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1 Matrices and their spectra

1.1 Linear operators and their matrices

Let V be a finite-dimensional linear space over K = R or C. If {e(1), . . . , e(n)} is a basis for
V and ϕ ∈ V , then there exist unique ϕ1, . . . , ϕn ∈ K such that

ϕ =
n∑

i=1

ϕie(i).

Let V,W be finite-dimensional linear spaces over K equipped with bases {e(1), . . . , e(n)} and
{f(1), . . . , f(m)}. Let L(V,W ) be the space of linear operators A : V → W . Then for each
A ∈ L(V,W ) there exist unique Aij ∈ K with 1 ≤ i ≤ m and 1 ≤ j ≤ n such that

(Aϕ)i =
n∑

j=1

Aijϕj (1 ≤ i ≤ m).

We call (Aij)1≤i≤m, 1≤j≤n the matrix of A and we call Aij the (i, j)-th entry of the matrix.
One has

(AB)ik =
∑
j

AijBjk.

The trace of an operator A ∈ L(V ) := L(V, V )

tr(A) :=
∑
i

Aii

does not depend on the choice of the basis and satisfies tr(AB) = tr(BA). Let A ∈ L(V ). By
definition, 0 ̸= ϕ ∈ V is an eigenvector with eigenvalue λ ∈ K if Aϕ = λϕ. We call

σ(A) :=
{
λ : λ is an eigenvalue of A

}
the spectrum of A. One has

σ(A) :=
{
λ : (λ−A) is not invertible

}
.

Lemma 1 (Nonempty spectrum) Assume that A ∈ L(V ) and K = C. Then σ(A) ̸= ∅.

Proof (sketch) One has σ(A) :=
{
λ : det(λ − A) = 0}. The equation det(λ − A) = 0 is a

polynomial in λ of degree dim(V ) which is guaranteed to have at least one complex root.
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1.2 Inner product spaces

Let V be a finite-dimensional linear space over K = R or C. An inner product on V is a map
that assigns to two vectors ϕ, ψ ∈ V a number ⟨ϕ, ψ⟩ ∈ K such that

(i) ψ 7→ ⟨ϕ, ψ⟩ is linear,

(ii) ⟨ϕ, ψ⟩ = ⟨ψ, ϕ⟩,

(iii) ⟨ϕ, ϕ⟩ ≥ 0,

(iv) ⟨ϕ, ϕ⟩ = 0 ⇒ ϕ = 0.

Here c denotes the complex conjugate of a number c ∈ K = R or C. In the complex case,
ϕ 7→ ⟨ϕ, ψ⟩ is not linear but colinear in the sense that

⟨c1ϕ(1) + c2ϕ(2), ψ⟩ = c1⟨ϕ(1), ψ⟩+ c2⟨ϕ(2), ψ⟩.

The norm associated with the inner product is |ϕ| :=
√
⟨ϕ, ϕ⟩. A basis {e(1), . . . , e(n)} is

orthogonal if ⟨e(i), e(j)⟩ = 0 for i ̸= j and orthonormal if in addition ⟨e(i), e(i)⟩ = 1 for each
i. For each ϕ ∈ V we define ⟨ϕ| ∈ L(V,K) and |ϕ⟩ ∈ L(K, V ) by

⟨ϕ|ψ := ⟨ϕ, ψ⟩ and |ϕ⟩c := cϕ.

The space V ′ := L(V,K) is called the dual linear space of V . On the other hand, L(K, V ) can
naturally be identified with V itself. Also, ⟨ϕ| |ψ⟩ ∈ L(K,K) ∼= K can be identified with the
number ⟨ϕ, ψ⟩. For A ∈ L(V ) one has

A|ψ⟩ = |Aψ⟩.

The coordinates of a vector and operator with respect to an orthonormal basis are given by

ϕi = ⟨e(i), ϕ⟩ and Aij = ⟨e(i), Ae(j)⟩ = ⟨e(i)|A|e(j)⟩.

Note that |ϕ⟩⟨ψ| ∈ L(V, V ) = L(V ). One has

A =
∑
i,j

Aij |e(i)⟩⟨e(j)|,

and the operators |e(i)⟩⟨e(j)| form a basis for L(V ). In particular

1 =
∑
i

|e(i)⟩⟨e(i)| (1)

is the identity operator.
Each A ∈ L(V ) has a unique adjoint A∗ ∈ L(V ) such that

⟨ϕ,Aψ⟩ = ⟨A∗ϕ, ψ⟩ (ϕ, ψ ∈ V ).

the map A 7→ A∗ is colinear with

(A∗)∗ = A and (AB)∗ = B∗A∗.

In coordinates
A∗

ij = Aji.

An operator A is normal if it commutes with its adjoint:

AA∗ = A∗A.

We say that A is hermitian if A∗ = A.
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Theorem 2 (Diagonalisation of normal operators) Assume that K = C. Then A ∈ L(V )
is normal if and only if there exists an orthonormal basis {e(1), . . . , e(n)} and complex numbers
λ1, . . . , λn such that

A =
∑
i

λi|e(i)⟩⟨e(i)|. (2)

Moreover, A is hermitian if and only if λ1, . . . , λn ∈ R.

Proof It is straightforward to check an operator of the form (2) is normal, and hermitian if
and only if λ1, . . . , λn ∈ R. It remains to show each normal operator can be written in the
form (2). Assume A is normal. Then for each ϕ ∈ V ,

⟨A∗ϕ,A∗ϕ⟩ = ⟨ϕ,AA∗ϕ⟩ = ⟨ϕ,A∗Aϕ⟩ = ⟨Aϕ,Aϕ⟩,

which shows that
|A∗ϕ| = |Aϕ|.

Since K = C, the operator A has at least one eigenvector ϕ with some eigenvalue λ. Then

Aϕ = λϕ ⇒ |(A− λ)ϕ| = 0 ⇒ |(A− λ)∗ϕ| = 0 ⇒ A∗ϕ = λ∗ϕ.

Let {ϕ}⊥ := {ψ ∈ V : ⟨ϕ, ψ⟩ = 0}. Then

ψ ∈ {ϕ}⊥ ⇒ ⟨ϕ,Aψ⟩ = ⟨A∗ϕ, ψ⟩ = λ⟨ϕ, ψ⟩ = 0 ⇒ Aψ ∈ {ϕ}⊥.

Now A restricted to {ϕ}⊥, is again a normal operator so repeating the argument we can find
an orthonormal basis of eigenvectors.

Although our proof of Theorem 2 used the complex numbers in an essential way, for
symmetric real matrices one can prove something similar.

Theorem 3 (Diagonalisation of symmetric matrices) Let V be a real vector space and let
A ∈ L(V ) satisfy A∗ = A. Then there exists an orthonormal basis {e(1), . . . , e(n)} consisting
of eigenvectors of A.

Proof This will follow from the same arguments as in the proof of Theorem 2 provided we
show that each symmetric real matrix has at least one eigenvector. By compactness, the
function ϕ 7→ ⟨ϕ,Aϕ⟩ assumes its maximum over the ball surface {ϕ ∈ V : |ϕ| = 1} in some
point ψ. This means that in the point ψ the derivatives of the function ϕ 7→ ⟨ϕ,Aϕ⟩ in
directions tangential to the ball are all zero. By the method of Lagrange multipliers, there
exists a λ ∈ R such that derivatives of the function ϕ 7→ ⟨ϕ,Aϕ⟩ − λ⟨ϕ, ϕ⟩ in the point ψ are
zero in all directions. Thus, for our ψ, we can find λ ∈ R so that

∂
∂ε

[
⟨ψ + εϕ,A(ψ + εϕ)⟩ − λ⟨ψ + εϕ, ψ + εϕ⟩

]∣∣∣
ε=0

= 0 (ϕ ∈ V ).

This gives
⟨ψ,Aϕ⟩+ ⟨ϕ,Aψ⟩ − λ⟨ψ, ϕ⟩ − λ⟨ϕ, ψ⟩ = 0 (ϕ ∈ V ).

Using the fact that A∗ = A and dividing out a factor 2, we get

⟨ϕ,Aψ⟩ − λ⟨ϕ, ψ⟩ = 0 (ϕ ∈ V ).

But this says that ⟨ϕ,Aψ − λψ⟩ = 0 for all ϕ ∈ V , which means that Aψ = λψ, i.e., we have
found an eigenvector.
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1.3 The operator norm

Let V be a finite-dimensional linear space over K = R or C. The operator norm of an operator
A ∈ L(V ) is defined as

∥A∥op := sup
|ϕ|≤1

|Aϕ|.

By linearity, ∥A∥op is the least constant for which that the inequality

|Aϕ| ≤ ∥A∥op · |ϕ|

holds for all ϕ ∈ V . From this, it is easy to see that

∥AB∥op ≤ ∥A∥op · ∥B∥op.

Lemma 4 (Operator norm and spectrum) If A is normal and K = C, then

∥A∥op = sup
{
|λ| : λ ∈ σ(A)

}
. (3)

Proof Let C := sup
{
|λ| : λ ∈ σ(A)

}
. If ϕ is an eigenvector with eigenvalue λ, then

|Aϕ| = |λ| · |ϕ|,

so |λ| ≤ ∥A∥op for each λ ∈ σ(A), which implies ∥A∥op ≥ C. To prove the other inequality,
we use that by Theorem 2 there exists an orthonormal basis {e(1), . . . , e(n)} of eigenvectors.
Denoting the corresponding eigenvalues by λ1, . . . , λn, we can write for arbitrary ϕ ∈ V ,

|Aϕ|2 =
∣∣∣ n∑
i=1

λiϕie(i)
∣∣∣2 = ∑

ij

λiϕiλjϕj⟨e(i), e(j)⟩ =
∑
i

|λi|2 · |ϕi|2 ≤ C2
∑
i

|ϕi|2 = C2|ϕ|2.

It follows that |Aϕ| ≤ C|ϕ| for all ϕ and hence ∥A∥op ≤ C.

Remark The assumption in Lemma 4 that A is normal cannot be dropped. Equip R2 or
C2 with the standard basis, inner product, and associated euclidean norm, and consider the
linear operator A given by the matrix

A =

(
0 1
0 0

)
.

Then ∥A∥op = 1 while σ(A) = {0}.

2 Random matrices

2.1 Matrix ensembles

The central question we will be interested in is the following:

Question Let M be a random matrix of size n × n. What can we say about its
spectrum as n→ ∞?

To make this question more precise, we must say what we mean with a “random matrix”, i.e.,
we must describe its law, and we must also be more specific about what we want to know
about its spectrum. In random matrix theory, a sequence of probability laws on the spaces of
n× n real or complex matrices is called a matrix ensemble. There are several natural choices.
In what follows, for each integer n ≥ 1, we consider a random matrix M = (ξij)1≤i,j≤n.

� I.i.d. matrix ensembles These are ensembles where the entries are i.i.d. according to
some common law. Examples are:
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– Bernoulli ensemble ξij uniformly distributed on {−1, 1},
– Real Gaussian ensemble ξij standard normally distributed on R,
– Complex Gaussian ensemble ξij standard normally distributed on C ∼= R2.

� Symmetric Wigner matrix ensembles These are ensembles where (ξij)i≥j are inde-
pendent real random variables and ξij := ξji for i > j. Examples are:

– Symmetric Bernoulli ensemble (ξij)i≤j uniformly distributed on {−1, 1},
– Gaussian orthogonal ensemble (GOE) (ξij)i≤j standard normally distributed on R,

and (ξii)1≤i≤n normally distributed with mean zero and variance 2.

� Hermitian Wigner matrix ensembles These are ensembles where (ξij)i<j are inde-
pendent complex random variables, (ξii)1≤i≤n are independent real random variables,
and ξij := ξji for i > j. The symmetric Wigner matrix ensembles are special cases of
this. An important additional example is:

– Gaussian unitary ensemble (GUE) (ξij)i≤j standard normally distributed on C ∼=
R2, and (ξii)1≤i≤n standard normally distributed on R.

Note that in all these examples, we can start with an infinite matrix

M = (ξij)i,j∈N+ ,

and then define Mn := (ξij)1≤i,j≤n. This provides a natural coupling between matrixes of
different size.

Question If V is an inner product space and {e(1), . . . , e(n)} is an orthonormal basis, then
each of the “ensembles” above naturally defines a probability law on L(V ), when we identify
a linear operator with its matrix. For which of the probability distributions above (if any)
is this law independent of the choice of the orthonormal basis? I suspect this may be true
for GOE and GUE (and is probably known). Indeed, for GUE this seems to follow from the
first displayed formula in Section 3.3 of Terence tao’s book. For GOE there may be a similar
formula. Note that in general (for example for the Bernoulli ensembles), if we change the basis,
then for the new matrix it will not even be true that the (upper diagional) matrix entries are
independent.

Question Does there exist a random matrix ensemble where (ξij)1≤i,j≤n are normal, but not
self-adjoint? The space of normal linear operators is not nice in the sense that the sum of two
normal operators is in general not normal.

2.2 Limit behaviour of the spectrum

One of the highlights of the course is the proof of Theorem 2.4.2 in the book, which reads:

Wigner semicircle law Let M = (ξij)i,j∈N+ be an infinite hermitian Wigner
matrix. For each n ≥ 1, let Mn := (ξij)1≤i,j≤n and let λ1(Mn) ≤ · · · ≤ λn(Mn)
denote its eigenvalues. Let

µn :=
1

n

n∑
j=1

δλj(Mn)/
√
n (n ≥ 1).

Then almost surely µn ⇒ µ, where ⇒ denotes weak convergence of probability
measures on R and µ is the semicircle law

µ(dx) :=
1

2π

√
0 ∨ (4− |x|2) dx.
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Note that we are able to formulate this as almost sure convergence only due to the coupling
described above. Of course, almost sure convergence to a deterministic limit also implies
convergence in probability.

The theorem holds for the symmetric Bernoulli ensemble and the GOE and GUE ensem-
bles, as well as many other hermitian Wigner matrix ensembles. Thus, similar to the central
limit theorem, the Wigner semicircle law is highly universal. For i.i.d. matrix ensembles the
limit law is different, however: in this case the limit law is the uniform distribution on the
ball {z ∈ C : |z| ≤ 2}. This limit law is technically more difficult to prove, so we will not see
its proof in this course.

The Wigner semicircle law implies that for large n, with high probability, most of the
eigenvalues of Mn lie between −2

√
n and 2

√
n. Since there are n eigenvalues, their average

spacing is 4/
√
n. There are other questions about the spectrum one could be interested in,

such as:

� Let xn ∈ R satisfy xn/
√
n→ x ∈ (−2, 2). Consider the point process{

λ ∈ R : xn + λ/
√
n ∈ σ(Mn)

}
.

Does this point process have a limit (in law)?

� Same question as above, but for a suitable sequence xn such that xn/
√
n → 2, perhaps

with a different scaling of space to compensate for the lower density of points near the
end of the spectrum.

� What can we say about ∥Mn∥op, i.e., the largest eigenvalue in absolute value?. Is it true
that ∥Mn∥op/

√
n→ 2?

These questions have been studied in detail and a lot is known. We will only look at the
last question. We will prove that indeed ∥Mn∥op is with high probability close to 2

√
n. The

methods used to prove this turn out to be very useful also later when we prove the Wigner
semicircle law.

2.3 Why would we care?

The book we use is written by Terence Tao, who is a pure mathematician who has worked
in a variety of fields such as number theory. For him, there is one clear reason for studying
random matrices:

It is a rich field with beautiful mathematics and many interesting problems.

There are also more practical reasons why one could be interested in random matrices. Some
of the first people to study them were in fact physicists who were interested in the absorption
spectrum of large atoms. One of the first great achievements of quantum mechanics was the
description of the spectrum of the hydrogen atom, which has just one electron. The spectrum
of helium, which has two electrons, is already much more complicated. As one moves up in
the periodic system of elements things quickly get really messy. Mathematically, the possible
energy values of an electron orbiting an atom are given by the spectrum of a hermitian matrix.
This matrix becomes so complicated that at some point a physicist wondered what would
happen if one assumes it is completely random -and actually got reasonable results.

Apart from the reasons mentioned above, one may also ask if within mathematics, random
matrix theory is more or less isolated, or on the other hand connected to lots of other problems
(for which one may then again have practical reasons to study them). The answer seems to
lie a bit in the middle. On the one hand, interesting connections have been found to other
subjects such as the totally asymetric exclusion process (TASEP) or free probability. On the
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other hand, it is fair to say that within probability theory, the theory of random matrices is a
bit of an outlier. On conferences, one sometimes meets the true specialists in random matrix
theory, that seem to live a bit in a world of their own, with limited interaction with the rest of
probability. This is mostly concerned with very subtle questions of the field, however, which
require difficult and long proofs using specialised methods. As for the basic topics covered by
Tao’s book, it is probably a good thing for every probabilist to know a bit about them.

2.4 How do we start

We will focus on hermitian Wigner ensembles. Our first aim will be to prove that ∥Mn∥op
is with high probability close to 2

√
n. As mentioned before, the techniques we use for that

will also be useful when proving the Wigner semicircle law. Thus, perhaps surprisingly, the
strategy is to first prove some sort of (weak) law of large numbers, as a first step towards
something that is a bit like the CLT. Actually, there is much more similarity than might be
expected at first sight between the classical limit theorems of probability theory (LLN, CLT)
and their random matrix “counterparts” (LLN for ∥Mn∥op, Wigner semicircle law).

Let X1, . . . , Xn be i.i.d. real random variables with finite mean µ. Then the weak law of
large numbers says that 1

n

∑n
i=1Xi is with high probability close to µ. One can generalise the

problem and ask what we can say about Fn(X1, . . . , Xn), where Fn : Rn → R is a sequence
of “nice” functions. For such functions, one often observes that for large n, the distribution
of Fn(X1, . . . , Xn) is closely concentrated around one deterministic value. If the Fn are not
linear, then it may be difficult to say what that value is precisely. But it turns out that there
are nice methods that give sufficient conditions for the law of Fn(X1, . . . , Xn) to be closely
concentrated around one deterministic value, even if we can’s say precisely what value that is.
This is the problem of concentration of measure. There exists a large literature on this and it
obviously has many applications in probability theory outside of random matrix theory. Our
first aim will be Talagrand’s concentration inequality (Theorem 2.1.13 in the book).
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3 The semicircle law

3.1 Weak convergence

A compactification of a topological space E is a compact topological space E such that E is a
dense subset of E and the topology on E is the induced topology from its embedding in E. A
topological space is metrisable if there exists a metric that generates the topology. A Polish
space is a separable topological space E with the property that there exists a complete metric
dc that generates the topology. Warning: on a Polish space, there may also exists metrics d
that are not complete but that nevertheless generate the topology on E. We say that E is
locally compact if for every x ∈ E, there exist an open set O and compact set C such that
x ∈ O ⊂ C. A Gδ-subset is a set that can be written as a countable intersection of open sets.

Theorem 5 (Compactifications of Polish spaces) Let E be a metrisable topological space.
Then the following statements are equivalent.

(i) E is Polish.

(ii) There exists a metrisable compactification E of E such that E is a Gδ-subset of E.

(iii) For each metrisable compactification E of E, it holds that E is a Gδ-subset of E.

A Polish space is locally compact if and only if the following two equivalent statements hold.

(i) There exists a metrisable compactification E of E such that E is an open of E.

(ii) For each metrisable compactification E of E, it holds that E is an open of E.

We always equip a Polish space with the Borel σ-field B(E), which is generated by the
open sets. For any Polish space E, we let Cb(E) and Bb(E) denote the spaces of real bounded
functions on E that are continuous and measurable, respectively. If E is compact, then
Cb(E) = C(E), the space of all continuous real functions on E. If E is compact, then the space
C(E), equipped with the supremumnorm ∥f∥∞ := supx∈E |f(x)| is separable and complete.

Proposition 6 (Borel σ-field) Assume that E is a Polish space. Assume that fi ∈ Bb(E)
for all i ∈ N and that (fi)i∈N separate points. Then (fi)i∈N generate the Borel σ-field.

We let P(E) denote the space of probability measures on E, equipped with the topology
of weak convergence. For any A ⊂ E and ε > 0, we set

Aε :=
{
x ∈ E : d(x,A) < ε

}
with d(x,A) := inf

y∈A
d(x, y). (4)

The Prohorov metric dP on P(E) is defined as

dP(µ, ν) := inf
{
ε > 0 : µ(A) ≤ ν(Aε) + ε ∀A ∈ B(E)

}
. (5)

The Prohorov metric has an alternative definition in terms of coupling. Indeed,

dP(µ, ν) = inf
{
ε > 0 : ∃ r.v.’s X,Y with laws µ, ν s.t. P[d(X,Y ) ≥ ε] ≤ ε

}
. (6)

One can prove that

dP(µn, µ) −→
n→∞

0 ⇔
∫
µn(dx)f(x) −→

n→∞

∫
µ(dx)f(x) ∀f ∈ Cb(E).
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The topology generated by dP is called the topology of weak convergence. Convergence in this
topology is denoted as µn ⇒ µ. The space P(E) is separable and complete in dP. So P(E) is
Polish. One can check that

µn =⇒
n→∞

µ ⇔ lim inf
n→∞

µn(O) ≥ µ(O) ∀open O ⊂ E

⇔ lim sup
n→∞

µn(C) ≤ µ(C) ∀closed C ⊂ E.
(7)

For any measurable A ⊂ E, we let int(A) and A denote its interior and closure and we call
∂A := A\int(A) its boundary. It follows from (7) that

µn =⇒
n→∞

µ, A ∈ B(E), and µ(∂A) = 0 imply µn(A) −→
n→∞

µ(A). (8)

Theorem 7 (Skorohod representation theorem) Let E be a Polish space and let µn, µ ∈
P(E). Then one has µn ⇒ µ if and only if there exist, on some probability space, random
variables Xn, X with laws µn, µ, such that Xn → X a.s.

Recall that a subset of a topological space is precompact if its closure is compact.

Theorem 8 (Prohorov) A subset A ⊂ P(E) is precompact if and only if it is tight, i.e., for
every ε > 0, there exists a compact set C ⊂ E such that µ(C) ≥ 1− ε for all µ ∈ A.

If E is a compactification of E, then we have the natural identification

P(E) ∼= {µ ∈ P(E) : µ(E) = 1}. (9)

Using (7), one can check that the topology of weak convergence on P(E) coincides with the
induced topology from its embedding in P(E). By Theorem 5, it follows that P(E) is a
Gδ-subset of P(E).

3.2 Random measures

Let E be a Polish space. We equip P(E), of course, with the Borel σ-algebra. The next lemma
says that this coincides with many other natural choices for the σ-algebra on P(E).

Lemma 9 (Measurable sets of measures) Let Lf : P(E) → R be defined by Lf (µ) :=∫
µ(dx)f(x). Then the Borel σ-field on P(E) is generated by

1.
{
Lf : f ∈ Cb(E)

}
, 2.

{
L1O : O ⊂ E open

}
, 3.

{
L1A : A ⊂ E measurable

}
.

Proof If f ∈ Cb(E), then Lf ∈ Cb(P(E)), so Lf is in particular measurable. If O ⊂ E is
open, then there exist continuous fn : E → [0, 1] that increase to 1O, which implies that L1O

is measurable. Now {A ∈ B(E) : L1A is measurable} is a λ-system that contains the π-system
consisting of all open subsets of E, so by the π/λ-theorem this set equals B(E). In particular,
L1A is measurable for all A ∈ B(E).

Let E be a metrisable compactification. Since C(E) is separable, we can choose fi ∈ C(E)
(i ∈ N) such that {fi : i ∈ N} is dense in C(E). The functions Lfi are continuous (and hence
in particular measurable) and separate points, so by Proposition 6 they generate the Borel
σ-field on P(E). Similarly, since E is separable, there exists a countable base {Oi : i ∈ N} of
the topology. Since {L1Oi

: i ∈ N} separate points, by Proposition 6 they generate the Borel
σ-field on P(E).

If E is a Polish space, then the same is true for P(E) and hence also for P(P(E)). A
random variable with values in P(E) is a random probability measure; its law is then an
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element of P(P(E)). If µ is a random variable with values in P(E), then its mean is the
probability measure E[µ] on E defined as∫

E
E[µ](dx)f(x) := E

[ ∫
E
µ(dx)f(x)

]
∀f ∈ Bb(E). (10)

By Lemma 9, the right-hand side of this equation is well-defined. Once can check that it is
linear in f and continuous with respect to increasing sequences. It follows that

B(E) ∋ A 7→ E
[ ∫

E
µ(dx)1A(x)

]
is a measure. Recalling the definition of the integral, we see that the integral of a bounded
measurable function with respect to this measure is given by the right-hand side of (10).

3.3 The semicircle law

Let (ξij)i,j∈N+ be real random variables such that

(i) (ξij)i<j are i.i.d. with mean zero and variance one,

(ii) (ξij)i=j are i.i.d. with mean zero and finite variance, and independent of (ξij)i<j ,

(iii) ξji = ξij (i < j).

Let Mn := (ξij)1≤i,j≤n, let λ1(n) ≥ · · · ≥ λn(n) be its eigenvalues, let µn be the random
variables with values in P(R) defined by

µn :=
1

n

n∑
i=1

δλi(n)/
√
n, (11)

and let µsc denote the semicircle law

µsc(dx) :=
1

2π

(
4− |x|2

)1/2
+

dx. (12)

Then Theorem 2.4.2 from the book says that

µn =⇒
n→∞

µsc a.s. (13)

The book explains how to define a.s. convergence for random variables taking values in a σ-
compact metrisable space, i.e., a metrisable space that is the union of countably many compact
sets. The book does not say what topology we should choose on P(R). This is very sloppy
indeed: one has to specify the topology, otherwise the convergence statement has no meaning.
From Exercise 2.4.1, we understand that what is meant is, of course, that we equip P(R) with
the topology of weak convergence. Alas:

Lemma 10 (Lack of σ-compactness) The space P(R) is not σ-compact.

Proof According to the Baire category theorem, each complete metrisable space has the Baire
property, which says that if (Ci)i∈N are closed sets with empty interior, then also

⋃
i∈NCi has

empty interior. We will show that in P(R), each compact set has empty interior. It follows
that P(R) cannot be the union of countable many compact sets, since by the Baire category
theorem this would imply that P(R) has empty interior.

It remains to show that each compact subset A of P(R) has empty interior. Let εn be
positive constants, tending to zero. By Prohorov’s theorem (Theorem 8), for each n we can
find a compact set Cn ⊂ R such that µ(Cn) ≥ 1− εn/2 for all µ ∈ A. Since R is not compact,

10



for each n we can choose xn ∈ R\Cn. Now fix µ ∈ A and define µn := (1−εn)µ+εnδxn . Then
µn ̸∈ A while µn ⇒ µ, which proves that A has empty interior.

The argument above shows quite generally that if E is a Polish space that is not compact,
then P(E) is not σ-compact and not locally compact either. This seems unpleasant, but P(E)
is still a Polish space which is for most probabilistic purposes sufficient. Also, in view of (9) we
can equivalently view the random measures in (11) as random variables with values in the space
P(R) of probability measures on the extended real line R := [−∞,∞]. In view of Prohorov’s
theorem (Theorem 8), the space P(R) is compact. In fact, P(R) is a compactification of P(R)
and the latter is a Gδ-subset, but not an open subset of the former.

3.4 Some simplifications

Let us say that a sequence (nj)j∈N is lacunary if there exists a c > 1 such that nj+1/nj ≥ c
for all j ∈ N.

Proposition 11 (Lacunary subsequence) In order to prove (13), it suffices to show that

µnj =⇒
j→∞

µsc a.s. (14)

for any lacunary sequence (nj)j∈N.

To prove this, we will use the following lemma.

Lemma 12 (Convergence of distribution functions) Let µn, µ be probability measures on
R. Let Fn(r) := µn

(
(r,∞)

)
and F (r) := µn

(
(r,∞)

)
(r ∈ R) and assume that F is continuous.

Then µn ⇒ µ if and only if

Fn(rn) → F (r) ∀rn, r ∈ R s.t. rn → r. (15)

It suffices to prove this for a countable collection of real constants rin, r
i (i, n ∈ N) such that

rin → ri for all i and {ri : i ∈ N} is dense in R.

Proof (sketch) Since by assumption F is continuous, it follows from (7) and (8) that µn ⇒ µ
if and only if

Fn(r) → F (r) ∀r ∈ R. (16)

Using the fact that the functions Fn, F are nondecreasing, it is not hard to show that (16)
implies the seemingly stronger (15). To prove the final statement, assume that (15) holds for
some choice of rin, r

i (i, n ∈ N). By Prohorov, {µn : n ∈ N} is a precompact subset of P(R),
so to prove that µn ⇒ µ it suffices to show that µ is the only cluster point in P(R) of the
sequence µn. By our assumptions and what we have already proved, each cluster point µ∗
satisfies µ∗

(
(ri,∞)

)
= µ

(
(ri,∞)

)
for all i ∈ N, which implies µ∗ = µ since {ri : i ∈ N} is

dense.

Proof or Proposition 11 The proof of Proposition 11 makes use of Exercise 1.3.14, which
asks to prove Cauchy’s interlacing law

λi+1(n) ≤ λi(n− 1) ≤ λi(n). (17)

Let us set
F (r) := µsc

(
(r,∞)

)
and Nn(λ) := sup{i : λi(n) > λ}, (18)

i.e., Nn(λ) is the number of eigenvalues of Mn that are greater than λ. By Lemma 12, to
prove the proposition, it suffices show that almost surely

1

n
Nn(r

√
n) −→

n→∞
F (r) ∀r ∈ Q. (19)

11



It follows from (17) that
Nn(λ) ≤ Nn+1(λ) ≤ Nn(λ) + 1. (20)

In particular, this implies that

Nn(λ) ≤ Nm(λ) (n ≤ m). (21)

Fix c > 1 and let (nj)j∈N be the lacunary sequence defined as n0 := 1 and nj := inf{n >
nj−1 : n/nj−1 ≥ c}. Then for each n ∈ N, there is a j ∈ N such that

nj ≤ n < nj+1. (22)

By (21), this implies
Nnj (λ) ≤ Nn(λ) ≤ Nnj+1(λ) (λ ∈ R), (23)

which allows us to estimate, for any r ≤ 0,

1

nj+1
Nnj (r

√
nj) ≤

1

n
Nnj (r

√
n) ≤ 1

n
Nn(r

√
n) ≤ 1

n
Nnj+1(r

√
n) ≤ 1

nj
Nnj+1(r

√
nj+1). (24)

Using our assumption (14), Lemma 12, and the fact that nj+1/nj → c as j → ∞, it follows
that

c−1F (r) ≤ lim inf
n→∞

1

n
Nn(r

√
n) ≤ lim sup

n→∞

1

n
Nn(r

√
n) ≤ cF (r) a.s. (r ≤ 0). (25)

In a similar way, for r ≥ 0, we can estimate

1

nj+1
Nnj (r

√
nj+1) ≤

1

n
Nn(r

√
n) ≤ 1

nj
Nnj+1(r

√
nj), (26)

which yields

c−1F (c1/2r) ≤ lim inf
n→∞

1

n
Nn(r

√
n) ≤ lim sup

n→∞

1

n
Nn(r

√
n) ≤ cF (c−1/2r) a.s. (r ≥ 0). (27)

Since (25) and (27) hold for all c, r ∈ Q with c > 1 and r ≤ 0 or r ≥ 0, respectively, we
conclude that a.s.

1

n
Nn(r

√
n) −→

n→∞
F (r) (r ∈ Q), (28)

which by Lemma 12 implies that µn ⇒ µ a.s.

Proposition 13 (Cut-off argument) In order to prove (13), we can without loss of gener-
ality assume that there exists a K <∞ such that |ξij | ≤ K a.s. for all i, j ∈ N+.

The proof of Proposition 13 needs some preparations. For any symmetric n×n matrix A,
we let λ1(A) ≥ · · · ≥ λn(A) denote its eigenvalues, and in line with (11), we set

µ(A) :=
1

n

n∑
i=1

δλi(A)/
√
n. (29)

We make use of the Weilandt-Hoffmann inequality which says that

n∑
i=1

∣∣λi(A)− λi(B)
∣∣2 ≤ ∥A−B∥2F, (30)

where

∥A∥2F :=

n∑
i=1

n∑
j=1

|Aij |2 = tr(A∗A) (31)

is the Frobenius norm of A.
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Lemma 14 (Distance between eigenvalue distributions) Let A,B be symmetric n× n
matrices. Then the Prohorov distance between µ(A) and µ(B) satisfies

dP
(
µ(A), µ(B)

)
≤

( 1

n2
∥A−B∥2F

)1/3
. (32)

Proof Let I be uninformly distributed on {1, . . . , n} and let X := λI(A)/
√
n and Y :=

λI(B)/
√
n. Then X and Y are distributed according to the probability laws µ(A) and µ(B),

respectively, and the Weilandt-Hoffmann inequality (30) allows us to estimate

E
[
|X − Y |2

]
=

1

n

n∑
i=1

∣∣λi(A)/√n− λi(B)/
√
n
∣∣2 ≤ 1

n2
∥A−B∥2F. (33)

Since
E
[
|X − Y |2

]
≥ ε2P

[
|X − Y | ≥ ε

]
, (34)

this implies that

P
[
|X − Y | ≥ ε

]
≤ 1

ε2n2
∥A−B∥2F. (35)

The right-hand side of this equation equals ε if

ε =
( 1

n2
∥A−B∥2F

)1/3
. (36)

In view of (6), this implies (32).

Proof of Proposition 13 We first prove the statement under the additional assumption that
ξij is equally distributed with −ξij for all i, j. For each K > 0, we define

ξ≤K
ij := 1{|ξij |≤K}ξij and ξ>K

ij := 1{|ξij |>K}ξij . (37)

We letM≤K
n andM>K

n denote the corresponding n×nmatrices. Since ξij is equally distributed

with −ξij the same is true for ξ≤K
ij which implies that these random variables have mean zero.

We denote their variance by

σ2K := E
[
|ξ≤K
ij |2

]
(i ̸= j), (38)

which increases to one as K → ∞. Let µσsc denote the image of the semicircle law µsc under
the map λ 7→ σλ. By the triangle inequality for the Prohorov metric

dP
(
µ(Mn), µsc

)
≤ dP

(
µ(Mn), µ(M

≤K
n )

)
+ dP

(
µ(M≤K

n ), µσK
sc

)
+ dP

(
µσK
sc , µsc

)
. (39)

Since µsc is concentrated on [−2, 2], it is easy to see that dP
(
µσK
sc , µsc

)
≤ 2(1 − σK), which

tends to zero as K → ∞. Our assumptions imply that the second term tends to zero for each
K <∞. By Lemma 14, we can estimate the first term as

dP
(
µ(Mn), µ(M

≤K
n )

)
≤

( 1

n2
∥M>K

n ∥2F
)1/3

. (40)

Here

∥M>K
n ∥2F =

n∑
i=1

n∑
j=1

1{|ξij |>K}|ξij |2. (41)

Let
εK := E

[
|ξij |21{|ξij |>K}

]
. (42)
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By assumption, ξij has mean zero and variance one, so its second moment is finite and hence
limK→∞ εK = 0 by dominated convergence. The strong law of large numbers tells us that

lim
n→∞

1

n2
∥MK

n ∥2F = εK a.s. (43)

Inserting our estimates in (39), we see that

lim sup
n→∞

dP
(
µ(Mn), µsc

)
≤ ε

1/3
K + 2(1− σK) a.s. ∀K <∞, (44)

which implies that µ(Mn) ⇒ µsc a.s.
If we drop the assumption that ξij is equally distributed with −ξij for all i, j, then the

proof becomes a bit more complicated. Let In denote the identity matrix and let Un denote
the matrix whose entries are all equal to one. Let

δK := E[ξ>K
ij ] (i ̸= j) and δ′K := E[ξ>K

ij ] (i = j). (45)

Then the entries of
M̃≤K

n :=M≤K
n + δKUn + (δ′K − δK)In (46)

have mean zero, and the off-diagonal entries have some variance σ̃2K that converges to one as
K → ∞. By Lemma 14,

dP
(
µ(M≤K

n ), µ(M̃≤K
n )

)
≤

( 1

n2
∥δKUn + (δ′K − δK)In∥2F

)1/3
, (47)

where
1

n2
∥δKUn + (δ′K − δK)In∥2F −→

n→∞
δ2K −→

K→∞
0. (48)

Using this, the proof above can easily be generalised to the case that the law of the ξij ’s is
not symmetric.

3.5 Eigenvalue inequalities

We still need to provide the proof of Cauchy’s interlacing law (17) and the Weilandt-Hoffmann
inequality (30).

Theorem 15 (Minmax formula) Let V be a complex inner product space of dimension
dim(V ) = n, let A ∈ L(V ) satisfy A∗ = A, and let λ1 ≥ · · · ≥ λn be its eigenvalues. Then

λi := sup
W : dim(W )=i

inf
ϕ∈W
|ϕ|=1

⟨ϕ|Aϕ⟩. (49)

Proof Let
{
e(1), . . . , e(n)

}
be an orthonormal basis made up of eigenvectors corresponding

to the eigenvalues λ1, . . . , λn and let ϕi denote the i-th coordinate of a vector ϕ with respect
to this basis. Then

⟨ϕ|Aϕ⟩ =
n∑

i=1

|ϕi|2λi. (50)

If |ϕ| = 1, then
(
|ϕ1|2, . . . , |ϕn|2

)
is a probability distribution on {1, . . . , n}, so ⟨ϕ|Aϕ⟩ is the

mean of the function j 7→ λj with respect to this probability distribution.
If we choose forW the linear space spanned by e(1), . . . , e(i), then {ϕ ∈W : |ϕ| = 1} is the

set of vectors for which this probability distribution is concentrated on {1, . . . , i}. It follows
that

⟨ϕ|Aϕ⟩ ≥ λi ∀ϕ ∈W s.t. |ϕ| = 1, (51)

14



with equality if and only if ϕ is a multiple of e(i). We have thus found a linear subspace W
of dimension i such that

λi = inf
ϕ∈W
|ϕ|=1

⟨ϕ|Aϕ⟩. (52)

To complete the proof, we need to show that if W is an arbitrary linear subspace of dimension
i, then

λi ≥ inf
ϕ∈W
|ϕ|=1

⟨ϕ|Aϕ⟩. (53)

Let
W ′ :=

{
ϕ ∈W : ϕj = 0 ∀j < i

}
. (54)

Since W has dimension i, the space W ′ has dimension at least one. If ϕ ∈W ′ satisfies |ϕ| = 1,
then the probability distribution

(
|ϕ1|2, . . . , |ϕn|2

)
is concentrated on {i, . . . , n} and hence

⟨ϕ, |ϕ⟩ ≤ λi, proving (53).

We can now also prove Cauchy’s interlacing law (17).

Proof of Cauchy’s interlacing law Let {e(1), . . . , e(n)} be the standard basis in Rn. We
associate Mn with the linear operator

(Mnϕ)i :=
n∑

j=1

ξijϕj (ϕ ∈ Rn). (55)

Let V ′ be the linear subspace spanned by e(1), . . . , e(n− 1). Then Theorem 15 tells us that

λi(n− 1) = sup
W : dim(W )=i

W⊂V ′

inf
ϕ∈W
|ϕ|=1

⟨ϕ|Mnϕ⟩ ≤ sup
W : dim(W )=i

inf
ϕ∈W
|ϕ|=1

⟨ϕ|Mnϕ⟩ = λi(n). (56)

The other inequality in (17) follows by applying Theorem 15 to −Mn.

The Weilandt-Hoffmann inequality can also be derived from Theorem 15, but this is a lot
of work, see Exercises 1.3.5 and 1.3.6 in the book. We will give another derivation based on
Exercise 1.3.11 from the book. Our proof will not be completely rigorous. In Section 1.3.4 of
the book some hints are given on how to make this rigorous but it is too much work to fill
in all the details. The main idea of the proof is quite elegant, however. Assume that At is a
hermitian matrix that depends smoothly on a parameter t ∈ [0, 1], and that for each t ∈ [0, 1],
all eigenvalues of At are simple, so that we can order them λt(1) > · · · > λt(n). For each t,
we can choose an orthonormal basis ϕt(1), . . . , ϕt(n)} of eigenvectors. Since the eigenvalues
are distinct, the normalised eigenvectors are unique up to a phase factor, i.e., a multiplicative
constant of absolute value one. The projection operators |ϕt(i)⟩⟨ϕt(i)| on the corresponding
eigenspaces do not have this ambiguity. Let us write

Ȧt := ∂
∂tA

t and λ̇t(i) := ∂
∂tλ

t(i). (57)

Then Hadamard’s first variational formula says that

λ̇t(i) = ⟨ϕt(i)|Ȧt|ϕt(i)⟩. (58)

Note that the right-hand side of this equation is the trace of the product of Ȧt and |ϕt(i)⟩⟨ϕt(i)|,
which is well-defined (without ambiguity due to a phase factor). The derivation of (58) in the
book is not correct, but let us believe it for the moment and see how it can be used to derive
the Weilandt-Hoffmann inequality (30).
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Proof of the Weilandt-Hoffmann inequality We will show that√√√√ n∑
i=1

∣∣λi(A)− λi(B)
∣∣2 ≤ ∥A−B∥F (59)

The idea is to write

At := A+ tC
(
t ∈ [0, 1]

)
with C := B −A, (60)

to write λ(i) := λi(A) and λ
t(i) := λi(A

t), and to show that

∂
∂t

√√√√ n∑
i=1

∣∣λt(i)− λ(i)
∣∣2 ≤ ∥C∥F

(
t ∈ [0, 1]

)
. (61)

The technical difficulty is that we need to show that without loss of generality we can assume
that the eigenvalues are simple for all t ∈ [0, 1] and that this implies that all quantities depend
smoothly on t and Hadamard’s first variational formula is valid. In Section 1.3.4 of the book,
some simple dimension counting argument is given that makes this plausible. For the technical
details, one has to look elsewhere in the literature.

Assuming everything is all right, we calculate the left-hand side of (61) using Hadamard’s
first variational formula (58) with Ȧt = C, which gives∑n

j=1

(
λt(j)− λ(j)

)
⟨ϕt(j)|Cϕt(j)⟩√∑n

i=1

∣∣λt(i)− λ(i)
∣∣2 . (62)

We recognize that this is the inner product in Rn of the function j 7→ ⟨ϕt(j)|Cϕt(j)⟩ with a
vector of unit length, which by Cauchy-Schwarz can be estimated from above by√√√√ n∑

j=1

∣∣⟨ϕt(j)|Cϕt(j)⟩∣∣2. (63)

Here, using (1),

n∑
j=1

∣∣⟨ϕt(j)|Cϕt(j)⟩∣∣2 ≤ n∑
i=1

n∑
j=1

∣∣⟨ϕt(i)|C|ϕt(j)⟩∣∣2
=

n∑
i=1

n∑
j=1

〈
ϕt(j)|C∗|ϕt(i)⟩⟨ϕt(i)|C|ϕt(j)⟩ =

n∑
j=1

〈
ϕt(j)|C∗C|ϕt(j)⟩ = ∥C∥2F.

(64)

3.6 The moment method

Since the trace is independent of the choice of the basis, and Mn can be diagonalised with the
eigenvalues on its diagonal, we observe that

tr(Mk
n) =

k∑
i=1

λki . (65)

It follows that ∫
µn(dλ)λ

k =
1

n

k∑
i=1

( λi√
n

)k
=

1

n
tr
(
(Mn/

√
n)k

)
. (66)
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Taking expectations, this implies that

E
[ ∫

µn(dλ)λ
k
]
=

1

n

k∑
i=1

( λi√
n

)k
=

1

n
E
[
tr
(
(Mn/

√
n)k

)]
. (67)

Our aim is to prove that
µn =⇒

n→∞
µsc a.s. (68)

By Proposition 13, we can (and will) without loss of generality assume that |ξij | ≤ K a.s. for
some K <∞.

Proposition 16 (Convergence of the mean and concentration) In order to prove (68),
it suffices to prove that

1

n
E
[
tr
(
(Mn/

√
n)k

)]
−→
n→∞

∫
µsc(dλ)λ

k (k ≥ 1) (69)

and that for each k ≥ 1, there exists constants ck > 0 and Ck <∞ such that

1

n2
Var

(
tr
(
(Mn/

√
n)k

))
≤ Ckn

−ck (n ≥ 1). (70)

Proof By Proposition 11, in order to prove (68), it suffices to prove that

µnj =⇒
j→∞

µsc a.s. (71)

for an arbitrary lacunary sequence (nj)j∈N. We claim that it suffices to prove that∫
µnj (dλ)λ

k =⇒
j→∞

∫
µsc(dλ)λ

k a.s. (k ≥ 1) (72)

for an arbitrary lacunary sequence (nj)j∈N. To see this, we use the strong Bai-Yin theorem
(Theorem 2.3.24 in the book), which says that

lim sup
n→∞

sup
1≤i≤n

|λi|/
√
n ≤ 2. (73)

It follows that almost surely, the sequence of measures {µnj : j ≥ 1} is tight, and each weak
cluster point µ∗ is concentrated on [−2, 2]. If we combine this with (72), then we obtain that
almost surely, each weak cluster point µ∗ is concentrated on [−2, 2] and satisfies∫

µ∗(dλ)λ
k =

∫
µsc(dλ)λ

k (k ≥ 1). (74)

Since a probability measure on [−2, 2] is uniquely determined by its moments, it follows that
almost surely, the sequence of measures {µnj : j ≥ 1} is tight and µsc is its only cluster point.
This implies (71).

It remains to show that (69) and (70) imply (72). From now on, we fix k ≥ 1 and a
lacunary sequence (nj)j∈N with nj+1/nj ≥ c (j ∈ N) for some c > 1. Note that this implies
that

nj ≥ cj (j ∈ N). (75)

To ease notation, let us write

Xj :=

∫
µnj (dλ)λ

k =
1

nj
tr
(
(Mnj/

√
nk)

k
)

and X :=

∫
µsc(dλ)λ

k. (76)
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Then formulas (69) and (70) say that

E[Xj ] −→
j→∞

X and Var(Xj) ≤ Ckn
−ck
j ≤ Ckc

−ckj . (77)

By Chebyshev’s inequality,

P
[∣∣Xj − E[Xj ]

∣∣ ≥ ε
]
≤ Var(Xj)/ε

2 ≤ ε−2Ckc
−ckj . (78)

Since
∑

j ε
−2Ckc

−ckj < ∞, by Borel-Cantelli, this implies that almost surely, for each ε > 0,
the set {

j :
∣∣Xj − E[Xj ]

∣∣ ≥ ε
}

(79)

is finite. It follows that

X − ε ≤ lim inf
j→∞

Xj ≤ lim sup
j→∞

Xj ≤ X + ε a.s. (80)

for each ε > 0, which implies (72).

Our first aim is now to check the condition (70). We need one preparatory lemma.

Proposition 17 (Concentration of measure) For each k ≥ 1, there exists constants ck > 0
and Ck <∞ such that (70) holds.

Proof attempt (unsuccesful) We try to prove the statement only for even k following
Exercise 2.4.7 (i) in the book. For all even k ≥ 2,

∥A∥Sk := tr(Ak)1/k (81)

defines a norm on the space of real symmetric n× n matrices, called the k-Schatten norm. In
particular,

∥A∥S2 = ∥A∥2F :=
n∑

i=1

n∑
j=1

|Aij |2 (82)

is the Frobenius norm defined in (31). The hint of Exercise 2.4.7 (i) is to use that the k-Schatten
norm, as any norm, is a convex function, and to apply Talagrand’s inequality (Theorem 2.1.13
in the book). Talagrand’s inequality applies to convex functions that are defined on Rm and
are 1-Lipschitz with respect to the euclidean norm. We can naturally identify the space of all
real symmetric n× n matrices with the space Rn(n+1)/2. In view of (82), the euclidean norm
then corresponds to the Frobenius norm which is the 2-Schatten norm. If a symmetric matrix
A has eigenvalues λ⃗ = (λ1, . . . , λn), then tr(Ak)1/k = ∥λ⃗∥k is just the ℓk-norm of the vector λ⃗.
Since on ℓp spaces, we have the inequality ∥ · ∥p ≤ ∥ · ∥q for 1 ≤ q ≤ p ≤ ∞, we have

∥A∥Sk ≤ ∥A∥S2

for all even k ≥ 2, which shows that ∥ · ∥Sk is 1-Lipschitz with respect to the euclidean norm
on Rn(n+1)/2. Thus Talagrand’s inequality is applicable.

Talagrand’s inequality now tells us that there exist constants c > 0 and C <∞ such that
for any random symmetric matrix A whose entries satisfy |Aij | ≤ a a.s.,

P
[∣∣tr(Ak)1/k −M[tr(Ak)1/k]

∣∣ ≥ εa
]
≤ Ce−cε

2
(ε > 0), (83)

where M[X] denotes the median1 We want to apply this to A = Mn/
√
n. Recall that the

entries of Mn satisfy |ξij | ≤ K a.s., so that the entries of Mn/
√
n satisfy |ξij |/

√
n ≤ K/

√
n

a.s. Setting a = K/
√
n gives

P
[∣∣tr((Mn/

√
n)k)1/k −M[tr((Mn/

√
n)k)1/k]

∣∣ ≥ εK/
√
n
]
≤ Ce−cε

2
(ε > 0). (84)

1Defined as sup{m : P[X < m] < 1
2
} or inf{m : P[X < m] > 1

2
}, it doesn’t matter which definition we use.
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This is close in spirit to (70), but really deriving (70) from (84) is not so easy and in fact
cannot be done without some additional estimate on the size of M[tr((Mn/

√
n)k)1/k]. To see

this, let us set

T := M[tr((Mn/
√
n)k)] so that M[tr((Mn/

√
n)k)1/k] = M[tr((Mn/

√
n)k)]1/k = T 1/k.

(85)
In order to prove (70), we need that the standard deviation of tr((Mn/

√
n)k) is of order√

n2n−ck = n1−ck/2 for some ck > 0. If we want to derive this from (84), then (at the very
least) we should be capable of showing that the probability that

tr((Mn/
√
n)k)− T ≥ Ln1−ck (86)

is small when L is large. Now let us see what kind of upper estimates on tr((Mn/
√
n)k)− T

can be derived from (84). Formula (84) tells us that

P
[
tr((Mn/

√
n)k)1/k ≥ T 1/k + εK/

√
n
]
≤ Ce−cε

2
, (87)

or equivalently,

P
[
tr((Mn/

√
n)k)− T ≥ (T 1/k + εK/

√
n)k − T

]
≤ Ce−cε

2
. (88)

Here

(T 1/k + εK/
√
n)k − T =

∫ εK/
√
n

0
dz ∂

∂z (T
1/k + z)k =

∫ εK/
√
n

0
dz k(T 1/k + z)k−1. (89)

In view of (69), we expect T to be of order n as n → ∞. If that is true, then the expression
in (89) is of order n−1/2(n1/k)k−1 = n1−1/2−1/k. Thus, if we use that T is of order n, then
formula (84) allows us to show that the probability in (86) is small when L is large. With
some extra work, it seems that now one should be able to derive (70). However, if we have
no additional information about the size of T , then it seems such a conclusion cannot be
drawn. Indeed, if T would be of order n2, then the expression in (89) would be of order
n−1/2(n2/k)k−1 = n2−1/2−2/k, which for k ≥ 4 is larger n1−ck .

About Exercise 2.4.8 in the book Here one has to show that as n→ ∞,

E
[(
tr(Mk

n)
)2]

= nk+2 + o(nk+2). (90)

Similar to formula (2.70) in the book, we can rewrite the left-hand side as∑
1≤i1,...,in≤n

∑
1≤j1,...,jn≤n

E
[
ξi1i2 · · · ξiki1ξj1j2 · · · ξjkj1

]
, (91)

where now we sum over all possible combinations to choose two cycles i1, . . . , ik and j1, . . . , jk.
These cycles form a graph where each edge of the graph is used at least once by a step of
one of the cycles. As in Subsection 2.3.4 in the book, no edge of the graph can be used
precisely once (by both cycles together), since different edges are independent and the ξij ’s
have mean zero, so such terms all give zero. Now you can group the terms you get according
to how many distinct vertices your graoh has. You then get a factor n(n − 1) · · · for each
vertex that you can choose. From this, you see that the leading order terms come from graphs
that have the maximal number of distinct vertices while satsfying the constraint that each
edge used at least twice. Now one can see that these are precisely the graphs that consist
of two disjoint components, each of which has the tree structure of Subsection 2.3.4. These
have 2(k/2 + 1) = k + 2 vertices so the leading order term is of order nk+2. The prefactor is
precisely C2

k/2, because you choose two cycles as before.

19



4 The Stieltjes transform

4.1 Set-up

We work in the set-up of Subsection 3.3. We recall that (ξij)i,j∈N+ are real random variables
such that

(i) (ξij)i<j are i.i.d. with mean zero and variance one,

(ii) (ξij)i=j are i.i.d. with mean zero and finite variance, and independent of (ξij)i<j ,

(iii) ξji = ξij (i < j).

We set Mn := (ξij)1≤i,j≤n, we let λ1(n) ≥ · · · ≥ λn(n) denote its eigenvalues, and let µn be
the random probability measures on R defined by

µn :=
1

n

n∑
i=1

δλi(n)/
√
n, (92)

Then Theorem 2.4.2 from the book says that

µn =⇒
n→∞

µsc a.s., (93)

where µsc denotes the semicircle law

µsc(dx) :=
1

2π

(
4− |x|2

)1/2
+

dx. (94)

Formula (93) implies that
E
[
µn

]
=⇒
n→∞

µsc a.s.. (95)

Conversely, it is possible to derive (93) from (95) if one can show that the random measures
µn are with high probability close to their mean E[µn]. In the previous section, we have seen
how (95) can be proved by showing that the moments of E[µn] converge to those of µsc. In
the present section, we will take another approach and show that the Stieltjes transform of
E[µn] converge to that of µsc.

4.2 The Stieltjes transform

If µ is a probability measure on R, then its Stieltjes transform is the function sµ : C\R → C
defined as

sµ(z) :=

∫
R
µ(dx)

1

x− z
(z ∈ C\R). (96)

We observe that∣∣∣ 1

x− z

∣∣∣ = 1√(
x−ℜ(z)

)2
+ ℑ(z)2

≤ 1

|ℑ(z)|
(x ∈ R, z ∈ C), (97)

so the integrand in (96) is absolutely integrable for each z ̸∈ R, and∣∣sµ(z)∣∣ ≤ 1

|ℑ(z)|
(x ∈ R, z ∈ C). (98)

Also,
sµ(z) = sµ(z) (z ∈ C\R), (99)
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so it suffices to know sµ on the upper half-plane

C+ :=
{
z ∈ C : ℑ(z) > 0

}
. (100)

One can check that z 7→ sµ(z) is complex differentiable on C\R, i.e., the limit

∂
∂zsµ(z) := lim

w→0
w−1

(
sµ(z + w)− sµ(w)

)
(101)

(with w running through C) exists for all z ∈ C\R. We recall from complex number theory that
this implies that sµ is complex analytic on C\R. In particular, it is infinitely differentiable.
Since

ℑ
( 1

x− z

)
= ℑ

( x− z

|x− z|2
)
=

ℑ(z)
|x− z|2

, (102)

we observe that sµ maps C+ into itself. The following lemma shows that the measure µ is
uniquely determined by sµ.

Lemma 18 (Stieltjes transform near the real axis) For each real ε > 0, let hε : R → R
be defined by

hε(x) :=
1

π
ℑ
(
sµ(x+ iε)

)
(x ∈ R). (103)

Then hε takes values in [0,∞) and setting µε(dx) := hε(x)dx defines a probability measure on
R. These probability measures satisfy

µε =⇒
ε→0

µ (104)

where ⇒ denotes weak convergence of probability laws on R.

Proof (sketch) We observe that

hε(y) =

∫
R
µ(dx)Pε(y − x) with Pε(x) :=

1

π
ℑ
( 1

x− iε

)
=

1

π

ε

x2 + ε2
. (105)

It is well-known that the measures Pε(x)dx are probability measures that approximate the
delta-measure as ε→ 0, so the convolutions Pε ∗ µ approximate µ.

Similarly to Lemma 18, one can show that a sequence of probability measures µn converges
weakly to a limit µ if and only if sµn converges pointwise to sµ, i.e.,

µn =⇒
n→∞

µ ⇔ sµn(z) −→
n→∞

sµ(z) ∀z ∈ C+. (106)

See Exercise 2.4.10 in the book.

4.3 The Stieltjes transform method

We want to prove (95) using (106). Recall from Theorem 2 that a linear operator A on a
complex finite dimensional inner product space is normal (i.e., commutes with its adjoint) if
and only it is diagonal with respect to some orthonormal basis {e(1), . . . , e(n)}. In this case

A =
n∑

i=1

λi|e(i)⟩⟨e(i)|, (107)

where λ1, . . . , λn are the eigenvalues of A. For the moment method (see Subsection 3.6), we
made use of the fact that

tr(Ak) =
n∑

i=1

λki (108)
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for all integers k ≥ 1. Formula (108) follows from the fact that for any linear operator B one
has tr(Ak) =

∑n
i=1(A

k)ii holds with respect to any basis, so in particular also with respect to
the basis that makes A diagonal. This argument is not restricted to positive integer powers
only. It clearly also holds for k = 0 and if λi ̸= 0 for all 1 ≤ i ≤ n, which is equivalent to
A being invertible, then it also holds for negative integer powers. We observe that for each
z ∈ C, the linear operator

1√
n
Mn − zI (109)

is normal. Since the eigenvalues of Mn are real, the operator in (109) is invertible if z ̸∈ R, so
(108) tells us that

tr
(( 1√

n
Mn − zI

)−1
)
=

n∑
i=1

(λi(n)/
√
n− z)−1, (110)

and hence the Stieltjes transform of the probability measure E[µn], with µn defined in (92), is
given by

sn(z) := sE[µn](z) = E
[ ∫

R
µn(dx)

1

x− z

]
= E

[ 1
n

n∑
i=1

(λi(n)/
√
n− z)−1

]
=

1

n
E
[
tr
(( 1√

n
Mn − zI

)−1
)]
.

(111)
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