X{i} (M)
s ∧ y = 0

]
!

≤
∏

i:x′(i)=1

(∫
P[X0 ∈ dy]P

[
X{i} (M)
s ∧ y = 0

]|x′|)1/|x′|

=
∏

i:x′(i)=1

(∫
P[X0 ∈ dy]P

[
X{0} (M)
s ∧ y = 0

]|x′|)1/|x′|

=

∫
P[X0 ∈ dy]P

[
X{0} (M)
s ∧ y = 0

]|x′|
,

where we have used the homogeneity of P[X0 ∈ · ] in the last but one equality.
Our arguments so far show that |x| ≥ N implies that

P
[
x ∧Xs = 0

]
≤

∫
P[X0 ∈ dy]P

[
X{0} (M)
s ∧ y = 0

]N/|ΛM |
=: f(N,M).

Here, using the fact that

P
[
X{0} (M)
s ∧ y = 0

]
< 1 if y(i) = 1 for some i ∈ ΛM ,

we see that

lim
N↑∞

f(N,M) =

∫
P[X0 ∈ dy]1{y(i)=0 ∀i∈ΛM} = P[X0(i) = 0 ∀i ∈ ΛM ].

Since P[X0 ∈ · ] is nontrivial, we have that

lim
M↑∞

P[X0(i) = 0 ∀i ∈ ΛM ] = P[X0 = 0] = 0.

Together with our previous equation, this shows that

lim
M→∞

lim
N→∞

f(N,M) = 0.

By a diagonal argument, for each ε > 0 we can choose N and MN such that
f(N,MN) ≤ ε, proving our claim.

9Recall that Hölder’s inequality says that 1/p + 1/q = 1 implies ∥fg∥1 ≤ ∥f∥p∥g∥q,
where ∥f∥p := (

∫
|f |pdµ)1/p. By induction, this gives ∥

∏n
i=1 fi∥1 ≤

∏n
i=1 ∥fi∥n.
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Exercise 6.28 Show by counterexample that the statement of Lemma 6.27
is false for s = 0.

Proof of Theorem 6.25 As in the proof of Lemma 6.26, we set

ρ(x) := P
[
Xx
t ̸= 0 ∀t ≥ 0

]
(x ∈ {0, 1}Zd

, |x| <∞).

By Lemmas 4.32, 6.5, and 6.24, it suffices to show that

lim
t→∞

P
[
x ∧Xt ̸= 0

]
= ρ(x)

for all finite x ∈ {0, 1}Zd
. By duality, this is equivalent to showing that

lim
t→∞

P
[
Xx
t−s ∧Xs ̸= 0

]
= ρ(x)

(
x ∈ {0, 1}Zd

, |x| <∞
)
,

where (Xx
t )t≥0 and (Xt)t≥0 are independent and s > 0 is some fixed constant.

For each ε > 0, we can choose N as in Lemma 6.27, and write

P
[
Xx
t ∧Xs ̸= 0

]
=P

[
Xx
t ∧Xs ̸= 0

∣∣ |Xx
t | = 0

]
P
[
|Xx

t | = 0
]

+P
[
Xx
t ∧Xs ̸= 0

∣∣ 0 < |Xx
t | < N

]
P
[
0 < |Xx

t | < N
]

+P
[
Xx
t ∧Xs ̸= 0

∣∣ |Xx
t | ≥ N

]
P
[
|Xx

t | ≥ N
]
.

Here, by Lemma 6.26 and our choice of N ,

(i) P
[
Xx
t ∧Xs ̸= 0

∣∣ |Xx
t | = 0

]
= 0,

(ii) lim
t→∞

P
[
0 < |Xx

t | < N
]
= 0,

(iii) lim inf
t→∞

P
[
Xx
t ∧Xs ̸= 0

∣∣ |Xx
t | ≥ N

]
≥ 1− ε,

(iv) lim
t→∞

P
[
|Xx

t | ≥ N
]
= ρ(x),

from which we conclude that

(1− ε)ρ(x) ≤ lim inf
t→∞

P
[
Xx
t ∧Xs ̸= 0

]
≤ lim sup

t→∞
P
[
Xx
t ∧Xs ̸= 0

]
≤ ρ(x).

Since ε > 0 is arbitrary, our proof is complete.

Theorem 6.25 has a simple corollary.

Corollary 6.29 (Homogeneous invariant laws) All homogeneous invari-
ant laws of a contact process are convex combinations of δ0 and ν.
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Proof Let ν be any homogeneous invariant law. We will show that ν is a
convex combination of δ0 and ν. If ν = δ0 we are done. Otherwise, as in the
proof of Lemma 5.10, we can write ν = (1 − p)δ0 + pµ where p ∈ (0, 1] and
µ is a nontrivial homogeneous invariant law. But now Theorem 6.25 implies
that

µ = µPt =⇒
t→∞

ν,

so we conclude that µ = ν.

Recall from Exercise 5.14 that the function λ 7→ θ(λ) from (5.5) is right-
continuous everywhere. We let

λc := inf{λ ∈ R : θ(λ) > 0} (6.60)

denote the critical point of the contact process. As an application of Theo-
rem 6.25, we prove the following result.

Proposition 6.30 (Continuity above the critical point) The function
λ 7→ θ(λ) is left-continuous on (λc,∞).

Proof Let νλ denote the upper invariant law of the contact process with
infection rate λ. Fix λ > λc and choose λn ↑ λ. Since the space M1({0, 1}Z

d
)

of probability measures on {0, 1}Zd
, equipped with the topology of weak

convergence, is compact, it suffices to show that each subsequential limit ν∗
of the measures νλn equals νλ. By Proposition 4.37, each such subsequential
ν∗ limit is an invariant law. It clearly is also homogeneous. Since λ > λc, by
Lemma 5.10, the measures νλn are nontrivial for n large enough, and hence,
using also Proposition 5.11, the same is true for ν∗. By Corollary 6.29, we
conclude that ν∗ = ν. This argument shows that the map

(λc,∞) ∋ λ 7→ νλ

is left-continuous w.r.t. the topology of weak convergence. Since x 7→ x(i) is
a continuous function and θ(λ) is its expectation under νλ, the claim follows.

Exercise 6.31 Let (Xt)t≥0 be a additive interacting particle system and let
(Yt)t≥0 be it additive dual. Show that the upper invariant law ν of (Xt)t≥0 is
uniquely characterised by∫

ν(dx) 1{x ∧ y ̸= 0} = Py[Yt ̸= 0 ∀t ≥ 0]
(
y ∈ Sfin(Λ)

)
. (6.61)
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Exercise 6.32 Let (Xt)t≥0 be a cancellative interacting particle system and
let (Yt)t≥0 be it cancellative dual. Let π1/2 denote product measure with in-
tensity 1/2. Show that

Pπ1/2
[
Xt ∈ ·

]
=⇒
t→∞

ν1/2,

where ν1/2 is an invariant law that is uniquely characterised by the relation∫
ν1/2(dx)1{|x ∧ y| is odd} = 1

2
Py

[
Yt ̸= 0 ∀t ≥ 0

] (
y ∈ Sfin(Λ)

)
.

Because of the simililarity of this formula to the characterisation of the upper
invariant law of an additive interacting particle system in (6.61), the measure
ν1/2 is sometimes called the odd upper invariant law.

6.9 Equality of critical points

The contact voter model X on Zd, that has a mixture of contact process
and voter model dynamics, has been introduced in Section 6.6. It has two
parameters: the infection rate λ and the voter rate α. We say thatX survives
if

P1{0} [Xt ̸= 0 ∀t ≥ 0] > 0.

For each α ≥ 0, we define critical infection rates λc(α) and λ
′
c(α) by

λc(α) := inf
{
λ ∈ R : the upper invariant law is nontrivial

}
,

λ′c(α) := inf
{
λ ∈ R : the process survives

}
.

The paper [DLZ14] studies the asymptotics of λc(α) as α → ∞. Here, we will
use duality to prove a more simple statement, namely, that λc(α) = λ′c(α)
for all α ≥ 0.

For α = 0 (i.e., the pure contact process), we already know this, as it is a
direct consequence of Lemma 6.24, which follows from the self-duality of the
contact process. We will use a similar argument here using Proposition 6.20,
which says that the contact voter model is self-dual with respect to the duality
function ψr from (6.42) with r := λ/(α + λ). Note that if α = 0 (the pure
contact process), then r = 1 which corresponds to additive systems duality.

Proposition 6.33 (Characterization of the upper invariant law) Let
r := λ/(α+λ). The upper invariant law ν of the contact voter model satisfies∫

ν(dx)ψr(x, y) = Py
[
Xt = 0 for some t ≥ 0

]
(6.62)

for all finite y ∈ {0, 1}Zd
. In particular, λc(α) = λ′c(α) for all α ≥ 0.
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Proof Letting X1 and Xy denote the processes started in X1
0 = 1 and

Xy
0 = y, we observe that by Proposition 6.20,∫

ν(dx)ψr(x, y) = lim
t→∞

E
[
ψr(X

1
t , y)

]
= lim

t→∞
E
[
ψr(1, X

y
t )
]
= lim

t→∞
E
[
(1− r)|X

y
t |].

The proof of Lemma 6.26 carries over without a change to the contact voter
model, so

Xy
t = 0 for some t ≥ 0 or |Xy

t | −→
t→∞

∞ a.s.

Using this, we see that

lim
t→∞

E
[
(1− r)|X

y
t |] = Py

[
Xt = 0 for some t ≥ 0

]
,

completing the proof of (6.62).
Inserting y = 1{0} into (6.62), we see that∫

ν(dx) (1− r)x(0) = P1{0}
[
Xt = 0 for some t ≥ 0

]
,

or equivalently, using the fact that 1−(1−r)x(0) = rx(0) with r = λ/(α+λ),

λ

α + λ

∫
ν(dx)x(0) = P1{0}

[
Xt ̸= 0 ∀t ≥ 0

]
.

This shows that ν ̸= δ0 if and only if the process survives.



Chapter 7

Oriented percolation

7.1 Introduction

Although we have seen phase transitions in our simulations of interacting
particle systems in Chapter 1, and we have seen how phase transitions are
defined and can be calculated in the mean-field limit in Chapter 3, we have
not yet proved the existence of a phase transition for any of the spatial models
that we have seen so far.

In the present chapter, we fill this gap by proving that the contact process
on Zd undergoes a phase transition by showing that the critical point λc
defined in (6.60) is nontrivial in the sense that 0 < λc < ∞. Note that by
Lemma 6.24,

λc = inf{λ ∈ R : the contact process survives}
= inf{λ ∈ R : the upper invariant law is nontrivial}.

In Exercise 5.12, which is based on Theorem 4.29, we have already proved
for the process that

1

|N0|
≤ λc,

where |N0| = 2d or = (2R+1)d−1 is the size of the neighborhood of the origin
for the nearest-neighbor process and for the range R process, respectively. In
view of this, it suffices to prove that λc <∞. A simple comparison argument
(Exercise 5.18) shows that if the nearest-neighbor one-dimensional contact
process survives for some value of λ, then the same is true for the nearest-
neighbor and range R processes in dimensions d ≥ 2. Thus, it suffices to
show that λc <∞ for the nearest-neighbor process in dimension one.

The method we will use is comparison with oriented percolation. This
neither leads to a particularly short proof nor does it yield a very good up-

183
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per bound on λc, but it has the advantage that it is a very robust method
that can be applied to many other interacting particle systems. For exam-
ple, in [SS08] and [SS15a], the method is applied to rebellious voter models
and systems with cooperative branching and coalescencing random walk dy-
namics, respectively. An important paper for propagating the technique was
[Dur91], where this was for the first time applied to non-monotone systems
and it was shown that “basically, all one needs” to prove survival is that a
particle system spreads into empty areas at a positive speed.

7.2 Oriented percolation

In order to prepare for the proof that the critical infection rate of the contact
process is finite, in the present section, we will study oriented (or directed)
bond percolation on Zd. For i, j ∈ Zd, we write i ≤ j if i = (i1, . . . , id) and
j = (j1, . . . , jd) satisfy ik ≤ jk for all k = 1, . . . , d. Let

A :=
{
(i, j) : i, j ∈ Zd, i ≤ j, |i− j| = 1

}
. (7.1)

We view Zd as an infinite directed graph, where elements (i, j) ∈ A represent
arrows (or directed bonds) between neighbouring sites. Note that all arrows
point ‘upwards’ in the sense of the natural order on Zd.

Now fix some percolation parameter p ∈ [0, 1] and let (ω(i,j))(i,j)∈A be a
collection of i.i.d. Bernoulli random variables with P[ω(i,j) = 1] = p. We say
that there is an open path from a site i ∈ Zd to j ∈ Zd if there exist n ≥ 0
and a function γ : {0, . . . , n} → Zd such that γ(0) = i, γ(n) = j, and

(γ(k − 1), γ(k)) ∈ A and ω(γ(k−1),γ(k)) = 1 (k = 1, . . . , n).

We denote the presence of an open path by ⇝. Note that open paths must
walk upwards in the sense of the order on Zd. We write 0 ⇝ ∞ to indicate
the existence of an infinite open path starting at the origin 0 ∈ Zd.
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∞

Exercise 7.1 Show that the number of vertices that can be reached by an
open path from the origin is infinite if and only if there starts an infinite open
path in the origin.

Theorem 7.2 (Critical percolation parameter) For oriented percolation
in dimensions d ≥ 2, there exists a critical parameter pc = pc(d) such that
P[0⇝∞] = 0 for p < pc and P[0⇝∞] > 0 for p > pc. One has

1

d
≤ pc(d) ≤

8

9
.

Proof Set
pc := inf

{
p ∈ [0, 1] : P[0⇝∞] > 0

}
.

A simple monotone coupling argument shows that P[0⇝∞] = 0 for p < pc
and P[0⇝∞] > 0 for p > pc.

To prove that 0 < pc, let Nn denote the number of open paths of length n
starting in 0. Since there are dn different upward paths of length n starting
at the origin, and each path has probability pn to be open, we see that

P[Nn ̸= 0] ≤ E[Nn] = dnpn.

Since the events {Nn ̸= 0} decrease as n → ∞ to the event {0 ⇝ ∞},
taking the limit, we see that P[0 ⇝ ∞] = 0 for all p < 1/d, and therefore
1/d ≤ pc(d).

To prove that pc(d) ≤ 8/9 for d ≥ 2 it suffices to consider the case d = 2,
for we may view Z2 as a subset of Zd (d ≥ 3) and then, if there is an open
path that stays in Z2, then certainly there is an open path in Zd. (Note, by
the way, that in d = 1 one has P[0⇝∞] = 0 for all p < 1 hence pc(1) = 1.)

We will use a Peierls argument, named after R. Peierls who used a similar
argument in 1936 for the Ising model [Pei36]. In Figure 7.1, we have drawn
a piece of Z2 with a random collection of open arrows. Sites i ∈ Z2 such that
0⇝ i are drawn green. These sites are called wet. Consider the dual lattice

Ẑ2 := {(n+ 1
2
,m+ 1

2
) : (n,m) ∈ Z2}.
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Figure 7.1: Peierls argument for oriented percolation. The green cluster of
points reachable from the origin is surrounded by a red contour. The north
and west steps of this contour cannot cross open arrows.

If there are only finitely many wet sites, then the set of all non-wet sites
contains one infinite connected component. (Here ‘connected’ is to be inter-
preted in terms of the unoriented graph N2 with nearest-neighbor edges.) Let
γ be the boundary of this infinite component. Then γ is a nearest-neighbor
path in Ẑ2, starting in some point (k + 1

2
,−1

2
) and ending in some point

(−1
2
,m + 1

2
) with k,m ≥ 0, such that all sites immediately to the left of γ

are wet, and no open arrows starting at these sites cross γ. In Figure 7.1, we
have indicated γ with red arrows.

From these considerations, we see that the following statement is true:
one has 0 ̸⇝∞ if and only if there exists a path in Ẑ2, starting in some point
(k+ 1

2
,−1

2
) (k ≥ 0), ending in some point (−1

2
,m+ 1

2
) (m ≥ 0), and passing

to the northeast of the origin, such that all arrows of γ in the north and west
directions (solid red arrows in the figure) are not crossed by an open arrow.
LetMn be the number of paths of length n with these properties. Since there
are n− 1 dual sites from where such a path of length n can start, and since
in each step, there are three directions where it can go, there are less than
n3n paths of length n with these properties. Since each path must make at
least half of its steps in the north and west directions, the expected number
of these paths satisfies

E
[ ∞∑
n=2

Mn

]
≤

∞∑
n=2

n3n(1− p)n/2 <∞ (p > 8
9
)

and therefore

P[0 ̸⇝∞] ≤ P
[ ∞∑
n=2

Mn ≥ 1
]
≤ E

[ ∞∑
n=2

Mn

]
<∞.
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This does not quite prove what we want yet, since we need the right-hand
side of this equation to be less than one. To fix this, we use a trick. (This
part of the argument comes from [Dur88].) Set Dm := {0, . . . ,m}2 and let
us say that a set i is “wet” if j ⇝ i for some j ∈ Dm. If Dm ̸⇝∞, then the
set of wet sites must be finite, and, just as before, there must be a dual path
surrounding this set of wet sites. Then, by the same arguments as before

P[Dm ̸⇝∞] ≤ P
[ ∞∑
n=2m

Mn ≥ 1
]
≤ E

[ ∞∑
n=2m

Mn

]
≤

∞∑
n=2m

n3n(1− p)n/2,

where now the sum starts at 2m since the dual path must surround Dm

and hence have length 2m at least. If p > 8
9
, then the sum is finite so it

can be made arbitrarily small by choosing m suffiently large. It follows that
P[Dm ⇝ ∞] > 0 for some m, hence P[i ⇝ ∞] > 0 for at least one i ∈ Dm,
and therefore, by translation invariance, also P[0⇝∞] > 0.

7.3 Survival

The main result of the present chapter is the following theorem, which rigor-
ously establishes the existence of a phase transition for the contact process
on Zd.

Theorem 7.3 (Nontrivial critical point) For the nearest-neighbor or
range R contact process on Zd (d ≥ 1), the critical infection rate satisfies
0 < λc <∞.

Proof As already mentioned in Section 7.1, the fact that 0 < λc has already
been proved in Exercise 5.12. By Exercise 5.18, to prove that λc < ∞, it
suffices to consider the one-dimensional nearest-neighbor case.

We will set up a comparison between the graphical representation of the
one-dimensional nearest-neighbor contact process and oriented bond perco-
lation on Z2; see Figure 7.2.

We fix T > 0 and define a map ψ : Z2 → Z× R by

ψ(i) =
(
κi, σi

)
:=

(
i1 − i2, T (i1 + i2)

) (
i = (i1, i2) ∈ Z2

)
.

The points (κi, σi) with i ∈ N2 are indicated by open circles in Figure 7.2. As
before, we make Z2 into an oriented graph by defining a collection of arrows
A as in (7.1). We wish to define a collection (ω(i,j))(i,j)∈A of Bernoulli random
variables such that

ω(i,j) = 1 implies (κi, σi)⇝ (κj, σj)
(
(i, j) ∈ A

)
.
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Figure 7.2: Comparison with oriented percolation. Good events in the graph-
ical representation of the contact process (blue) correspond to open percola-
tion arrows (black). An infinite open path along percolation arrows implies
an infinite open path in the graphical representation of the contact process.

For each i ∈ Z2 we let

τ±i := inf{t ≥ σi : at time t there is an infection arrow from κi to κi ± 1}

denote the first time after σi that an arrow points out of κi to the left or
right, respectively, and we define “good events”

G±
i :=

{
τ±i < σi + T and there are no blocking symbols on

{κi} × (σi, τ
±
i ] and {κi ± 1} × (τ±i , σi + T ]

}
.

Clearly,
G−
i implies ψ(i1, i2)⇝ ψ(i1, i2 + 1),

and G+
i implies ψ(i1, i2)⇝ ψ(i1 + 1, i2).

In view of this, we set

ω((i1, i2), (i1, i2 + 1)) := 1G−
i

and ω((i1, i2), (i1 + 1, i2))
:= 1G+

i
.

Then the existence of an infinite open path in the oriented percolation model
defined by the (ω(i,j))(i,j)∈A implies the existence of an infinite open path in
the graphical representation of the contact process, and hence survival of the
latter.
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Figure 7.3: Good events use information from partially overlapping regions
of space-time.

We observe that

p := P[ω(i,j) = 1] = P(G±
i ) = (1− e−λT )e−T

(
(i, j) ∈ A

)
, (7.2)

which tends to one as λ → ∞ while T → 0 in such a way that λT → ∞. It
follows that for λ sufficiently large, by a suitable choice of T , we can make
p as close to one as we wish. We would like to conclude from this that
P[(0, 0) ⇝ ∞] > 0 for the oriented percolation defined by the ω(i,j)’s, and
therefore also P[(0, 0)⇝∞] > 0 for the contact process.

Unfortunately, life is not quite so simple, since as shown in Figure 7.3, the
good events G±

i have been defined using information from partially overlap-
ping space-time regions of the graphical representation of the contact process,
and in view of this are not independent. They are, however, 3-dependent in
the sense of Theorem 7.4 below, so by applying that result we can estimate
the Bernoulli random variables (ω(i,j))(i,j)∈A from below by i.i.d. Bernoulli
random variables (ω̃(i,j))(i,j)∈A whose success probability p̃ can be made ar-
bitrarily close to one, so we are done.

7.4 K-dependence

To finish the proof of Theorem 7.3 we need to provide the proof of Theo-
rem 7.4 below, which states that k-dependent random variables with succes
probability p can be estimated from below by i.i.d. random variables with a
succes probability p̃ that tends to one as p→ 1.

By definition, for k ≥ 0, one says that a collection (Xi)i∈Zd of random
variables, indexed by the integer square lattice, is k-dependent if for any
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A,B ⊂ Zd with
inf{|i− j| : i ∈ A, j ∈ B} > k,

the collections of random variables (Xi)i∈A and (Xj)j∈B are independent of
each other. Note that in particular, 0-dependence means independence.

It is a bit unfortunate that the traditional definition of k-dependence is
strictly tied to the integer lattice Zd, while the structure of Zd has little to
do with the essential idea. Therefore, in these lecture notes, we will deviate
from tradition and replace(!) the definition above by the following definition.

Let Λ be countable and let (Xi)i∈Λ be a countable collection of randm
variables. Then we will say that the (Xi)i∈Λ are K-dependent if for each
i ∈ Λ there exists a ∆i ⊂ Λ with i ∈ ∆i and |∆i| ≤ K, such that

χi is independent of (χj)j∈Λ\∆i
.

Note that according to our new definition, 1-dependence means indepen-
dence. The next theorem is taken from [Lig99, Thm B26], who in turn cites
[LSS97].

Theorem 7.4 (K-dependence) Let Λ be a countable set and let p ∈ (0, 1),
K < ∞. Assume that (χi)i∈Λ are K-dependent Bernoulli random variables
with P [χi = 1] ≥ p (i ∈ Λ), and that

p̃ :=
(
1− (1− p)1/K

)2 ≥ 1
4
.

Then it is possible to couple (χi)i∈Λ to a collection of independent Bernoulli
random variables (χ̃i)i∈Λ with

P [χ̃i = 1] = p̃ (i ∈ Λ), (7.3)

in such a way that χ̃i ≤ χi for all i ∈ Λ.

Proof Since we can always choose some arbitrary denumeration of Λ, we
may assume that Λ = N. Our strategy will be as follows. We will choose
{0, 1}-valued random variables (ψi)i∈Λ with P [ψi = 1] = r, independent of
each other and of the (χi)i∈N, and put

χ′
i := ψiχi (i ∈ N).

Note that the (χ′
i)i∈N are a ‘thinned out’ version of the (χi)i∈N. In particular,

χ′
i ≤ χi (i ∈ N). We will show that for an appropriate choice of r,

P [χ′
n = 1 |χ′

0, . . . , χ
′
n−1] ≥ p̃ (7.4)
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for all n ≥ 0, and we will show that this implies that the (χ′
i)i∈N can be

coupled to independent (χ̃i)i∈Λ as in (7.3) in such a way that χ̃i ≤ χ′
i ≤ χi

(i ∈ N).
We start with the latter claim. Imagine that (7.4) holds. Set p′0 :=

P [χ′
0 = 1] and

p′n(ε0, . . . , εn−1) := P [χ′
n = 1 |χ′

0 = ε0, . . . , χ
′
n−1 = εn−1]

whenever P [χ′
0 = ε0, . . . , χ

′
n−1 = εn−1] > 0. Let (Un)n∈N be independent,

uniformly distributed [0, 1]-valued random variables. Set

χ̃n := 1{Un < p̃} (n ∈ N)

and define inductively

χ′
n := 1{Un < p′n(χ

′
0, . . . , χ

′
n−1)} (n ∈ N).

Then

P [χ′
n = εn, . . . , χ

′
0 = ε0] = p′n(ε0, . . . , εn−1) · · · p′1(ε0) · p′0.

This shows that these new χ′
n’s have the same distribution as the old ones,

and they are coupled to χ̃i’s as in (7.3) in such a way that χ̃i ≤ χ′
i.

What makes life complicated is that (7.4) does not always hold for the
original (χi)i∈N, which is why we have to work with the thinned variables
(χ′

i)i∈N.
1 We observe that

P [χ′
n = 1 |χ′

0 = ε0, . . . , χ
′
n−1 = εn−1]

= rP [χn = 1 |χ′
0 = ε0, . . . , χ

′
n−1 = εn−1].

(7.5)

We will prove by induction that for an appropriate choice of r,

P [χn = 0 |χ′
0 = ε0, . . . , χ

′
n−1 = εn−1] ≤ 1− r. (7.6)

Note that this is true for n = 0 provided that r ≤ p. Let us put

E0 := {i ∈ ∆n : 0 ≤ i ≤ n− 1, εi = 0},
E1 := {i ∈ ∆n : 0 ≤ i ≤ n− 1, εi = 1},
F := {i ̸∈ ∆n : 0 ≤ i ≤ n− 1}.

1Indeed, let (ϕn)n≥0 be independent {0, 1}-valued random variables with P [ϕn = 1] =√
p for some p < 1, and put χn := ϕnϕn+1. Then the (χn)n≥0 are 3-dependent with

P [χn = 1] = p, but P [χn = 1|χn−1 = 0, χn−2 = 1] = 0.
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Then

P [χn = 0 |χ′
0 = ε0, . . . , χ

′
n−1 = εn−1]

= P
[
χn = 0

∣∣χ′
i = 0 ∀i ∈ E0, χi = 1 = ψi ∀i ∈ E1, χ

′
i = εi ∀i ∈ F

]
= P

[
χn = 0

∣∣χ′
i = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ

′
i = εi ∀i ∈ F

]
=
P
[
χn = 0, χ′

i = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ
′
i = εi ∀i ∈ F

]
P
[
χ′
i = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ′

i = εi ∀i ∈ F
]

≤
P
[
χn = 0, χ′

i = εi ∀i ∈ F
]

P
[
ψi = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ′

i = εi ∀i ∈ F
]

=
P
[
χn = 0

∣∣χ′
i = εi ∀i ∈ F

]
P
[
ψi = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1

∣∣χ′
i = εi ∀i ∈ F

]
≤ 1− p

(1− r)|E0|P
[
χi = 1 ∀i ∈ E1

∣∣χ′
i = εi ∀i ∈ F

] ≤ 1− p

(1− r)|E0| r|E1|
,

(7.7)
where in the last step we have used K-dependence and the (nontrivial) fact
that

P
[
χi = 1 ∀i ∈ E1

∣∣χ′
i = εi ∀i ∈ F

]
≥ r|E1|. (7.8)

We claim that (7.8) is a consequence of the induction hypothesis (7.6). In-
deed, we may assume that the induction hypothesis (7.6) holds regardless
of the ordering of the first n elements, so without loss of generality we may
assume that E1 = {n−1, . . . ,m} and F = {m−1, . . . , 0}, for some m. Then
the left-hand side of (7.8) may be written as

n−1∏
k=m

P
[
χk = 1

∣∣χi = 1 ∀m ≤ i < k, χ′
i = εi ∀0 ≤ i < m

]
=

n−1∏
k=m

P
[
χk = 1

∣∣χ′
i = 1 ∀m ≤ i < k, χ′

i = εi ∀0 ≤ i < m
]
≥ rn−m.

If we assume moreover that r ≥ 1
2
, then r|E1| ≥ (1− r)|E1| and therefore the

right-hand side of (7.7) can be further estimated as

1− p

(1− r)|E0| r|E1|
≤ 1− p

(1− r)|∆n∩{0,...,n−1}| ≤
1− p

(1− r)K−1
.

We see that in order for our proof to work, we need 1
2
≤ r ≤ p and

1− p

(1− r)K−1
≤ 1− r. (7.9)
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In particular, choosing r = 1 − (1 − p)1/K yields equality in (7.9). Having
proved (7.6), we see by (7.5) that (7.4) holds provided that we put p̃ := r2.

Exercise 7.5 Combine Theorem 7.2 and formulas (7.2) and (7.3) to derive
an explicit upper bound on the critical infection rate λc of the one-dimensional
contact process.

Exercise 7.6 The one-dimensional contact process with double deaths has
been introduced just before Exercise 5.15. Use comparison with oriented per-
colation to prove that the one-dimensional contact process with double deaths
survives with positive probability if its branching rate λ is large enough. When
you apply Theorem 7.4, what value of K do you (at least) need to use?

Exercise 7.7 Use the previous exercise and Exercise 5.15 to conclude that
for the cooperative branching process considered there, if λ is large enough,
then: 1◦ If the process is started with at least two particles, then there is a
positive probability that the number of particles will always be at least two.
2◦ The upper invariant law is nontrivial.

Exercise 7.8 Assume that there exists some t > 0 such that the contact
process satisfies

r := E1{0}
[
|Xt|

]
< 1.

Show that this then implies that

E1{0}
[
|Xnt|

]
≤ rn (n ≥ 0)

and the process started in any finite initial state dies out a.s. Can you use
this to improve the lower bound 1/|Ni| ≤ λc from Excercise 5.12, e.g., for
the one-dimensional nearest-neighbor process?
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[Dur92] R. Durrett. Stochastic growth models: Bounds on critical values.
J. Appl. Probab. 29(1) (1992), 11–20.

[EK86] S.N. Ethier and T.G. Kurtz. Markov Processes: Characterization
and Convergence. John Wiley & Sons, New York, 1986.

[FM01] J.A. Fill and M. Machida. Stochastic monotonicity and realizable
monotonicity. Ann. Probab. 29(2), (2001), 938–978.

[GB07] T. Gobron and I. Merola. First-order phase transition in Potts
models with finite-range interactions. J. Stat. Phys. 126(3) (2007),
507–583.
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mean-field, 77
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critical
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critical behavior, 23
critical point, 180, 181
Curie-Weiss model, 66

death map, 14
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Dobrushin, 5
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double death map, 137
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lattice, 185
duality

function, 142
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of Markov processes, 143
of stochastic flows, 142
pathwise, 143
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embedded Markov chain, 39
ergodic interacting particle system,
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exclusion process, 27
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of Markov processes, 38
explosion time, 39
explosive

Markov process, 39
extremal invariant law, 132
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graph of an operator, 88

Hölder’s inequality, 178
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homogeneous, 176
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independent increments

of a stochastic flow, 52
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integer lattice, 10
intensity
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of a random measure, 46

interacting particle system, 9
intertwining of Markov processes, 164
invariant law, 114
Ising model, 16

mean-field, 66

k-dependence, 190
killing map, 28
Kolmogorov

backward equation, 40

Laplace equation, 89
lattice, 9, 95
Liggett, 6
Lloyd-Sudbury duality, 166
local state space, 9
local map, 58
local state, 9
local state space, 95
locally finite measure, 46
lower invariant law, 130

lower semi-continuous function, 144

magnetization
spontaneous, 19

Markov semigroup, 36, 40
maximum principle

positive, 90
metastable behavior, 71
minimal solution

to backward equation, 40
monotone

function, 125
interacting particle system, 128
probability kernel, 127

monotone representability, 127, 128

nearest neighbor, 10, 11
nontrivial

law, 134, 176

odd upper invariant law, 181
one-point compactification, 51
open path

in graphical representation, 148
oriented percolation, 184

oriented percolation, 184

path
open
oriented percolation, 184

Peierls argument, 185
percolation

directed, 184
oriented, 184
parameter, 184

phase transition, 20
piecewise constant, 36
Poisson point measure, 47
Poisson point set, 47
positive maximum principle, 90, 93
Potts model, 16
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site, 9
Skorohod topology, 87
Spitzer, 5
spontaneous magnetization, 19, 136
state space, 9
stationary

stochastic flow, 52, 53
stationary process, 114
stochastic flow, 52

backward, 142
stochastic order, 126
subprobability kernel, 38, 94
summable variation, 107
supremumnorm, 85

thinning, 48, 166
threshold voter model, 163
transition kernel, 36
transition probability

continuous, 86
translation

invariant, 176
operator, 176

two-stage contact process, 16
type of a site, 11

upper invariant law, 130
odd, 181

variation
of a function on SΛ, 106

voter model, 61
voter model map, 11

weak convergence, 85
wet sites, 185
Wright-Fisher diffusion, 80, 92
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