
Exam Quantum Probability
May 28nd, 2025

Hints: You can use all results proved in the lecture notes (without proving them your-
selves), as well as claims one is supposed to prove in exercises from the lecture notes.
You can also use a claim you are supposed to prove in one excercise below to solve
another excercise (even if you did not prove the claim). Partial solutions also yield
points.

Exercise 1 (A non-ideal measurement) Let H be a complex inner product space
with orthonormal basis {e(0), e(1)} and let Pi := |e(i)⟩⟨e(i)| denote the orthogonal
projection on the i-th basis vector (i = 0, 1). For each θ ∈ [0, π/2], we define hermitian
operators Vθ(0) and Vθ(1) in L(H) by

Vθ(0) := cos(θ)P0 + sin(θ)P1 and Vθ(1) := sin(θ)P0 + cos(θ)P1,

and we define Tθ : L(H⊗H) → L(H) by

Tθ(A⊗B) :=
1∑
i=0

⟨e(i)|B|e(i)⟩Vθ(i)AVθ(i)
(
A,B ∈ L(H)

)
.

(a) Show that Tθ is of the form

Tθ(A⊗B) :=
1∑
i=0

Wθ(i)(A⊗B)Wθ(i)
∗ (

A,B ∈ L(H)
)
,

where Wθ(i) : H⊗H → H is given by

Wθ(i)
(
ψ(0)⊗ ψ(1)

)
:= ⟨e(i)|ψ(1)⟩Vθ(i)ψ(0)

(
ψ(0), ψ(1) ∈ H

)
.

(b) Show that the dual map T ′
θ : L(H)′ → L(H⊗H)′ is an operation.

(c) Let ρ be a state on L(H). Show that the first marginal of T ′
θρ is given by

S ′
θρ(A) := (T ′

θρ)(A⊗ 1) =
1∑
i=0

ρ
(
Vθ(i)AVθ(i)

) (
A ∈ L(H)

)
.

(d) Show that S ′
π/4ρ = ρ for each state ρ on L(H).

(e) Let ρ be the state on L(H) defined as

ρ(A) :=
1∑
i=0

1
2
⟨e(i)|A|e(i)⟩

(
A ∈ L(H)

)
.

Calculate the probabilities

(T ′
θρ)(Pi ⊗ Pj) (0 ≤ i, j ≤ 1).
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Exercise 2 (A little bit of eavesdropping) Let H be a complex inner product
space with orthonormal basis {e(0), e(1)}. For each α ∈ R, let {eα(0), eα(1)} be the
orthonormal basis given by

eα(0) := cos(α)e(0) + sin(α)e(1) and eα(1) := eα+π/2(0) = − sin(α)e(0) + cos(α)e(1).

We set eα := eα(0) and observe that eα(1) = eα+π/2. We set Pα := |eα⟩⟨eα| and let

ψ :=
1√
2

(
eα(0)⊗ eα(0) + eα(1)⊗ eα(1)

)
be the entangled state from formula (7.3) of the lecture notes. It has been proved there
that this definition does not depend on the angle α. Let σ be the pure state

σ(A) := ρψ(A) = ⟨ψ|A|ψ⟩
(
A ∈ L(H⊗H)

)
.

As in Section 9.2 of the lecture note, Alice prepares two fotons in the state σ, keeps the
first one for herself, and sends the second one to Bob.

(a) Let ρ, defined as
ρ(A) := σ(1⊗ A)

(
A ∈ L(H)

)
,

denote the second marginal of σ. Show that

ρ(A) :=
1∑
i=0

1
2
⟨e(i)|A|e(i)⟩

(
A ∈ L(H)

)
.

Eve is eavesdropping on Alice and Bob. She performs the operation T ′
θ of Exercise 1 on

Bob’s foton, creating a second foton for herself that in view of part (e) of Exercise 1 is
positively correlated with Bob’s foton as long as θ ∈ [0, π/4]. If θ = 0, then Eve has full
information about the secret code that Bob receives, while in the other extreme θ = π/4
Eve has no information at all. By choosing 0 < θ < π/4, Eve hopes to get at least
some information about the secret code without being detected. By eavesdropping, Eve
disturbs the state σ. The new state is

σ′(A⊗B) := σ
(
A⊗ Sθ(B)

) (
A,B ∈ L(H)

)
,

where

Sθ(B) :=
1∑

k=0

Vθ(k)BVθ(k)
(
B ∈ L(H)

)
,

and Vθ(0), Vθ(1) are defined as in Exercise 1. For α, β ∈ R, we define

πα,β(+,−) := σ(Pα ⊗ Pβ+π/2) and π′
α,β(+,−) := σ′(Pα ⊗ Pβ+π/2).
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(b) Show that

π′
α,β(+,−) = 1

2

1∑
k=0

∥Pβ+π/2Vθ(k)eα∥2 (α, β ∈ R).

It has been shown in the lecture notes that

π0,0(+,−) = 0, πγ,0(+,−) = π0,−γ(+,−) = 1
2
sin(γ)2, πγ,−γ(+,−) = 1

2
sin(2γ)2.

Alice and Bob use the fact that π0,0(+,−) = 0 to send the secret code without trans-
mission errors. Moreover, they used the fact that for γ = π/6,

πγ,0(+,−) + π0,−γ(+,−)− πγ,−γ(+,−) = −1
8
< 0

to check that the state σ is entangled, which they view as proof that Eve has not been
eavesdropping.

(c) Calculate

π′
0,0(+,−), π′

γ,0(+,−), π′
0,−γ(+,−), and π′

γ,−γ(+,−).

Hint: First derive a formula for π′
α,β(+,−). You can use that Pαeβ = cos(β − α)eα

(α, β ∈ R).

(d) Prove that σ′ is entangled if cos(θ − π/4)2 >
√
2/3.
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Solutions

Ex 1
(a) The adjoint Wθ(i)

∗ of Wθ(i) is the operator Wθ(i)
∗ : H → H⊗H that is uniquely

characterised by the fact that for each ϕ, ψ(0), ψ(1) ∈ H

⟨ψ(0)⊗ ψ(1)|Wθ(i)
∗ϕ⟩ = ⟨Wθ(i)

(
ψ(0)⊗ ψ(1)

)
|ϕ⟩ = ⟨e(i)|ψ(1)⟩∗⟨Vθ(i)ψ(0)|ϕ⟩

= ⟨ψ(1)|e(i)⟩⟨ψ(0)|Vθ(i)ϕ⟩ = ⟨ψ(0)⊗ ψ(1)|Vθ(i)ϕ⊗ e(i)⟩.

Since this holds for all ψ(0), ψ(1) ∈ H, we conclude that

Wθ(i)
∗ϕ = Vθ(i)ϕ⊗ e(i)

(
ϕ ∈ H, i = 0, 1).

It follows that for each ϕ ∈ H and A,B ∈ L(H), we have

1∑
i=0

Wθ(i)(A⊗B)Wθ(i)
∗ϕ =

1∑
i=0

Wθ(i)(A⊗B)(Vθ(i)ϕ⊗ e(i))

=
1∑
i=0

Wθ(i)(AVθ(i)ϕ⊗Be(i)) =
1∑
i=0

⟨e(i)|B|e(i)⟩Vθ(i)AVθ(i)ϕ = Tθ(A⊗B).

(b) By part (a) and Stinespring’s theorem, Tθ is a completely positive map. It remains
to show that Tθ(1⊗ 1) = 1, where 1⊗ 1 is the identity in L(H⊗H). We calculate

Tθ(1⊗ 1) =
1∑
i=0

⟨e(i)|1|e(i)⟩Vθ(i)1Vθ(i) =
1∑
i=0

Vθ(i)Vθ(i)

=
(
cos(θ)P0 + sin(θ)P1

)2
+
(
sin(θ)P0 + cos(θ)P1

)2
=

(
cos(θ)2P0 + sin(θ)2P1

)
+
(
sin(θ)2P0 + cos(θ)2P1

)
= P0 + P1 = 1.

(c) Immediate from the definition of Tθ, since

Tθ(A⊗ 1) :=
1∑
i=0

⟨e(i)|1|e(i)⟩Vθ(i)AVθ(i) =
1∑
i=0

Vθ(i)AVθ(i) =: Sθ(A)
(
A ∈ L(H)

)
,

which then gives

(T ′
θρ)(A⊗ 1) = ρ

(
Tθ(A⊗ 1)

)
= ρ

(
Sθ(A)

)
= ρ

( 1∑
i=0

Vθ(i)AVθ(i)
)
=

1∑
i=0

ρ
(
Vθ(i)AVθ(i)

) (
A ∈ L(H)

)
.

(d) We observe that

Vπ/4(0) = (cos(π/4)P0 + sin(π/4)P1) =
1√
2
(P0 + P1) =

1√
2
1,

Vπ/4(1) = (sin(π/4)P0 + cos(π/4)P1) =
1√
2
(P0 + P1) =

1√
2
1.

5



As a result

S ′
π/4ρ(A) =

1
2

1∑
i=0

ρ(1A1) = ρ(A)
(
A ∈ L(H)

)
.

(e)

(T ′
θρ)(Pi⊗Pj) = ρ

(
Tθ(Pi⊗Pj)

)
=

1∑
k=0

⟨e(k)|Pj|e(k)⟩ρ
(
Vθ(k)PiVθ(k)

)
= ρ

(
Vθ(j)PiVθ(j)

)
.

It follows that

(T ′
θρ)(P0 ⊗ P0) = ρ

(
(cos(θ)P0 + sin(θ)P1)P0(cos(θ)P0 + sin(θ)P1)

)
= cos(θ)2ρ(P0),

(T ′
θρ)(P0 ⊗ P1) = ρ

(
(sin(θ)P0 + cos(θ)P1)P0(sin(θ)P0 + cos(θ)P1)

)
= sin(θ)2ρ(P0),

(T ′
θρ)(P1 ⊗ P0) = ρ

(
(cos(θ)P0 + sin(θ)P1)P1(cos(θ)P0 + sin(θ)P1)

)
= sin(θ)2ρ(P1),

(T ′
θρ)(P1 ⊗ P1) = ρ

(
(sin(θ)P0 + cos(θ)P1)P1(sin(θ)P0 + cos(θ)P1)

)
= cos(θ)2ρ(P1).

Here

ρ(Pi) :=
1
2

1∑
j=0

1
2
⟨e(j)|Pi|e(j)⟩ = 1

2
(i = 0, 1),

which gives
(T ′

θρ)(P0 ⊗ P0) =
1
2
cos(θ)2,

(T ′
θρ)(P0 ⊗ P1) =

1
2
sin(θ)2,

(T ′
θρ)(P1 ⊗ P0) =

1
2
sin(θ)2,

(T ′
θρ)(P1 ⊗ P1) =

1
2
cos(θ)2.

Ex 2
(a) This follows by writing

ρ(A) = σ(1⊗ A) = ⟨ψ|1⊗ A|ψ⟩ = 1
2

1∑
i=0

1∑
j=0

⟨e(i)⊗ e(i)|1⊗ A|e(j)⊗ e(j)⟩

= 1
2

1∑
i=0

1∑
j=0

⟨e(i)|e(j)⟩⟨e(i)|A|e(j)⟩ = 1
2

1∑
i=0

⟨e(i)|A|e(i)⟩ = ρ(A)
(
A ∈ L(H)

)
.
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(b) We have

π′
α,β(+,−) = σ′(Pα ⊗ Pβ+π/2) = σ

(
Pα ⊗ Sθ(Pβ+π/2)

)
=

1∑
k=0

⟨ψ|Pα ⊗ Vθ(k)Pβ+π/2Vθ(k)|ψ⟩

= 1
2

1∑
i=0

1∑
j=0

1∑
k=0

⟨eα(i)⊗ eα(i)|Pα ⊗ Vθ(k)Pβ+π/2Vθ(k)|eα(j)⊗ eα(j)⟩

= 1
2

1∑
i=0

1∑
j=0

1∑
k=0

⟨Pαeα(i)⊗ Pβ+π/2Vθ(k)eα(i)|Pαeα(j)⊗ Pβ+π/2Vθ(k)eα(j)⟩

= 1
2

1∑
i=0

1∑
j=0

1∑
k=0

⟨Pαeα(i)|Pαeα(j)⟩⟨Pβ+π/2Vθ(k)eα(i)|Pβ+π/2Vθ(k)eα(j)⟩

= 1
2

1∑
k=0

⟨Pβ+π/2Vθ(k)eα(0)|Pβ+π/2Vθ(k)eα(0)⟩ = 1
2

1∑
k=0

∥Pβ+π/2Vθ(k)eα∥2.

(c) Using the hint, we have

Pβ+π/2Vθ(0)eα=Pβ+π/2
(
cos(θ)P0 + sin(θ)Pπ/2

)
eα

=Pβ+π/2
(
cos(θ) cos(α)e0 + sin(θ) cos(α− π/2)eπ/2

)
=
(
cos(θ) cos(α) cos(β + π/2) + sin(θ) cos(α− π/2) cos(β)

)
eβ+π/2

and

Pβ+π/2Vθ(1)eα=Pβ+π/2
(
sin(θ)P0 + cos(θ)Pπ/2

)
eα

=Pβ+π/2
(
sin(θ) cos(α)e0 + cos(θ) cos(α− π/2)eπ/2

)
=
(
sin(θ) cos(α) cos(β + π/2) + cos(θ) cos(α− π/2) cos(β)

)
eβ+π/2.

Using part (b), it follows that

π′
α,β(+,−)= 1

2

(
cos(θ) cos(α) cos(β + π/2) + sin(θ) cos(α− π/2) cos(β)

)2
+1

2

(
sin(θ) cos(α) cos(β + π/2) + cos(θ) cos(α− π/2) cos(β)

)2
= 1

2

(
− cos(θ) cos(α) sin(β) + sin(θ) sin(α) cos(β)

)2
+1

2

(
− sin(θ) cos(α) sin(β) + cos(θ) sin(α) cos(β)

)2
.

It follows immediately that π′
0,0(+,−) = 0. This means that Bob still receives Alice’s

signal undisturbed by Eve’s eavesdropping. Next, we see that

π′
γ,0(+,−) = 1

2

(
sin(θ) sin(γ)

)2
+ 1

2

(
cos(θ) sin(γ)

)2
= 1

2
sin(γ)2,

π′
0,−γ(+,−) = 1

2

(
cos(θ) sin(γ)

)2
+ 1

2

(
sin(θ) sin(γ)

)2
= 1

2
sin(γ)2,
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just like in the case where Eve has not been eavesdropping. Finally, we have

π′
γ,−γ(+,−)= 1

2

(
cos(θ) + sin(θ)

)2(
cos(γ) sin(γ)

)2
+1

2

(
sin(θ) + cos(θ)

)2(
sin(γ) cos(γ)

)2
=
(
cos(θ) + sin(θ)

)2(
cos(γ) sin(γ)

)2
=
(√

2 cos(θ − π/4)
)2 · (1

2
sin(2γ)

)2
= 1

2
cos(θ − π/4)2 sin(2γ)2.

In Exercise 1 (d) and (e) we have already seen that the case γ = π/4 corresponds to no
eavesdropping so it makes sense that in this case we find the same as before. In all other
cases π′

γ,−γ(+,−) is reduced giving Alice and Bob a chance to notice Eve’s activities.

(d) Setting γ = π/6 yields sin(γ) = 1/2 and sin(2γ) = 1
2

√
3. Using moreover that

cos(θ − π/4) < cos(π/4) = 1/
√
2 for all 0 < θ ≤ π/4, we see that

π′
γ,0(+,−) + π′

0,−γ(+,−)− π′
γ,−γ(+,−) = sin(γ)2 − 1

2
cos(θ − π/4)2 sin(2γ)2

= 1
4
− 1

2
cos(θ − π/4)2 3

4
= 1

8

(
2− 3 cos(θ − π/4)2

)
,

which is strictly negative as long as cos(θ−π/4)2 >
√
2/3. We can then apply Wigner’s

inequality (Lemma 9.2.1 in the lecture notes) to conclude that σ′ is entangled.
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