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Abstract

For deterministic monotone cellular automata on the d-dimensional integer lattice, Toom
has given necessary and sufficient conditions for the all-one fixed point to be stable against
small random perturbations. The proof of sufficiency is based on an intricate Peierls
argument. We present a simplified version of this Peierls argument. Our main motivation
is the open problem of determining stability of monotone cellular automata with intrinsic
randomness, in which for the unperturbed evolution the local update rules at different
space-time points are chosen in an i.i.d. fashion according to some fixed law. We apply
Toom’s Peierls argument to prove stability of a class of cellular automata with intrinsic
randomness and also derive lower bounds on the critical parameter for some deterministic
cellular automata.
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Part I

Results

1 Introduction and main results

1.1 Introduction

Let {0, 1}Zd
denote the set of configurations x = (x(i))i∈Zd of zeros and ones on the d-

dimensional integer lattice Zd. By definition, a map φ : {0, 1}Zd → {0, 1} is local if φ depends
only on finitely many coordinates, i.e., there exists a finite set ∆ ⊂ Zd and a function φ′ :
{0, 1}∆ → {0, 1} such that φ

(
(x(i))i∈Zd

)
= φ′((x(i))i∈∆) for each x ∈ {0, 1}Zd

. We let ∆(φ)
denote the smallest set with this property, which may be empty: in this case φ is either
constantly zero or one. We denote the constant functions by

φ0(x) := 0 and φ1(x) := 1 (x ∈ {0, 1}Zd
). (1.1)

A local map φ is monotone if x ≤ y (coordinatewise) implies φ(x) ≤ φ(y). Let {φ0, . . . , φm}
be a set of monotone local maps φk : {0, 1}Zd → {0, 1}, of which φ0 = φ0 is the map that is
constantly zero and φ1, . . . , φm are not constant. Let r =

(
r(1), . . . , r(m)

)
be a probability

distribution on {1, . . . ,m}. We will be interested in i.i.d. collections of random variables
Φp,r = Φp = (Φp

i,t)(i,t)∈Zd+1 with values in {φ0, . . . , φm} such that

P
[
Φp
i,t = φk

]
=

{
p if k = 0,

(1− p)r(k) if 1 ≤ k ≤ m,
(1.2)

where p ∈ [0, 1] is a parameter. We call Φp a monotone cellular automaton. We will be
interested in the case that p is small but positive. We think of Φp as a small perturbation
of Φ0. In the special case that m = 1, we say that Φ0 is a deterministic monotone cellular
automaton. If m ≥ 2 and r(k) < 1 for all k, then we say that Φ0 has intrinsic randomness.

If Xp
0 is a random variable with values in {0, 1}Zd

, independent of (Φp
i,t)i∈Zd, t∈Z+

, then
setting

Xp
t (i) := Φp

i,t

(
(Xp

t−1(i+ j))j∈Zd

)
(i ∈ Zd, t > 0) (1.3)

defines a Markov chain (Xp
t )t≥0 with state space {0, 1}Zd

. Let Px denote the law of this
Markov chain started in a given initial state Xp

0 = x and let 0 and 1 denote the configurations

in {0, 1}Zd
that are constantly zero or one, respectively. It is well-known that

P0
[
Xp

t ∈ ·
]
=⇒
t→∞

νp and P1
[
Xp

t ∈ ·
]
=⇒
t→∞

νp (1.4)

where ⇒ denotes weak convergence of probability measures on {0, 1}Zd
, equipped with the

product topology, and νp and νp are invariant laws of the Markov chain defined in (1.3), that
are called the lower and upper invariant laws, respectively. Let

ρr(p) = ρ(p) := lim
t→∞

P1
[
Xp

t (i) = 1
]

(p ∈ [0, 1], i ∈ Zd) (1.5)

denote the density of the upper invariant law, which by translation invariance does not depend
on i ∈ Zd. Trivially, ρ(0) = 1 1. We say that the monotone cellular automaton Φ0 defined by
the monotone local maps φ1, . . . , φm and the probability distribution r is stable if

lim
p→0

ρ(p) = 1, (1.6)

1Indeed from the fact that φk are monotone and non constant for k ∈ {1, . . . ,m}, it follows that φk(1) = 1.
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and completely unstable if ρ(p) = 0 for all p > 0. A simple coupling argument shows that
p 7→ ρ(p) is non-increasing, so if we let

pc := sup
{
p ∈ [0, 1] : ρ(p) > 0

}
(1.7)

it holds that ρ(p) > 0 for all p < pc and ρ(p) = 0 for all p > pc. In particular, complete
instability corresponds to pc = 0.

For deterministic monotone cellular automata, Toom [Too80] has completely solved the
problem of determining whether a given cellular automaton is stable or not. To state his
result we first need to define eroders. For each local map φ : {0, 1}Zd → {0, 1}, we let

Ψφ : {0, 1}Zd → {0, 1}Zd
be defined as

Ψφ(x)(i) := φ
(
(x(i+ j))j∈Zd

) (
x ∈ {0, 1}Zd)

, (1.8)

i.e., Ψφ describes one step of the time evolution of the deterministic cellular automaton defined
by φ.

Definition 1 (Eroders) We say that a local map φ is an eroder if for each configuration

x ∈ {0, 1}Zd
that contains only finitely many zeros, there is a t ∈ N such that Ψt

φ(x) = 1,
where Ψt

φ denotes the t-th iterate of the map Ψφ.

We quote the following result from [Too80, Thm 5].2

Theorem 2 (Toom’s stability theorem) The deterministic monotone cellular automaton
Φ0 defined by a monotone local nonconstant map φ is stable if φ is an eroder and completely
unstable if φ is not an eroder.

For general local maps that need not be monotone, it is known that there exists no algo-
rithm to decide whether a given map is an eroder, even in one dimension [Pet87]. By contrast,
for monotone local maps, there exists a simple criterion to check whether a given map is an
eroder. To state this criterion we need the notion of minimal one-sets. A one-set of a mono-
tone local map φ : {0, 1}Zd → {0, 1} is a finite set A ⊂ Zd such that φ(1A) = 1, where 1A
denotes the indicator function of A. A minimal one-set is a one-set that does not contain
other one-sets as a proper subset. Each monotone local map φ : {0, 1}Zd → {0, 1} can be
written as

φ(x) =
∨

A∈A(φ)

∧
i∈A

x(i)
(
x ∈ {0, 1}Zd)

, (1.9)

where A(φ) is the set of minimal one-sets of φ. In (1.9), we use the convention that the
supremum (resp. infimum) over an empty set is 0 (resp. 1). In line with this, A(φ0) = ∅ and
A(φ1) = {∅} (note the difference!). We let Conv(A) denote the convex hull of a set A, viewed
as a subset of Rd. Then [Too80, Thm 6], with simplifications due to [Pon13, Thm 1], says the
following.

Proposition 3 (Erosion criterion) A monotone local map φ ̸= φ0 is an eroder if and only
if ⋂

A∈A(φ)

Conv(A) = ∅. (1.10)

See also Lemma 10 which gives a related alternative erosion criterion due to [Pon13,
Lemma 12].

2In the case where φ is not an eroder, Theorem 5 in [Too80] only states that the monotone cellular automaton
is not stable, but the proof actually implies that it is completely unstable. We will give our own proof in
Subsection 3.3 below.
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Remark 4 Helly’s theorem [Roc70, Corollary 21.3.2] guarantees that if (1.10) holds, then
there exists a subset A′ ⊂ A(φ) of cardinality at most d+ 1 such that

⋂
A∈A′ Conv(A) = ∅.

For concreteness, let us look at some examples of maps in two dimensions.

φNEC(x) := round
(
[x(0, 0) + x(0, 1) + x(1, 0)]/3

)
,

φNN(x) := round
(
[x(0, 0) + x(0, 1) + x(1, 0) + x(0,−1) + x(−1, 0)]/5

)
,

φcoop(x) :=x(0, 0) ∨
(
x(0, 1) ∧ x(1, 0)

)
,

(1.11)

where round denotes the function that rounds off a real number to the nearest integer. The
function φNEC is known as North-East-Center voting or NEC voting, for short, and also as
Toom’s rule. In analogy with φNEC, we also define maps φNWC, φSWC, φSEC that describe
North-West-Center voting, South-West-Center voting, and South-East-Center voting, respec-
tively, defined in the obvious way. We will call the map φNN from (1.11) Nearest Neigbour
voting or NN voting, for short. Another name found in the literature is the symmetric majority
rule. We call φcoop the cooperative branching rule. It is also known as the sexual reproduction
rule because of the interpretation that when φcoop is applied at a site (i1, i2), two parents at
(i1 + 1, i2) and (i1, i2 + 1) produce offspring at (i1, i2), provided the parents’ sites are both
occupied and (i1, i2) is vacant. Using Proposition 3 one can easily check that φNEC and φcoop

are eroders, but φNN is not. Indeed, we have

A(φNEC) := {{(0, 0), (1, 0)}, {(0, 0), (0, 1)}, {(0, 1), (1, 0)}} ,
A(φcoop) := {{(0, 0)}, {(0, 1), (1, 0)}} ,

(1.12)

and both sets satisfy condition (1.10). On the other hand, A(φNN) is the set of all subsets
of cardinality 3 of {(0, 0), (0, 1), (1, 0), (0,−1), (−1, 0)}. Therefore, each A ∈ A(φNN) contains
the origin in its convex hull, and the erosion condition (1.10) is not satisfied. In fact, it is
not hard to find configurations containing only finitely many zeros which cannot disappear
under iterated applications of the map Ψ

φNN , for example the configuration that is zero on

(0, 0), (0, 1), (1, 0), (1, 1) and one everywhere else.

Remark 5 Toom’s stability theorem is stated in a slightly greater generality. The determin-
istic monotone cellular automata considered in [Too80] are defined by monotone local maps φ
that can “look back” more than one time step, in the sense that the set ∆(φ) defined above
(1.1) is a finite subset of Zd × Z−. In this case, φ is an eroder if and only if⋂

A∈A(φ)

⋃
α>0

{α · (i, t) : (i, t) ∈ Conv(A)} = ∅, (1.13)

that is no ray in Rd+1 that starts from the origin intersects all the convex hulls of the minimal
one-sets. Note that in our setting this condition is equivalent to (1.10).

Toom’s Theorem 2 settles the stability issue for deterministic monotone cellular automata.
The next natural step is to study stability for monotone cellular automata with intrinsic
randomness. One might think that stability should hold at least in the case when φ1, . . . , φm

are all eroders, but this is not true. For example, the monotone cellular automaton that applies
the maps φNEC, φNWC, φSWC, φSEC each with probability 1/4 is believed to be unstable, in
spite of the fact that each of these maps individually is an eroder.

To see a further example of the difficulties of cellular automata with intrinsic randomness,
consider the identity map, defined as

φid(x) := x(0)
(
x ∈ {0, 1}Zd)

. (1.14)

5



In terms of the associated Markov chain (1.3), applying the identity map in a given space-
time point has the effect that the local state at a site does not change. One might think
that if φ is an eroder, then a cellular automaton that applies the maps φ and φid each with
positive probability must be stable, but again this turns out to be wrong. Gray [Gra99,
Examples 18.3.5 and 18.3.6] has given convincing arguments that show that the addition of
the identity map can make eroders unstable and conversely, make non-eroders stable. Being
able to include the identity map is important for understanding continuous-time interacting
particle systems. We can think of such systems as limits of discrete-time cellular automata
where time is measured in steps of some small size δ and all maps except φid are applied with
a probability of order δ.

The most difficult part of Theorem 2 is the statement that Φ0 is stable if φ is an eroder.
To prove this, Toom used an intricate Peierls argument. It is fair to say that Toom’s original
paper [Too80] is quite hard to read. Indeed, several subsequent papers have been devoted to
simplifying his arguments and others have re-proved his result from scratch for some specific
model at hand to avoid relying on this complex proof [LMS90, Gac95, Pre07, Pon13, Gac21]
(see Subsection 1.5).

In this paper, we reformulate and simplify Toom’s Peierls argument. Our main motivation
is the problem of extending Toom’s stability theorem to monotone cellular automata with
intrinsic randomness. As a first step in this direction, we will prove a stability result in
Theorem 9 below, which however excludes many interesting cases such as cellular automata
that apply the identity map with a positive probability. This is not due to a fundamental
limitation of Toom’s Peierls argument, but to go beyond Theorem 9 one needs more advanced
methods to estimate the Peierls sum. In order not to overload the present paper, we have
delegated these methods to a companion paper [SST24] where further stability results for
cellular automata with intrinsic randomness will be proved.

As a further result of our reformulation of Toom’s Peierls argument, we will derive explicit
lower bounds on the critical noise parameter pc from (1.7) for some deterministic cellular
automata. Although these bounds are often several orders of magnitude from the conjectured
true values, they are nevertheless the sharpest rigorous bounds available. For a subclass of
cellular automata, we show that it is possible to derive significantly better bounds by using
Toom cycles, which are Toom contours with additional pleasant properties.

Toom’s Peierls argument was invented to study stability of monotone cellular automata
with respect to noise that is i.i.d. in space and time. It has recently been discovered that it
can also be used to prove stability with respect to noise that is applied only to the initial state
[HS22, CSS24]. This has applications in bootstrap percolation, which we will briefly discuss
in Subsection 1.4 below.

Outline

In the remainder of Section 1 we discuss applications of Toom’s Peierls argument. Stability of
monotone cellular automata with intrinsic randomness is discussed in Subsection 1.2, explicit
lower bounds on the critical noise parameter are presented in Subsection 1.3, and bootstrap
percolation is discussed in Subsection 1.4. In Subsection 1.5 we discuss earlier work on the
topic and state some open problems.

In Section 2 we present our reformulation of Toom’s Peierls argument. We work in a more
general setting than in Section 1, which also allows for cellular automata that can look back
more than one time step as in Remark 5 and cellular automata on other lattices than Zd,
such as trees. We show that each monotone cellular automaton has a maximal trajectory and
that the density ρ(p) of the upper invariant law is equal to the probability that this maximal
trajectory has a one at the origin. We moreover introduce objects we call Toom contours
that are directed graphs with different types of edges that are designed to make use of the
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characterisation of eroders in terms of edge speeds and polar functions that will be discussed
in Subsection 1.2 below.

The main results of Section 2 and indeed of the whole paper are Theorems 23, 26, and
27. Theorem 23 says that on the event that the maximal trajectory has a zero at the origin,
a Toom contour must be present. As stated precisely in Theorem 27, this allows one to
estimate 1− ρ(p) from above by the expected number of Toom contours that are present in a
cellular automaton. This is the core of Toom’s Peierls argument. Theorem 26 shows that for
a subclass of monotone cellular automata, it is possible to work with Toom cycles which are
Toom contours with additional pleasant properties that often lead to sharper bounds.

The remainder of the paper is devoted to proofs. In Section 3 we prove some preparatory
results, in Section 4 we prove the results from Section 2 about Toom contours, and in Section 5
we apply these results to prove stability of a class of monotone cellular automata with intrinsic
randomness and derive some explicit bounds on the critical noise parameter.

1.2 Stability of monotone cellular automata

In this subsection we state a theorem giving sufficient conditions for the stability of monotone
cellular automata with intrinsic randomness. The statement of the theorem involves edge
speeds and gives additional insight into Toom’s stability theorem, which it generalises.

Definition 6 (Edge speed) Let ℓ : Rd → R be a linear form that is not identically zero and

let φ : {0, 1}Zd → {0, 1} be a monotone local map. We call the quantity

εφ(ℓ) := sup
A∈A(φ)

inf
i∈A

ℓ(i). (1.15)

the edge speed of φ in the direction ℓ.

The name “edge speed” already suggests its interpretation. For any linear form ℓ : Rd → R,
let Hℓ

r ∈ {0, 1}Zd
denote the half-space configuration defined by

Hℓ
r(i) :=

{
1 if ℓ(i) ≥ r,

0 if ℓ(i) < r
(r ∈ R). (1.16)

The following lemma explains the name “edge speed”.

Lemma 7 (Edge speeds) Let ℓ : Rd → R be a linear form that is not identically equal to

zero and φ : {0, 1}Zd → {0, 1} be a monotone local map. Then for each r ∈ R and t ≥ 0 the
map from (1.8) satisfies

Ψt
φ(H

ℓ
r) = Hℓ

r−tεφ(ℓ)
. (1.17)

The result above, which follows easily from the definitions, is for completeness proved in
Subsection 3.1. To state our stability result, we need one more definition.

Definition 8 (Polar functions) Given an integer σ ≥ 2, a polar function of dimension σ
is a linear function

Rd ∋ z 7→ L(z) = (L1(z), . . . , Lσ(z)) ∈ Rσ (1.18)

such that
σ∑

s=1

Ls(z) = 0 (z ∈ Rd). (1.19)

In Subsection 5.2 we will use Toom contours to prove the following stability result.
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Theorem 9 (Stability of monotone cellular automata with intrinsic randomness)
Fix m ≥ 1 and let Φ0 be a monotone cellular automaton defined by maps φ1, . . . , φm and a
probability distribution r(1), . . . , r(m). Assume that there exists a linear polar function L of
dimension σ ≥ 2 such that the worst-case edge speeds

εs := inf
1≤k≤m

εφk
(Ls) (1 ≤ s ≤ σ) (1.20)

satisfy

ε :=
σ∑

s=1

εs > 0. (1.21)

Then Φ0 is stable.

Theorem 9 is far from optimal in terms of what can be achieved by Toom’s Peierls argu-
ment, but to improve on it one needs more advanced methods to estimate the Peierls sum
which will be presented in our companion paper [SST24]. Although Theorem 9 is suboptimal
in the presence of intrinsic randomness, it is optimal in the deterministic case. To see this,
we need the following alternative erosion criterion originally due to [Pon13, Lemma 12], the
proof of which will be given in Subsection 3.1.

Lemma 10 (Alternative erosion criterion) Let φ : {0, 1}Zd → {0, 1} be a non-constant
monotone function. Then φ is an eroder if and only if there exists a polar function L of
dimension σ ≥ 2 such that the edge speeds defined in (1.15) satisfy

σ∑
s=1

εφ(Ls) > 0. (1.22)

It is instructive to see why (1.22) implies that φ is an eroder. Given a configuration

x ∈ {0, 1}Zd
containing finitely many zeros, let the extent of x be defined as

ext(x) :=


σ∑

s=1

rs(x) with rs(x) := sup
{
Ls(i) : i ∈ Zd, x(i) = 0

}
if x ̸= 1,

−∞ if x = 1

(1.23)

By the defining property (1.19) of a linear polar function, ext(x) ≥ 0 for each x ̸= 1. Lemma 7
and the monotonicity of φ imply that for each configuration x with finitely many zeros,

ext(Ψt
φ(x)) ≤ ext(x)− εφ(L)t (t ≥ 0), (1.24)

and hence Ψt
φ(x) = 1 for all t ≥ ext(x)/ε. In the case with intrinsic randomness, condition

(1.21) similarly implies that if (Xt)t≥0 is the Markov chain defined as in (1.3) in terms of the
unperturbed automaton Φ0, started in an initial state X0 = x with finitely many zeros, then
almost surely

ext(Xt) ≤ ext(x)− εt (t ≥ 0), (1.25)

and Xt = 1 for all t ≥ ext(x)/ε. Thus Theorem 9 proves stability under the assumption that
under the unperturbed evolution, finite collections of zeros disappear after a finite deterministic
time. There are many examples of monotone cellular automata with intrinsic randomness
that do not satisfy (1.21) but for which under the unperturbed evolution, finite collections of
zeros disappear after a finite random time. For some of these, we will prove stability in our
companion paper [SST24].
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1.3 Bounds on the critical noise parameter

In this subsection we apply Theorem 9 to some concrete examples and derive explicit bounds
on the critical noise parameter pc from (1.7).

We first set m = 1 and consider the deterministic cellular automaton on Z2 defined by the
single map φ1 = φcoop. The function L : R2 → R2 defined as

L1(z) := −z1 − z2, L2(z) := z1 + z2
(
z = (z1, z2) ∈ R2

)
(1.26)

is a linear polar function of dimension σ = 2 in the sense of Definition 8. Using (1.12) and
(1.15), we see that the corresponding edge speeds from (1.20) are given by

ε1 = εφcoop(L1) = 0, ε2 = εφcoop(L2) = 1, (1.27)

so ε = ε1 + ε2 > 0 and hence Theorem 9 implies that this cellular automaton is stable.
We next set m = 1 and φ1 = φNEC. We define a linear polar function L of dimension

σ = 3 by

L1(z1, z2) := −z1, L2(z1, z2) := −z2, L3(z1, z2) := z1 + z2 (z ∈ R2). (1.28)

One can check that for this choice of L (recall (1.12))

ε1 = εφNEC(L1) = 0, ε2 = εφNEC(L2) = 0, ε3 = εφNEC(L3) = 1, (1.29)

which implies ε = ε1 + ε2 + ε3 > 0, hence stability.
To also see an example with intrinsic randomness, consider the casem = 2 with φ1 = φNEC

and φ2 = φcoop. Using the polar function (1.28) one can check that

ε1 = εφNEC(L1) ∧ εφcoop(L1) = 0 ∧ 0 = 0, (1.30)

ε2 = εφNEC(L2) ∧ εφcoop(L2) = 0 ∧ 0 = 0, (1.31)

ε3 = εφNEC(L3) ∧ εφcoop(L3) = 1 ∧ 1 = 1, (1.32)

which implies ε > 0. Therefore, Theorem 9 implies stability for this cellular automaton
regardless of the choice of the probability distribution r =

(
r(1), r(2)

)
on {1, 2}.

To see an example where Theorem 9 is not applicable, consider the case m = 4 with
φ1 = φNEC, φ2 = φNWC, φ3 = φSWC, and φ4 = φSEC. In this case, there exists no polar
function that satisfies the hypothesis of Theorem 9. We conjecture that this model is unstable
if r is the uniform distribution on {1, 2, 3, 4}, but stable in all other cases.

The proof of Theorem 9 allows us to derive explicit lower bounds on the critical noise
parameter pc from (1.7). In particular, in Subsection 5.7 we will prove the following bounds.

Proposition 11 (Explicit bounds) For the deterministic cellular automaton on Z2 that
applies φcoop in each space-time point pc ≥ 1/64. For the deterministic cellular automaton on
Z2 that applies φNEC in each space-time point pc ≥ 3−21.

In our companion paper [SST24], using a more advanced method to bound the Peierls sum,
we will improve the lower bound for the cellular automaton defined by φNEC to pc ≥ 1/12000.
Numerical simulations suggest that the true value of pc is ≈ 0.105 for φcoop and ≈ 0.053 for
φNEC. There is a good reason why the rigorous bounds for φNEC are worse than for φcoop. If we
want to apply Lemma 10 to prove that φNEC is an eroder, then we need a linear polar function
of dimension at least three, while for φcoop a linear polar function of dimension two suffices.
In general, the higher the dimension of the linear polar function, the worse the bounds. For
linear polar functions of dimension two, we can moreover use Toom cycles instead of Toom
contours, which also leads to sharper bounds.
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1.4 Bootstrap percolation

Our simplification of Toom’s argument has successfully been used in the study of bootstrap
percolation in [HS22]. In this subsection, we briefly elaborate on this connection.

Instead of perturbing a deterministic monotone cellular automaton with noise that is i.i.d.
in space and time, one can also look at perturbations that are i.i.d. in space but constant in
time. More precisely, if φ : {0, 1}Zd → {0, 1} is a monotone local map that is not constant,
then it is interesting to look at i.i.d. collections of random variables Φp = (Φp

i )i∈Zd with values
in {φ0, φ} such that

P
[
Φp
i = φ0

]
= p and P

[
Φp
i = φ

]
= 1− p, (1.33)

and modify the evolution in (1.3) in the sense that the same map Φp
i is applied at each time

t > 0. We let ρ̃φ(p) denote the long-time limit of the density started from 1 for this type of
evolution. Recall from (1.5) that ρφ(p) denotes the limiting density when the noise is i.i.d. in
space and time.

Definition 12 (Forms of stability) We say that φ is stable in the bootstrap sense if
limp→0 ρ̃φ(p) = 1 and stable in Toom’s sense if limp→0 ρφ(p) = 1.

Toom’s stability theorem (Theorem 2) completely answers the question which monotone
local maps φ are stable in Toom’s sense. The analogue question for stability in the bootstrap
sense has been answered more recently. In order to formulate a precise result, we first need
to translate the problem into the language of bootstrap percolation. In analogy with notation
introduced in (1.8), we let Ψp

φ : {0, 1}Zd → {0, 1}Zd
denote the random map defined as

Ψp
φ(x)(i) := Φi

(
(x(i+ j))j∈Zd

) (
x ∈ {0, 1}Zd)

. (1.34)

Since the noise is the same in each time step,

ρ̃φ(p) := lim
t→∞

P
[
(Ψp

φ)
t(1)(i) = 1

]
(i ∈ Zd), (1.35)

where (Ψp
φ)t denotes the t-th iterate of the map Ψp

φ. Note that if (Ψp
φ)t(1)(i) = 0 for some

i ∈ Zd and t ≥ 1, then (Ψp
φ)t+s(1)(i) = 0 for all s ≥ 0.

Minimal zero-sets of a monotone local map φ are defined analogously to the minimal one-
sets of (1.9), i.e., these are minimal elements of the set of all finite Z ⊂ Zd with the property
that φ(1−1Z) = 0. We let Z(φ) denote the set of all minimal zero-sets of φ. For any monotone

local map φ we define a map φ : {0, 1}Zd → {0, 1} in terms of its set of minimal zero-sets as

Z(φ) :=
{
Z : Z ∈ Z(φ), 0 /∈ Z

}
. (1.36)

We say that two monotone local maps φ1 and φ2 from {0, 1}Zd
to {0, 1} are equivalent in

the bootstrap sense if φ1 = φ2. Observe that in this case φ1(x) = φ2(x) for all x ∈ {0, 1}Zd

such that x(0) = 1. It is easy to see that if φ1 and φ2 are equivalent in the bootstrap sense,
then (Ψp

φ1)
t(1) and (Ψp

φ2)
t(1) are equal in law, and moreover almost surely equal if we couple

both processes in the obvious way, by applying the zero map in the same space-time points.
Therefore, in view of (1.35), for equivalent maps ρ̃φ1(p) = ρ̃φ2(p) (0 ≤ p ≤ 1). In particular,
for each map φ

ρ̃φ(p) = ρ̃φ(p). (1.37)

The set Z(φ) is called the update family in the bootstrap percolation literature, and it is
traditionally in terms of this set that the dynamics are described.

Bootstrap percolation was first introduced in [CLR79] to model magnetic materials at low
temperature, and has since been extensively studied (see [Mor17] for a review). The first
stability result on Zd was established in [Sch92] for the update family consisting of all sets
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containing exactly r neighbours of the origin. Presently, there is a complete characterisation
of bootstrap percolation maps on Zd. Based on the geometry of the sets in the update family,
bootstrap maps φ fall into three universality classes: maps φ in the supercritical and critical
classes are completely unstable in the bootstrap sense meaning that ρ̃φ(p) = 0 for all p > 0,
while those in the subcritical class are stable in the bootstrap sense. These results were first
established in [BSU15, BB+16] in two dimensions and recently extended to higher dimensions
in a series of papers [BB+22a, BB+22b, BB+24]. It was shown in [HS22] that the stability
result in the subcritical class can also (and more simply) be obtained using Toom contours,
marking the first application of the results presented in this paper. Additionally, [HT24]
applies Toom contours to establish exponential decay results for the largest cluster of zeros in
the final configuration of subcritical bootstrap percolation, as well as for the largest cluster of
zeros in space-time for monotone cellular automata defined by an eroder.

The following theorem completely answers the question which monotone local maps φ are
stable in the bootstrap sense.

Theorem 13 (Stability in the bootstrap sense) Let φ : {0, 1}Zd → {0, 1} be a monotone
local map. Then φ is stable in the bootstrap percolation sense if and only if there exists a
linear polar function L of dimension σ ≥ 2 such that the edge speeds defined in (1.15) of the
map φ from (1.36) satisfy

εφ(Ls) > 0 (1 ≤ s ≤ σ). (1.38)

This theorem is proved in [HS22, Lemma 2.1]. (The lemma only states one direction of
the theorem, but it is easy to check that every implication used in the proof is in fact an
equivalence.) We observe that (1.38) is stronger than the condition that

∑σ
s=1 εφ(Ls) > 0, so

comparing with Theorem 2 and Lemma 10 we see that stability in the bootstrap sense implies
that φ is stable in Toom’s sense but not vice versa. To see a concrete example, consider the
Duarte model on Z2 defined by the monotone local map

φDuarte(x) := round
(
[x(0, 1) + x(0,−1) + x(−1, 0)]/3

)
. (1.39)

This rule is unstable in the bootstrap sense as it is known to belong to the critical universality
class. However, as the intersection of the convex hulls of its minimal one-sets is empty, φDuarte

is an eroder and hence stable in Toom’s sense. For any monotone local map φ we can apart
from the map φ from (1.36) also define

Z(φ) := Z(φ) ∪
{
{0}

}
.

Then φ is equivalent to φ in the bootstrap sense3 while it is easy to see that φ is never
stable in Toom’s sense, as once a site flips to 0 it forever remains in state 0. Thus, for general
monotone local maps φ all four combinations (stable/unstable in Toom’s/the bootstrap sense)
are possible.

1.5 Discussion

The cellular automaton defined by the NEC voting map φNEC is nowadays known as Toom’s
model. In line with Stigler’s law of eponymy, Toom’s model was not invented by Toom, but
by Vasilyev, Petrovskaya, and Pyatetski-Shapiro, who simulated random perturbations of this
and other models on a computer [VPP69]. Toom, having heard of [VPP69] during a seminar,
proved in [Too74] that there exist random cellular automata on Zd with at least d different
invariant laws. Although Toom’s model is not explicitly mentioned in the paper, his proof
method can be applied to prove that pc > 0 for his model. In [Too80], Toom improved his
methods and proved his celebrated stability theorem. His paper is quite hard to read. A more

3In fact, it is easy to see that φ and φ are the smallest and largest maps that are equivalent to φ.
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accessible account of Toom’s original argument (with pictures!) in the special case of Toom’s
model can be found in the appendix of [LMS90].4

Bramson and Gray [BG91] have given another alternative proof of Toom’s stability theorem
that relies on comparison with continuum models (which describe unions of convex sets in Rd

evolving in continuous time) and renormalisation-style block arguments. A disadvantage of
this approach is that it is restricted to lattices that can be rescaled to Rd while Toom’s method
can also work on lattices such as trees, as demonstrated in [CSS24]. Gray [Gra99] proved a
stability theorem for monotone interacting particle systems (i.e., in continuous time). The
proofs use ideas from [Too80] and [BG91]. Gray also derived necessary and sufficient conditions
for a monotonic map to be an eroder [Gra99, Thm 18.2.1], apparently overlooking the fact
that Toom had already proved the much simpler condition (1.10).

The cellular automaton that applies the monotone map φ with probability p and the iden-
tity map φid with probability 1 − p is also referred to in the literature as p-asynchronous
cellular automaton. In asynchronous cellular automata, cells do not update their states simul-
taneously. There are various ways to define this asynchrony; for a comprehensive survey, see
[Fat13]. In [Gha92], a generalization of Toom’s theorem was presented for a particular class
of asynchronous cellular automata.

Motivated by abstract problems in computer science, a number of authors have given
alternative proofs of Toom’s stability theorem in a more restrictive setting [GR88, BS88,
Gac95, Gac21]. Their main interest is in a three-dimensional system which evolves in two
steps: letting e1, e2, e3 denote the basis vectors in Z3, they first replace Xn(i) by

X ′
n(i) := round

(
(Xn(i) +Xn(i+ e1) +Xn(i+ e2))/3

)
,

and then set
Xn+1(i) := round

(
(X ′

n(i) +X ′
n(i+ e3) +X ′

n(i− e3))/3
)
.

They prove explicit bounds for finite systems, although for values of p that are extremely
close to zero.5 The proofs of [GR88] do not use Toom’s Peierls argument but rely on different
methods. Their bounds were improved in [BS88]. Still better bounds can be found in the
unpublished note [Gac95]. The proofs in the latter manuscript are very similar to Toom’s
argument, with some crucial improvements at the end that are hard to follow due to missing
definitions (which might explain why this manuscript remained unpublished). This version of
the argument seems to have inspired the incomplete note by John Preskill [Pre07] who links
it to the interesting idea of counting “minimal explanations”. We will use this general idea in
Subsection 4.1 below, but our precise definition of a “minimal explanation” differs a bit from
his. As explained at Figure 3 and at the end of Subsection 2.3, the relation between Toom
contours and minimal explanations is not so straightforward as suggested in [Gac95, Pre07].

Around 1985, Durrett and Gray submitted a very interesting paper about an interacting
particle system based on the map φcoop from (1.11). The major revision requested by the
referee never materialised, however. For many years, a short note announcing the results
without proofs [Dur86] was the only accessible source to this material but recently Rick Durrett
has made the original preprint available on his homepage [DG85]. Hwa-Nien Chen [Che92,
Che94], who was a PhD student of Lawrence Gray, studied the stability of various variations of
Toom’s model under perturbations of the initial state and the birth rate. The proofs of two of
his four theorems depend on results that he cites from the preprint [DG85]. Ponselet [Pon13]
gave an excellent account of the existing literature and together with her supervisor proved
exponential decay of correlations for the upper invariant law of a large class of randomly
perturbed monotone cellular automata [MP11].

4Unfortunately, their Figure 6 contains a small mistake, in the form of an arrow that should not be there.
5In particular, [Gac95] needs p < 2−213−8.
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There exists duality theory for general monotone interacting particle systems [Gra86, SS18,
LS23]. The basic idea is that the state in the origin at time zero is a monotone function of
the state at time −t, and this monotone function evolves in a Markovian way as a function
of t. As noted in [Dur86] this dual process plays an important ingredient of the proofs of
[DG85]. It is also closely related to the minimal explanations of Preskill [Pre07]. A good
understanding of this dual process could potentially help solve many open problems in the
area, but its behaviour is already quite complicated in the mean-field case [MSS20].
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Figure 1: Density ρ of the upper invariant law of two monotone random cellular automata as
a function of the parameters, shown on a scale from 0 (white) to 1 (black). On the left: a
version of Toom’s model that applies the maps φ0, φ1, and φNEC with probabilities p, q, and
1− p− q, respectively. On the right: the mononotone random cellular automaton that applies
the maps φ0, φ1, and φNN with probabilities p, q, and 1− p− q, respectively. The map φNEC

is an eroder but φNN is not. By the symmetry between the 0’s and the 1’s, in both models,
the density ρ(p, q) of the lower invariant law equals 1 − ρ(q, p). Due to metastability effects,
the area where the upper invariant law differs from the lower invariant law is shown too large
in these numerical data. For Toom’s model with q = 0, the data shown above suggest a first
order phase transition at pc ≈ 0.057 but based on numerical data for edge speeds we believe
the true value is pc ≈ 0.053. We conjecture that the model on the right has a unique invariant
law everywhere except on the diagonal p = q for p sufficiently small.

In numerical investigations of monotone cellular automata, it is often useful to take a
wider view and perturb the system not only with i.i.d. zeros but also with i.i.d. ones. Recall
the constant maps φ0 and φ1 defined in (1.1). If φ : {0, 1}Zd → {0, 1} is a monotone local
map that is not constant, then it is interesting to look at i.i.d. collections of random variables
Φp,q = (Φp,q

i,t )(i,t)∈Zd+1 with values in {φ0, φ1, φ} such that

P
[
Φp,q
i,t = φ0

]
= p, P

[
Φp,q
i,t = φ1

]
= q, P

[
Φp,q
i,t = φ

]
= 1− p− q, (1.40)

where p, q ≥ 0 with p + q ≤ 1 are parameters of the model. Figure 1 shows numerical data
for the density ρ(p, q) of the upper invariant law for such a cellular automaton in the case
when φ = φNEC and φ = φNN, respectively. We see that in line with Toom’s theorem,
limp→0 ρ(p, 0) = 1 for the NEC voting rule but ρ(p, 0) = 0 for all p > 0 in the case of
NN voting. Nevertheless, the simulations suggest that the NN voting rule is stable under
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symmetric noise, in the sense that limp→0 ρ(p, p) = 1. Proving this is a long-standing open
problem; a continuous-time version of this model is mentioned in [Lig85, Example I.4.3(e)]. A
closely related problem, that is also open, is to show that for the NEC voting rule the function
p 7→ ρ(p) makes a jump at pc := sup{p : ρ(p) > 0}.

2 Toom contours

2.1 Monotone cellular automata

In this section, we introduce Toom contours, which are the central object in Toom’s Peierls
argument. Toom contours can be defined for monotone cellular automata in which space-time
has a more general structure than Zd+1. In the present subsection, we extend the definitions
of Section 1 to this more general set-up.

Let Λ be a countable set. As in Subsection 1.1, we say that a map ϕ : {0, 1}Λ → {0, 1}
is local if there exists a finite ∆ ⊂ Λ such that ϕ(x) depends only on (x(i))i∈∆ and we let
∆(ϕ) denote the smallest such set. In analogy with (1.1), in the present setting, we denote
the constant functions by

ϕ0(x) := 0 and ϕ1(x) := 1 (x ∈ {0, 1}Λ). (2.1)

We let A(ϕ) denote the set of minimal one-sets of ϕ, defined as in Subsection 1.1.
Recall that a directed graph is a pair (V, E⃗) where V is a set whose elements are called

vertices and E⃗ is a subset of V ×V whose elements are called directed edges. For each directed
edge (v, w) ∈ E⃗, we call v the starting vertex and w the endvertex. We say that (V, E⃗) is
acyclic if there do not exist n ≥ 1 and v0, . . . , vn ∈ V with vn = v0 such that (vk−1, vk) ∈ E⃗
for all 0 < k ≤ n.

Let ϕ = (ϕi)i∈Λ be a collection of local maps ϕi : {0, 1}Λ → {0, 1}, and let

H⃗(ϕ) :=
{
(i, j) ∈ Λ2 : j ∈ ∆(ϕi)

}
. (2.2)

Then (Λ, H⃗(ϕ)) is a directed graph. Generalising our earlier definition, we define a cellular
automaton to be a collection of local maps ϕ = (ϕi)i∈Λ for which the directed graph (Λ, H⃗(ϕ))
is acyclic. We call (Λ, H⃗(ϕ)) the dependence graph associated with ϕ. A trajectory of a cellular
automaton is a function x : Λ → {0, 1} such that

x(i) = ϕi(x) (i ∈ Λ). (2.3)

A cellular automaton is monotone if ϕi is a monotone map for each i ∈ Λ, i.e., x ≤ y
(coordinatewise) implies ϕi(x) ≤ ϕi(y).

To make the link with our earlier definitions from Subsection 1.1, let Φp = (Φp
i,t)(i,t)∈Zd+1

be a monotone cellular automaton of the type considered in (1.2), and for each (i, t) ∈ Zd+1,

define Φp
(i,t) : {0, 1}Z

d+1 → {0, 1} by

Φp
(i,t)

(
(x(i′, t′))(i′,t′)∈Zd+1

)
:= Φp

i,t

(
(x(i+ i′, t− 1))i′∈Zd

) (
x ∈ {0, 1}Zd+1)

. (2.4)

Then (Φp
(i,t))(i,t)∈Zd+1 is a random monotone cellular automaton according to the definitions

of the present section. Note the subtle difference in notation between Φp
i,t and Φp

(i,t). By a

slight abuse of notation, we use the symbol Φp for both the collections (Φp
i,t)(i,t)∈Zd+1 and

(Φp
(i,t))(i,t)∈Zd+1 .

We next turn our attention to the lower and upper invariant laws from formula (1.4).
The following two lemmas introduce two closely related objects, the minimal and maximal
trajectories, and show how they are related to the lower and upper invariant laws. We prove
these lemmas in Subsection 3.2.
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Lemma 14 (Minimal and maximal trajectories) Let ϕ be a monote cellular automaton.
Then there exist trajectories x and x that are uniquely characterised by the property that each
trajectory x of ϕ satisfies x ≤ x ≤ x (pointwise).

Lemma 15 (Lower and upper invariant laws) Let Φp be the random monotone cellular
automaton defined in (2.4) and let Xp and X

p
be its minimal and maximal trajectories. Then

P
[(
Xp(i, t)

)
i∈Zd ∈ ·

]
= νp and P

[(
X

p
(i, t)

)
i∈Zd ∈ ·

]
= νp (t ∈ Z), (2.5)

where νp and νp are the lower and upper invariant laws of the Markov chain in (1.3).

Let Φ be a random monotone cellular automaton, i.e., a random variable taking values in
the space of all monotone cellular automata on a given space-time set Λ, and let X denote its
maximal trajectory, which is now also random. In Theorem 27 below, we give a lower bound
on the probability P[X(i) = 1]. We will show that on the event that X(i) = 0, the random
monotone cellular automaton Φ must contain a certain structure that we will call a Toom
contour rooted at i. The probability that X(i) = 0 can then be estimated from above by the
expected number of Toom contours rooted at i that are present in Φ. In particular, applying
this to the maximal trajectory X

p
of the random monotone cellular automaton Φp, we are

under certain additional assumptions able to show that the density ρ(p) = P[Xp
(i, t) = 1] of

the upper invariant law, which in this case does not depend on (i, t), tends to one as p→ 0. In
its essence, the method goes back to Toom’s proof of [Too80, Thm 5] but we have significantly
modified and simplified the argument with the aim of making it more flexible and intuitive.
One of the most significant changes we have made is the introduction of sources and sinks (see
Figure 2 below). By contrast, the contours used in [Too80] are directed graphs in which the
number of incoming edges equals the number of outgoing edges at each vertex.

2.2 Toom contours

We will need directed graphs in which both the vertices and the edges can have different types.
Let A and B be finite sets. By definition, a typed directed graph with vertex set V , vertex type
set A, and edge type set B is a pair (V, E) where V is a subset of V × A and E is a subset of
V × V ×B, such that

∀v ∈ V ∃a ∈ A s.t. (v, a) ∈ V. (2.6)

For each a ∈ A and b ∈ B, we call

Va :=
{
v : (v, a) ∈ V

}
and E⃗b :=

{
(v, w) : (v, w, b) ∈ E

}
(2.7)

the set of vertices of type a and the set of directed edges of type b, respectively. Note that
vertices can have more than one type, i.e., Va and Va′ are not necessarily disjoint for a ̸= a′,
and the same applies to edges. As a consequence, several edges of different types can connect
the same two vertices v, w, but always at most one of each type. If (V, E) is a typed directed
graph, then we let (V, E⃗) denote the directed graph given by

V =
⋃
a∈A

Va and E⃗ :=
⋃
b∈B

E⃗b, (2.8)

where the first equality follows from (2.6) and the second equality is a definition. We call (V, E⃗)
the untyped directed graph associated with (V, E). We also set E :=

{
{v, w} : (v, w) ∈ E⃗

}
.

Then (V,E) is an undirected graph, which we call the undirected graph associated with (V, E⃗).
We say that a typed directed grap (V, E) or a directed graph (V, E⃗) are connected if their
associated undirected graph (V,E) is connected. A rooted directed graph is a triple (v◦, V, E⃗)
such that (V, E⃗) is a directed graph and v◦ ∈ V is a specially designated vertex, called the
root. Rooted undirected graphs and rooted typed directed graphs are defined in the same way.
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Figure 2: Example of a Toom graph with three charges. Sources are indicated with open dots,
sinks with asterixes, and internal vertices and edges of the three possible charges with three
colours. Note the isolated vertex in the lower right corner, which is a source and a sink at the
same time.

For any directed graph (V, E⃗), we let

E⃗in(v) :=
{
(u, v′) ∈ E⃗ : v′ = v

}
and E⃗out(v) :=

{
(v′, w) ∈ E⃗ : v′ = v

}
(2.9)

denote the sets of directed edges entering and leaving a given vertex v ∈ V , respectively.
Similarly, in a typed directed graph, E⃗b,in(v) and E⃗b,out(v) denote the sets of incoming or
outgoing directed edges of type b at v.

We adopt the following general notation. For any directed graph (V, E⃗), set Λ, and function
ψ : V → Λ, we let

ψ(V ) :=
{
ψ(v) : v ∈ V

}
and ψ(E⃗) :=

{(
ψ(v), ψ(w)

)
: (v, w) ∈ E⃗

}
(2.10)

denote the images of V and E⃗ under ψ. We can naturally view
(
ψ(V ), ψ(E⃗)

)
as a directed

graph with set of vertices ψ(V ) and set of directed edges ψ(E⃗). We denote this graph by
ψ(V, E⃗) :=

(
ψ(V ), ψ(E⃗)

)
. Similarly, if (V, E) is a typed directed graph, then we let ψ(V, E)

denote the typed directed graph defined as

ψ(V, E) :=
(
ψ(V), ψ(E)

)
with ψ(V) :=

{(
ψ(v), a

)
: (v, a) ∈ V

}
and ψ(E) :=

{(
ψ(v), ψ(w), b

)
: (v, w, b) ∈ E

}
.

(2.11)

Also, if (v◦, V, E⃗) is a rooted directed graph, then we let ψ(v◦, V, E⃗) denote the rooted directed
graph

(
ψ(v◦), ψ(V ), ψ(E⃗)

)
, and we use similar notation for rooted typed directed graphs. Two

typed directed graphs (V, E) and (W,F) are isomorphic if there exists a bijection ψ : V →W
such that ψ(V, E) = (W,F). Similar conventions apply to directed graphs, rooted directed
graps, and so on.

Definition 16 A Toom graph with σ ≥ 1 charges is a typed directed graph (V, E) with vertex
type set {◦, ∗, 1, . . . , σ} and edge type set {1, . . . , σ} that satisfies the following conditions:

(i) |E⃗s,in(v)| = 0 (1 ≤ s ≤ σ) and |E⃗1,out(v)| = · · · = |E⃗σ,out(v)| ≤ 1 for all v ∈ V◦.
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(ii) |E⃗s,out(v)| = 0 (1 ≤ s ≤ σ) and |E⃗1,in(v)| = · · · = |E⃗σ,in(v)| ≤ 1 for all v ∈ V∗.

(iii) |E⃗s,in(v)| = 1 = |E⃗s,out(v)| and |E⃗l,in(v)| = 0 = |E⃗l,out(v)| for each l ̸= s and v ∈ Vs.

See Figure 2 for a picture of a Toom graph with three charges. Vertices in V◦, V∗, and Vs
are called sources, sinks, and internal vertices with charge s, respectively. Vertices in V◦ ∩ V∗
are called isolated vertices. With the exception of isolated vertices, the inequalities ≤ 1 in (i)
and (ii) are equalities. Informally, we can imagine that at each source there emerge σ charges,
one of each type, that then travel via internal vertices of the corresponding charge through the
graph until they arrive at a sink, in such a way that at each sink there converge precisely σ
charges, one of each type. This informal picture holds even for isolated vertices, if we imagine
that in this case, the charges arrive immediately at the sink that is at the same time a source.
It is clear from this informal picture that |V◦| = |V∗|, i.e., the number of sources equals the
number of sinks. We let (V, E⃗) denote the directed graph associated with (V, E).

Toom graphs and the Toom contours that will be defined below were designed to make
use of the condition (1.21) of Theorem 9 on the worst-case edge speeds. The curious reader
may skip ahead to the beginning of Subsection 5.3 where we give an informal description of
the main idea of the proof of Theorem 9.

Recall that a rooted directed graph is a directed graph with a specially designated vertex,
called the root. In the case of Toom graphs, we will always assume that the root is a source.

Definition 17 A rooted Toom graph with σ ≥ 1 charges is a rooted typed directed graph
(v◦,V, E) such that (V, E) is a Toom graph with σ ≥ 1 charges and v◦ ∈ V◦. For any rooted
Toom graph (v◦,V, E), we write

V ′
◦ := V◦\{v◦} and V ′

s := Vs ∪ {v◦} (1 ≤ s ≤ σ). (2.12)

The idea behind (2.12) is that for rooted Toom contours, we view the root more as if it
were a collection of internal vertices than as a source. This is reflected in condition (ii) of the
following definition.

Definition 18 Let (v◦,V, E) be a rooted Toom graph and let Λ be a countable set. An
embedding of (v◦,V, E) in Λ is a map ψ : V → Λ such that:

(i) ψ(v1) ̸= ψ(v2) for each v1 ∈ V∗ and v2 ∈ V with v1 ̸= v2,

(ii) ψ(v1) ̸= ψ(v2) for each v1, v2 ∈ V ′
s with v1 ̸= v2 (1 ≤ s ≤ σ).

Condition (i) says that sinks do not overlap with other vertices and condition (ii) says
that internal vertices do not overlap with other internal vertices of the same charge, where in
line with (2.12) we view the root as a collection of internal vertices. We make the following
observation.

Lemma 19 (No double incoming edges) Let ψ be an embedding of a rooted Toom graph
(v◦,V, E) with σ ≥ 1 edges in a set Λ. Then∣∣{(v, w) ∈ E⃗s : ψ(w) = j}

∣∣ ≤ 1 (j ∈ Λ, 1 ≤ s ≤ σ). (2.13)

Proof Immediate from Definition 18, since each charged edge ends in an internal vertex of
the same charge or in a sink.

Definition 20 Let Λ be a countable set. A Toom contour in Λ with σ ≥ 1 charges is a
quadruple (v◦,V, E , ψ), where (v◦,V, E) is a rooted connected Toom graph with σ charges and
ψ is an embedding of (v◦,V, E) in Λ. We say that the Toom contour is rooted at i◦ := ψ(v◦).
Two Toom contours (v◦,V, E , ψ) and (v′◦,V ′, E ′, ψ′) are isomorphic if there exists a bijection
χ : V → V ′ such that χ(v◦,V, E) = (v′◦,V ′, E ′) and ψ(v) = ψ′(χ(v)) (v ∈ V ). We say that
(v◦,V, E , ψ) and (v′◦,V ′, E ′, ψ′) are equivalent if, using notation introduced in (2.11), one has
ψ(V, E) = ψ′(V ′, E ′).
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We note that as a result of Lemma 19, each charged edge in ψ(E) corresponds to a unique
charged edge in E . Two isomorphic Toom contours are clearly equivalent, but the converse
implication does not hold, since sources can overlap with each other and with internal vertices
and as a result, although two equivalent Toom contours have charged edges in the same
locations, these edges can be differently connected leading to two Toom contours that are not
isomorphic. See Figure 3 for an example of a Toom contour with two charges.

∗
∗

∗
∗

∗
∗

∗

(0, 0, 0)

(2, 0, 0)

(0, 1, 0)

(2, 2,−7)

ψ

∗ ∗

∗∗

∗∗

∗

v◦

⋆

⋆

⋆

⋆

⋆

⋆

⋆⋆

⋆⋆

⋆

Figure 3: A Toom contour in Z3 rooted at (0, 0, 0). The third coordinate represents time and
is plotted downwards. The picture on the right shows a minimal explanation (or rather its
associated undirected explanation graph as defined in Subsection 4.1) for a monotone cellular
automaton Φp that applies the maps φ0 and φcoop with probabilities p and 1− p, respectively.
The origin has the value zero because the sites marked with a star are defective; removing any
of these defective sites results in the origin having the value one. The Toom contour in the
middle picture is present in Φp. In particular, the sinks of the Toom contour coincide with
some, though not with all of the defective sites of the minimal explanation.

2.3 Presence of Toom contours

Our next aim is to define when a Toom contour is present in a monotone cellular automaton
ϕ = (ϕi)i∈Λ. This will require us to make some extra assumptions and equip ϕ with some
extra structure.

Definition 21 A typed dependence graph with σ ≥ 1 types of edges is a typed directed graph
(Λ,H) with vertex type set {0, 1, •} and edge type set {1, . . . , σ} such that for H⃗s := {(i, j) :
(i, j, s) ∈ H}

(i) H⃗s,out(i) = ∅ for all i ∈ Λ0 ∪ Λ1 and 1 ≤ s ≤ σ,

(ii) H⃗s,out(i) ̸= ∅ for all i ∈ Λ• and 1 ≤ s ≤ σ,
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and its associated untyped directed graph (Λ, H⃗) is acyclic. The monotone cellular automaton
ϕ = (ϕi)i∈Λ associated with the typed dependence graph (Λ,H) is defined by

ϕi(x) =


σ∨

s=1

∧
j: (i,j)∈H⃗s

x(j) if i ∈ Λ•,

r if i ∈ Λr (r = 0, 1),

(2.14)

(
i ∈ Λ, x ∈ {0, 1}Λ

)
.

It is easy to see that if (Λ,H) is a typed dependence graph, ϕ is its associated monotone
cellular automaton, and (Λ, H⃗) is its associated untyped directed graph, then (Λ, H⃗) is the
dependence graph of ϕ as defined in Subsection 2.1. In particular, the assumption that (Λ, H⃗)
is acyclic guarantees that (2.14) defines a cellular automaton. It is clear from (2.14) that ϕi is
monotone for each i ∈ Λ and that ϕi is one of the constant maps ϕr (r = 0, 1) defined in (2.1)
if and only if i ∈ Λr (r = 0, 1). Furthermore, recalling (1.9) and the definition of one-sets,
we can see that for each i ∈ Λ• the sets {j ∈ Λ : (i, j) ∈ H⃗s} (1 ≤ s ≤ σ) are one-sets of ϕi,
though not necessarily minimal. Elements of Λ0, where the constant zero map is applied, are
called defective sites. Below, we make use of the definition (2.12), i.e., we treat the root as if
it were a collection of internal vertices.

Definition 22 Let (Λ,H) be a typed dependence graph with σ ≥ 1 types of edges. We say
that a Toom contour (v◦,V, E , ψ) with σ charges is present in (Λ,H) if:

(i) ψ(v) ∈ Λ0 for all v ∈ V∗,

(ii)
(
ψ(v), ψ(w)

)
∈ H⃗s for all (v, w) ∈ E⃗•

s (1 ≤ s ≤ σ),

(iii)
(
ψ(v), ψ(w)

)
∈ H⃗ for all (v, w) ∈ E⃗◦,

where for any rooted Toom graph (v◦,V, E), we write

E⃗• :=
⋃σ

s=1 E⃗
•
s with E⃗•

s :=
{
(v, w) ∈ E⃗s : v ∈ V ′

s

}
(1 ≤ s ≤ σ),

E⃗◦ :=
⋃σ

s=1 E⃗
◦
s with E⃗◦

s :=
{
(v, w) ∈ E⃗s : v ∈ V ′

◦
}

(1 ≤ s ≤ σ).
(2.15)

Condition (i) says that sinks of the Toom contour correspond to defective sites of the typed
dependence graph. Conditions (ii) and (iii) say that directed edges of the Toom graph (V, E)
are mapped to directed edges of the typed dependence graph (Λ,H), where edges coming out
of an internal vertex must be mapped to edges of the corresponding type, and we treat the
root as if it were a collection of internal vertices. Let W := ψ(V ) and W∗ := ψ(V∗). We note
that Definition 22 implies that

W ∩ Λ0 =W∗ and W ∩ Λ1 = ∅. (2.16)

Indeed, the inclusion W∗ ⊂ W ∩ Λ0 is immediate from condition (i) while conditions (ii) and
(iii) imply W\W∗ ⊂ Λ\(Λ0 ∪ Λ1) since for v ∈ V \V∗, one has E⃗out(v) ̸= ∅, while H⃗out(i) = ∅
for i ∈ Λ0 ∪ Λ1.

The following crucial theorem, proved in Subsection 4.2, links the maximal trajectory to
Toom contours. In its essence, this goes back to part 3 of the proof of [Too80, Thm 1], but
we have reformulated things to a point where, putting the two texts besides each other, it is
hard at first sight to spot the similarity.

Theorem 23 (Presence of a Toom contour) Let (Λ,H) be a typed dependence graph with
σ ≥ 1 types of edges, let ϕ be its associated monotone cellular automaton, and let x be its
maximal trajectory. If x(i) = 0 for some i ∈ Λ, then a Toom contour (v◦,V, E , ψ) rooted at i
is present in (Λ,H).
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We note that the converse of Theorem 23 does not hold, i.e., the presence in (Λ,H) of
a Toom contour (v◦,V, E , ψ) does not imply that x(i) = 0. This can be seen from Figure 3.
In this example, if there would be no other defective sites apart from the sinks of the Toom
contour, then the origin would have the value one. This is a difference with the Peierls
arguments used in percolation theory, where the presence of a contour is a necessary and
sufficient condition for the absence of percolation.

2.4 Toom cycles

We will give two proofs of Theorem 23: one that works for general σ ≥ 1, and another that
works only for σ = 2, but that in this case gives some extra information that can sometimes
be used to get sharper bounds. As Figure 3 shows, Toom contours with two charges are
essentially cycles. In the present subsection, we define Toom cycles, which are Toom contours
with two charges that have some useful additional properties, and we formulate a theorem
about the presence of Toom cycles in monotone cellular automata.

For n ≥ 2, let [n] := {0, . . . , n − 1} equipped with addition modulo n. We define a cycle
of length n ≥ 2 to be an undirected graph (V,E) with vertex set V = [n] and edge set
E :=

{
{v, v+1} : v ∈ [n]

}
. Similarly, we define a cycle of length 1 to be the undirected graph

(V,E) := ({0}, ∅). We define an oriented cycle of length n ≥ 1 to be a directed graph (V, E⃗)
whose associated undirected graph (V,E) is a cycle of length n such that for each undirected
edge {v, w} ∈ E, precisely one of the directed edges (v, w) and (w, v) is an element of E⃗ (but
not both). In other words, this is a cycle in which each undirected edge has been given an
orientation.

Each oriented cycle of length n ≥ 2 naturally gives rise to a connected Toom graph (V, E)
with two charges by setting

V◦ :=
{
v ∈ [n] : (v, v − 1), (v, v + 1) ∈ E⃗

}
,

V∗ :=
{
v ∈ [n] : (v − 1, v), (v + 1, v) ∈ E⃗

}
,

V1 :=
{
v ∈ [n] : (v − 1, v), (v, v + 1) ∈ E⃗

}
,

V2 :=
{
v ∈ [n] : (v + 1, v), (v, v − 1) ∈ E⃗

}
(2.17)

and

E⃗1 :=
{
(v, w) ∈ E⃗ : w = v + 1

}
and E⃗2 :=

{
(v, w) ∈ E⃗ : w = v − 1

}
. (2.18)

Similarly, we may associate the oriented cycle of length one with the trivial Toom graph (V, E)
with two charges defined as V◦ = V∗ := {0} and V1 = V2 = E⃗1 = E⃗2 := ∅. If 0 ∈ V◦, then
we can take v◦ := 0 to be the root. In view of this, connected rooted Toom graphs with two
charges correspond (up to isomorphism) precisely to oriented cycles (V, E⃗) of length n ≥ 1 for
which 0 ∈ V◦.

It is sometimes convenient to add the element n to V and to replace the oriented edge
(0, n− 1) ∈ E⃗2 by (n, n− 1). Thus, we may identify an oriented cycle (V, E⃗) of length n ≥ 1
for which 0 ∈ V◦ with an oriented path of length n for which (0, 1) ∈ E⃗1 and (n, n− 1) ∈ E⃗2.
Similar to what we did in (2.12), it will be convenient to define

V ′
◦ := V◦\{0}, V ′

1 := V1 ∪ {0} and V ′
2 := V1 ∪ {n}. (2.19)

In condition (ii) of the following definition, we equip {0, . . . , n} with the natural total order
and we equip {1, ◦, 2} with the total order 1 < ◦ < 2.

Definition 24 Let Λ be a countable set. A Toom cycle in Λ is a triple (V, E⃗, ψ) where (V, E⃗)
is an oriented cycle of length n ≥ 1 such that 0 ∈ V◦, and ψ : {0, . . . , n} → Λ6 is a map such
that ψ0 = ψn and

6For ease of notation we write ψv for ψ(v) in case of Toom cycles.
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(i) ψv ̸= ψw for each v ∈ V∗ and w ∈ V with v ̸= w,

(ii) if ψv = ψw for some v ∈ V ′
s and w ∈ V ′

t with s, t ∈ {1, ◦, 2} and s ≤ t, then v ≤ w.

We say that the Toom cycle (V, E⃗, ψ) is rooted at ψ0.

If (V, E⃗, ψ) is a Toom cycle and (v◦,V, E) is its associated rooted Toom graph, then
(v◦,V, E , ψ) is a Toom contour with two charges. We call this the Toom contour associated
with the Toom cycle (V, E⃗, ψ). Applying property (ii) with s = t implies

� if ψv = ψw for some v, w ∈ V ′
s with s ∈ {1, ◦, 2}, then v = w,

so property (ii) of Definition 24 implies property (ii) of Definition 18. It is easy to see that it
is strictly stronger, so not every Toom contour with two charges comes from a Toom cycle.

We next define what it means for a Toom cycle to be present in a typed dependence graph
(Λ,H).

Definition 25 Let (Λ,H) be a typed dependence graph with 2 types of edges as in Defini-
tion 21. We say that a Toom cycle (V, E⃗, ψ) of length n ≥ 2 is present in (Λ,H) if:

(i) ψv ∈ Λ0 for all v ∈ V∗,

(ii) (ψv, ψw) ∈ H⃗s for all (v, w) ∈ E⃗s with v ∈ V ′
s (s = 1, 2),

(iii) (ψv, ψw) ∈ H⃗3−s for all (v, w) ∈ E⃗s with v ∈ V ′
◦ (s = 1, 2).

For Toom cycles of length 1, only condition (i) applies.

Note that in condition (iii) above, 3− s is 1 if s = 2 and 2 if s = 1, so this condition says
that directed edges coming out of a source other than the root must use a directed edge of
(Λ,H) of the opposite charge. This condition is stronger than condition (iii) of Definition 22.
One can check that our definition implies that if a Toom cycle is present in (Λ,H), then its
associated Toom contour is present in (Λ,H) in the sense of Definition 22, but because of
our previous remark, the converse implication does not hold. One can check that the Toom
contour with two charges in Figures 3 and 4 comes from a Toom cycle that is present in the
strong sense of Definition 25.

In the same way as in (2.16), one can see that Definition 25 implies that ψv ̸∈ Λ1 for all
v ∈ V . In view of our previous remarks, the following theorem strengthens Theorem 23 in
the special case of two charges. Our proof of Theorem 26 (in Subsection 4.3) will largely be
independent of the proof of Theorem 23.

Theorem 26 (Presence of a Toom cycle) Let (Λ,H) be a typed dependence graph with 2
types of edges, let ϕ be its associated monotone cellular automaton, and let x be its maximal
trajectory. If x(i) = 0 for some i ∈ Λ, then a Toom cycle rooted at i is present in (Λ,H).

2.5 A Peierls bound

Theorems 23 and 26 can be used to prove upper bounds on the probability that the maximal
trajectory of a random monotone cellular automaton takes the value zero in a given point.
For concreteness, we formulate this as a theorem.

Theorem 27 (Peierls bound) Let Φ = (Φi)i∈Λ be a random monotone cellular automaton
and let X be its maximal trajectory. Let

Λr :=
{
i ∈ Λ : Φi = ϕr

}
(r = 0, 1) and Λ• := Λ\(Λ0 ∪ Λ1). (2.20)
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Let σ ≥ 1 be an integer and for each i ∈ Λ• and 1 ≤ s ≤ σ, let As,i ∈ A(Φi). Define

H = (H⃗1, . . . , H⃗σ) by

H⃗s :=
{
(i, j) : i ∈ Λ•, j ∈ As,i

}
(1 ≤ s ≤ σ). (2.21)

Fix i ∈ Λ and let Ti denote the set of Toom contours rooted at i (up to equivalence). Then

P
[
X(i) = 0

]
≤

∑
T∈Ti

P
[
T is present in (Λ,H)

]
. (2.22)

If σ = 2, then (2.22) remains true if we restrict the sum to Toom cycles rooted at i.

Proof Let Ψ be the random monotone cellular automaton associated with the random typed
dependence graph (Λ,H). Then in view of (2.14) we have Ψi = Φi for i ∈ Λ0 ∪ Λ1 while

Ψi(x) =
σ∨

s=1

∧
j∈As,i

x(j) ≤
∨

A∈A(Φi)

∧
j∈A

x(j) = Φi(x)
(
i ∈ Λ•, x ∈ {0, 1}Λ

)
. (2.23)

Using this, it is easy to check (see Lemma 28 below) that the maximal trajectories X of Φ
and Y of Ψ are ordered as Y ≤ X (pointwise). In particular,

P
[
X(i) = 0

]
≤ P

[
Y (i) = 0

]
. (2.24)

By Theorems 23 and 26, the right-hand side of (2.24) can be bounded from above by the
probability that there is a Toom contour or cycle present in (Λ,H), which in turn can be
estimated from above by the expected number of Toom contours or cycles.

Part II

Proofs

3 Preliminaries

3.1 Eroders

In this subsection we prove Lemmas 7 and 10.

Proof of Lemma 7 It suffices to prove the claim for t = 1. Fix j ∈ Zd and set j + A :=
{j + i : i ∈ A} (A ∈ A(φ)). Then one has Ψ0,t(H

ℓ
r)(j) = 1 if and only if there exists an

A ∈ A(φ) such that ℓ(k) ≥ r for all k ∈ j +A. Equivalently, this says that

sup
A∈A(φ)

inf
k∈j+A

ℓ(k) ≥ r. (3.1)

Using (1.15) and linearity, we can rewrite this as ℓ(j) + εφ(ℓ) ≥ r, which is equivalent to
j ∈ Hℓ

r−εφ(ℓ)
.

We next prove Lemma 10. Our proof depends on the equivalence of (1.10) and the eroder
property, which is proved in [Pon13, Thm 1]. We recall that the fact that (1.10) implies the
eroder property has already been demonstrated below Lemma 10, so we depend on [Pon13,
Thm 1] only for the converse implication.

Proof of Lemma 10 In [Pon13, Lemma 12] it is shown7 that (1.10) is equivalent to the
existence of a linear polar function L of dimension 2 ≤ σ ≤ d+1 and constants ε1, . . . , εσ such

7Since Ponselet discusses stability of the all-zero fixed point while we discuss stability of the all-one fixed
point, in [Pon13] the roles of zeros and ones are reversed compared to our conventions.

22



that
∑σ

s=1 εs > 0 and for each 1 ≤ s ≤ σ, there exists an As ∈ A(φ) such that εs − Ls(i) ≤ 0
for all i ∈ As. It follows that

σ∑
s=1

sup
A∈A(φ)

inf
i∈A

Ls(i) ≥
σ∑

s=1

inf
i∈As

Ls(i) ≥
σ∑

s=1

εs > 0, (3.2)

which shows that (1.22) holds. Assume, conversely, that (1.22) holds. Since A(φ) is finite, for
each 1 ≤ s ≤ σ we can choose As ∈ A(φ) such that

εs := inf
i∈As

Ls(i) = sup
A∈A(φ)

inf
i∈A

Ls(i). (3.3)

Then (1.22) says that
∑σ

s=1 εs > 0. Let Hs := {z ∈ Rd : Ls(z) ≥ εs}. By the definition of a
linear polar function,

∑σ
s=1 Ls(z) = 0 for each z ∈ Rd, and hence the condition

∑σ
s=1 εs > 0

implies that for each z ∈ Rd, there exists an 1 ≤ s ≤ σ such that Ls(z) < εs. In other words,
this says that

⋂σ
s=1Hs = ∅. For each 1 ≤ s ≤ σ, the set As is contained in the half-space Hs

and hence the same is true for Conv(As), so we conclude that

σ⋂
s=1

Conv(As) = ∅, (3.4)

from which (1.10) follows.

3.2 The maximal trajectory

In this subsections, we prove Lemmas 14 and 15, as well as Lemma 28 that has already been
used in the proof of Theorem 27.

Proof of Lemma 14 By symmetry, it suffices to show that there exists a trajectory x that is
uniquely characterised by the property that each trajectory x of ϕ satisfies x ≤ x. Let Λn ⊂ Λ
be finite sets increasing to Λ and for each n, let ϕn denote the monotone cellular automaton
defined by

ϕni :=

{
ϕ1 if i ∈ Λ\Λn

ϕi if i ∈ Λn,
(3.5)

where ϕ1, defined in (2.1), denotes the map that is constantly one. Since Λn is finite, it is easy
to see that ϕn has a unique trajectory xn, which satisfies xn(i) = 1 for all i ∈ Λ\Λn. One has
xn ≥ xn+1 (coordinatewise) for each n so the monotone limit x(i) := limn→∞ xn(i) (i ∈ Λ)
exists. It is straightforward to check that x is a trajectory of ϕ. If x is any other trajectory
of ϕ, then x ≤ xn for all n and hence x ≤ x.

Proof of Lemma 15 By symmetry, it suffices to prove the claim for the upper invariant law.
For each n ≥ 0, let Φn,p denote the modified cellular automaton defined by

Φn,p
i,t :=

{
φ1 if t ≤ −n
Φp
i,t if t > −n. (3.6)

Then it is easy to see that Φn,p has a unique trajectory Xn,p, which satisfies Xn,p(i, t) = 1
for all i ∈ Zd and t ≤ −n. Exactly the same argument as in the proof of Lemma 14 shows
that Xn,p → X

p
(pointwise) almost surely. The claim now follows from the observation that

(Xn,p(i, 0))i∈Zd is equally distributed with the random variable Xp
n in the second formula of

(1.4).
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Lemma 28 (Comparison of maximal trajectories) Let ϕ = (ϕi)i∈Λ and ψ = (ψi)i∈Λ
be monotone cellular automata and let x and y denote their respective maximal trajectories.
Assume that

ϕi(x) ≤ ψi(x)
(
i ∈ Λ, x ∈ {0, 1}Λ

)
. (3.7)

Then x(i) ≤ y(i) (i ∈ Λ).

Proof Define ϕn and ψn as in (3.5) and let xn and yn denote their unique trajectories. Then
by induction, (3.7) implies that xn ≤ yn (pointwise), so taking the limit we obtain that x ≤ y.

3.3 Complete instability

Let Φp be defined as in (1.2) with m = 1, i.e., Φp is a random perturbation of the deterministic
cellular automaton Φ0 that applies the same nonconstant local monotone map φ1 = φ in each
space-time point. Let ρ(p), defined in (1.5), denote the density of its upper invariant law. Our
Theorem 9 implies as a special case the diffult part of Toom’s stability theorem (Theorem 2),
which says that Φ0 is stable if φ is an eroder. In the present subsection, we complement this
by proving the “easy” part of Toom’s stability theorem, which says that Φ0 is completely
unstable if φ is not an eroder.

Lemma 29 (Complete instability) If φ is not an eroder, then ρ(p) = 0 for all p > 0.

Proof By translation invariance, it suffices to prove that for each p > 0, the Markov chain
(Xp

t )t≥0 defined in (1.3) and started in the initial state Xp
0 = 1 satisfies

P1
[
Xp

t (0) = 1
]
−→
t→∞

0. (3.8)

Since φ is not an eroder, there exists configuration x ∈ {0, 1}Zd
containing finitely many zeros

such that Ψt
φ(x) ̸= 1 for all t ≥ 0. This allows us to choose for each t ≥ 0 a point it ∈ Zd such

that Ψt
φ(x)(it) = 0. Let us write x(i) = 1 − 1A(i) (i ∈ Zd) where A ⊂ Zd is a finite set. Let

A− it := {i− it : i ∈ A} (t ≥ 0). Then monotonicity implies that

Xp
t (0) = 0 a.s. on the event that ∃0 < s ≤ t s.t. Φp

s,i = φ0 ∀i ∈ A− is. (3.9)

It follows that
P1

[
Xp

t (0) = 1
]
≤ (1− p|A|)t (t ≥ 0), (3.10)

which proves (3.8).

4 Construction of Toom contours

4.1 Minimal explanations

This section is devoted to the proofs of Theorems 23 and 26, which can be found in Subsections
4.2 and 4.3 below. In the present subsection, we prepare for these proofs by giving a formal
definition of the minimal explanations that have already been mentioned several times, and
investigating their properties.

Recall that A(ϕ) and Z(ϕ) denote the sets of minimal one-sets and zero-sets of a monotone
local map ϕ, defined in Subsections 1.1 and 1.4. In analogy with (1.9), each monotone local
map ϕ : {0, 1}Λ → {0, 1} can be written as

ϕ(x) =
∨

A∈A(ϕ)

∧
i∈A

x(i) =
∧

Z∈Z(ϕ)

∨
i∈Z

x(i)
(
x ∈ {0, 1}Λ

)
. (4.1)
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In particular, if ϕ0 and ϕ1 are the constant maps defined in (2.1), then Z(ϕ0) = {∅} and
Z(ϕ1) = ∅. For monotone local maps ϕ, ϕ′, we write

ϕ ≤ ϕ′ ⇔ ϕ(x) ≤ ϕ′(x) ∀x ∈ {0, 1}Λ and ϕ ⪯ ϕ′ ⇔ Z(ϕ) ⊃ Z(ϕ′). (4.2)

It is easy to see that ϕ ⪯ ϕ′ implies ϕ ≤ ϕ′, but not the other way around. For monotone
cellular automata ϕ = (ϕi)i∈Λ and ϕ′ = (ϕ′i)i∈Λ, we write ϕ ≤ ϕ′ if and only if ϕi ≤ ϕ′i for all
i ∈ Λ, and similarly, we write ϕ ⪯ ϕ′ if and only if ϕi ⪯ ϕ′i for all i ∈ Λ.

Definition 30 Let ϕ = (ϕi)i∈Λ be a monotone cellular automaton and let 0 ∈ Λ. By
definition, a minimal explanation for 0 is a monotone cellular automaton ϕ′ such that:

(i) ϕ ⪯ ϕ′ and the maximal trajectory x′ of ϕ′ satisfies x′(0) = 0.

(ii) If a monotone cellular automaton ϕ′′ satisfies ϕ′ ⪯ ϕ′′ and the maximal trajectory x′′ of
ϕ′′ satisfies x′′(0) = 0, then ϕ′ = ϕ′′.

Lemma 31 (Minimal explanations) Let ϕ = (ϕi)i∈Λ be a monotone cellular automaton
and let 0 ∈ Λ. Then the the maximal trajectory x of ϕ satisfies x(0) = 0 if and only if there
exists a minimal explanation ϕ′ for 0.

Proof If there exists a minimal explanation ϕ′ for 0 and x and x′ denote the maximal
trajectories of ϕ and ϕ′, respectively, then ϕ ⪯ ϕ′ implies ϕ ≤ ϕ′ which implies x ≤ x′ and
hence in particular x(0) ≤ x′(0) = 0. This shows that x(0) = 0 if there exists a minimal
explanation for 0.

Assume, conversely, that x(0) = 0. Let Λn ⊂ Λ be finite sets increasing to Λ, let ϕn denote
the monotone cellular automata defined in (3.5), and let xn denote the unique trajectory of
ϕn. We have seen in the proof of Lemma 14 that limn→∞ xn(0) = x(0) so we can choose n
large enough such that xn(0) = 0. It is clear from the definition that ϕ ⪯ ϕn. We can now
step by step replace ϕn by larger monotone cellular automata with respect to the order ⪯
as long as it is possible to do so without losing the property that the trajectory is zero in 0.
Since Z(ϕnj ) = ∅ for all but finitely many j and since Z(ϕnj ) is finite for each j, this process
ends after a finite number of steps, leading to a minimal explanation for 0.

Our next proposition describes the structure of minimal explanations. In point (iii) be-
low, we use the convention that the maximum over an empty set is zero. We call the finite
directed graph (U, G⃗) from Proposition 32 the explanation graph associated with the minimal
explanation ϕ′. The picture on the right in Figure 4 shows an example of such an explanation
graph, or rather the undirected graph (U,G) associated with (U, G⃗).

Proposition 32 (Explanation graphs) Let ϕ = (ϕi)i∈Λ be a monotone cellular automaton
and let (Λ, H⃗) be its dependence graph, as defined in (2.2). Let 0 ∈ Λ and let ϕ′ be a minimal
explanation for 0. Then there exists a finite subgraph (U, G⃗) of (Λ, H⃗) with the following
properties.

(i) The maximal trajectory x′ of ϕ′ satisfies x′(i) = 0 if and only if i ∈ U .

(ii) ϕ′i = ϕ1 if i ̸∈ U .

(iii) ϕ′i(x) =
∨

j: (i,j)∈G⃗

x(j) (x ∈ {0, 1}Λ) if i ∈ U .

(iv) For each j ∈ U\{0}, there exists an i ∈ U such that (i, j) ∈ G⃗.

For i ∈ U , the following statements are equivalent: 1. ϕi = ϕ0, 2. ϕ′i = ϕ0, 3. G⃗out(i) = ∅.
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Proof Define U := {j ∈ Λ : ϕ′j ̸= ϕ1}. We claim that U is finite. This follows from the
argument we have already seen in the proof of Lemma 31: if Λn ⊂ Λ are finite sets increasing
to Λ, then for large enough n we can replace ϕ′j by ϕ

1 for all j ̸∈ Λn without affecting the fact
that the maximal trajectory is zero in 0. By the maximality property of ϕ′, this then implies
that ϕ′j = ϕ1 for all j ̸∈ Λn.

It is clear from our definition of U that x′(j) = 1 for all j ∈ Λ\U . On the other hand,
we cannot have x′(j) = 1 for some j ∈ U , since in that case we could replace ϕ′j by ϕ1 while
preserving the fact that the maximal trajectory is zero in 0, which contradicts the maximality
property of ϕ′. This proves property (i). Property (ii) is immediate from our definition of U .

We claim that for each i ∈ U , there exists a finite set Zi ⊂ U such that Z(ϕ′i) = {Zi}.
Indeed, property (i) and (4.1) imply that for each i ∈ U there exists a Z ∈ Z(ϕ′i) such that
x′(k) = 0 for all k ∈ Z, which by (i) implies Z ⊂ U . If Z(ϕ′i) contains other elements apart
from Z, then we can throw these away while preserving the fact that the maximal trajectory
is zero in 0, contradicting the maximality property of ϕ′. Now setting

G⃗ :=
{
(i, j) : i ∈ U, j ∈ Zi

}
(4.3)

defines a set of directed edges such that G⃗ ⊂ H⃗ and property (iii) holds. Note that in line
with earlier conventions, we allow for the case that Zi = ∅ and ϕi = ϕ0.

Property (iv) follows from the fact that if j ∈ U\{0} and there exists no i ∈ U such that
j ∈ Zi, then by property (ii) and (4.1) we can replace ϕ′j by ϕ1 while preserving the fact that
the maximal trajectory is zero in all points of U\{j}, contradicting the maximality property
of ϕ′.

To prove the final statement of the proposition, we observe that if ϕi = ϕ0, then G⃗out(i) ⊂
H⃗out(i) = ∅, so 1. implies 3. By property (iii), 3. implies 2., which by the fact that ϕ ≺ ϕ′ in
turn implies 1.

In the special case that the monotone cellular automaton ϕ is defined in terms of a typed
dependence graph (Λ,H) as in Definition 21, we can strengthen Proposition 32 as follows. We
call the typed directed graph (U,G) from the following proposition a typed explanation graph
associated with the minimal explanation ϕ′. In general, (U,G) is not uniquely determined by
ϕ′.

Proposition 33 (Typed explanation graphs) Let (Λ,H) be a typed dependence graph
with σ ≥ 1 types of edges and let ϕ be its associated monotone cellular automaton. Let 0 ∈ Λ
and let ϕ′ be a minimal explanation for 0. Then there exists a finite typed subgraph (U,G) of
(Λ,H) such that:

(i) ϕ′i = ϕ1 if i ̸∈ U ,

(ii) ϕ′i = ϕ0 if i ∈ U∗ := {i ∈ U : ϕi = ϕ0},

(iii) for each i ∈ U\U∗ and 1 ≤ s ≤ σ, there exists a js(i) ∈ U such that G⃗s,out(i) = {js(i)},

(iv) ϕ′i(x) =
σ∨

s=1

x
(
js(i)

)
(x ∈ {0, 1}Λ) if i ∈ U\U∗.

The untyped directed graph (U, G⃗) associated with (U,G) is the explanation graph associated
with the minimal explanation ϕ′.

Proof Let (U, G⃗) be the explanation graph associated with the minimal explanation ϕ′ and
for each i ∈ U , let Zi := {j ∈ U : (i, j) ∈ G⃗}. Then property (iii) of Proposition 32 says that

ϕ′i(x) =
∨
j∈Zi

x(j)
(
i ∈ U, x ∈ {0, 1}Λ

)
, (4.4)
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so Z(ϕ′i) = {Zi} and hence Zi ∈ Z(ϕi) by the fact that ϕi ⪯ ϕ′i. Let

As
i :=

{
j ∈ Λ : (i, j) ∈ H⃗s

}
(1 ≤ s ≤ σ, i ∈ Λ). (4.5)

Recall from Definition 21 that Λ• =
{
i ∈ Λ : ϕi ̸∈ {ϕ0, ϕ1}

}
and that

ϕi(x) =
σ∨

s=1

∧
j∈As

i

x(j)
(
i ∈ U, x ∈ {0, 1}Λ

)
. (4.6)

We claim that
As

i ∩ Z ̸= ∅
(
Z ∈ Z(ϕi), 1 ≤ s ≤ σ, i ∈ Λ•

)
. (4.7)

Indeed, if we would have As
i ∩ Z = ∅ for some Z ∈ Z(ϕi), 1 ≤ s ≤ σ, and i ∈ Λ•, then

1 = φi(1As
i
) ≤ φi(1 − 1Z) = 0, which is a contradiction. By (4.7), for each 1 ≤ s ≤ σ and

i ∈ Λ•, we can choose js(i) ∈ As
i ∩ Zi. Let Z ′

i := {js(i) : 1 ≤ s ≤ σ}. Then clearly Z ′
i ⊂ Zi.

We claim that in fact Z ′
i = Zi. Indeed, since js(i) ∈ As

i (1 ≤ s ≤ σ), formula (4.6) shows that
ϕi(1− 1Z′

i
) = 0. Since Z ′

i ⊂ Zi, by the minimality of the latter, we conclude that Z ′
i = Zi. As

a result, defining a typed directed graph (U,G) with σ types of edges by setting

G⃗s :=
{(
i, js(i)

)
: i ∈ U ∩ Λ•

}
(1 ≤ s ≤ σ), (4.8)

we have that (U, G⃗) is the untyped directed graph associated with (U,G) and

ϕ′i(x) =
∨
j∈Z′

i

x(j) =

σ∨
s=1

x
(
js(i)

) (
i ∈ U ∩ Λ•, x ∈ {0, 1}Λ

)
. (4.9)

Now properties (i)–(iv) follow from properties (ii) and (iii) of Proposition 33, while (4.5) shows
that (U,G) is a typed subgraph of (Λ,H).

4.2 Toom contours

In this subsection, we prove Theorem 23. We fix a typed dependence graph (Λ,H) with σ ≥ 1
types of edges. We let ϕ denote its associated monotone cellular automaton and let x denote
its maximal trajectory. We fix an element 0 ∈ Λ and assume that x(0) = 0. We need to
prove the presence in (Λ,H) of a Toom contour (v◦,V, E , ψ) rooted at 0. Since x(0) = 0, by
Lemma 31, there exists a minimal explanation ϕ′ for 0, and by Proposition 33, there exists
a typed explanation graph (U,G) associated with ϕ′. We will derive Theorem 23 from the
following theorem. Recall Definition 18 of an embedding of a rooted Toom graph.

Theorem 34 (Toom graph embedded in explanation graph) Let (U,G) be a typed
explanation graph associated with a minimal explanation ϕ′ for 0. Then there exists a rooted
Toom graph (v◦,V, E) and an embedding ψ of (v◦,V, E) in U such that ψ(v◦) = 0 and

(i) ψ(V∗) = U∗,

(ii)
(
ψ(v), ψ(w)

)
∈ G⃗s for all (v, w) ∈ E⃗•

s (1 ≤ s ≤ σ),

(iii)
(
ψ(v), ψ(w)

)
∈ G⃗ for all (v, w) ∈ E⃗◦,

where E⃗•
s and E⃗◦ are defined in (2.15).
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Figure 4: Embedding of a rooted Toom graph inside a typed explanation graph. On the right:
a typed explanation graph (U,G) associated with a minimal explanation for (0, 0, 0) in the
sense of Proposition 33. On the left and in the middle: embedding of a rooted Toom graph in
(U,G) in the sense of Theorem 34. The connected component of this Toom graph containing
the root is a Toom contour rooted at (0, 0, 0) (compare Figure 3).

To see that Theorem 34 implies Theorem 23, it suffices to observe that if (V ′, E ′) is the
connected component containing v◦ of the Toom graph (V, E) from Theorem 34, and ψ′ is the
restriction of ψ to V ′, then (v◦, V ′, E ′, ψ′) is a Toom contour rooted at 0 that is present in
(Λ,H). Note that when we restrict ourselves to the connected component containing the root,
property (i) of Theorem 34 must be weakened to ψ(V∗) ⊂ U∗, which is all that is needed to
satisfy Definition 22 (i). Theorem 34 is demonstrated in Figure 4.

We observe that Theorem 34 is trivial if |U | = 1, since in this case 0 is a defective site
and we can take for (V, E) the trivial Toom graph that consists of a single isolated vertex. We
assume therefore from now on that |U | ≥ 2. In this case, 0 ̸∈ U∗.

The proof of Theorem 34 needs some preparations. In any directed graph (V, E⃗), for two
vertices i, j ∈ V , we write i ⇝ j if there exists i = i0, . . . , in = j such that (ik−1, ik) ∈ E⃗
(1 ≤ k ≤ n). By definition, a time-ordering of (V, E⃗) is an enumeration V = {i1, . . . , iN} of
its vertices such that for each 1 ≤ n ≤ N , there are no k, l with k < n ≤ l and (il, ik) ∈ E⃗.
Note that since (Λ, H⃗) is acyclic, the same is true for (U, G⃗).

Lemma 35 (Time-ordering) Each finite acyclic directed graph has a time-ordering. For
an explanation graph (U, G⃗), we can choose a time-ordering such that i1 = 0 and U\U∗ =
{i1, . . . , im} for some 1 ≤ m ≤ |U |.

Proof For any acyclic directed graph, the relation ⇝ is a partial order on V ; in particular,
there cannot exist i, j ∈ V with i ̸= j such that i ⇝ j and j ⇝ i, since this would imply the
existence of a cycle in (V, E⃗). We can now inductively construct a time-ordering i1, i2, . . . by
choosing for in a minimal element of V \{i1, . . . , in−1}.

28



It follows from Proposition 32 (iv) that 0 ⇝ i for all i ∈ U , so by the fact that (U, G⃗) is
acyclic we have i ̸⇝ 0 for all i ∈ U\{0}. Thus, 0 is a minimal element of U with respect to the
partial order ⇝ and we can construct the time-ordering starting with i1 = 0. Since elements
of U∗ have no outgoing edges, we can also first construct a time-ordering of U\U∗ and then
add the elements of U∗ in any order.

From now on, we fix a typed explanation graph (U,G) associated with a minimal expla-
nation ϕ′ for 0, as well as a time-ordering of the associated untyped explanation graph (U, G⃗)
with the properties described in Lemma 35. We let m := |U \U∗| and we adopt the following
definitions.

Definition 36 For each 1 ≤ n ≤ m, we set U−
n := {i1, . . . , in} and U+

n := U\U−
n . We call

∂U−
n :=

{
j ∈ U+

n : ∃i ∈ U−
n s.t. (i, j) ∈ G⃗

}
(4.10)

the boundary of U−
n . We equip ∂U−

n with the structure of an unoriented graph in which two
elements i, j ∈ ∂U−

n are neighbours, denoted i ≈ j, if there exists a k ∈ U such that i⇝ k and
j ⇝ k. We write i ∼ j if i, j ∈ ∂U−

n lie in the same connected component of this graph.

The following lemma says that the number of connected components on the boundary
∂U−

n is non-decreasing in n. Note that at the end, when n = m, we have ∂U−
m = U∗ and each

element of ∂U−
m forms a connected component on its own. Therefore, starting from a single

connected component at n = 1 the boundary gradually breaks up into smaller and smaller
connected components.

Lemma 37 (Break-up of boundary) For each 1 < n ≤ m, if C is a connected component of
∂U−

n−1 and in ̸∈ C, then C is also a connected component of ∂U−
n . Each connected component

of ∂U−
n that is not a connected component of ∂U−

n−1 contains a vertex j such that (in, j) ∈ G⃗.

Proof We first prove that a connected component C of ∂U−
n−1 that does not contain in is

also a connected components of ∂U−
n . For each i, j ∈ C, there exist i(0), . . . , i(k) ∈ C such

that i(0) ≈ · · · ≈ i(k) with i(0) = i and i(k) = j, which implies that i ∼ j in U−
n . This shows

that C is contained in some connected component C ′ of ∂U−
n . We need to show that C = C ′.

Assume that conversely, C ′ is strictly larger than C. Then we can find i ∈ C and j ∈ C ′\C
such that i ≈ j. Since j ∈ ∂U−

n we must have either j ∈ ∂U−
n−1 or (in, j) ∈ G⃗ (possibly

both). If j ∈ ∂U−
n−1, then i ≈ j implies j ∈ C which contradicts our assumptions. However,

if (in, j) ∈ G⃗, then i ≈ j implies i ≈ in which also contradicts our assumptions, since C does
not contain in.

To prove the second claim of the lemma, assume that C is a connected component of ∂U−
n

that is not a connected component of ∂U−
n−1. Let i be any element of C. If (in, i) ∈ G⃗ we are

done. In the opposite case, i ∈ ∂U−
n−1. Since C is not a connected component of ∂U−

n−1, by
what we have already proved, i must lie in the connected component of ∂U−

n−1 that contains
in, so there exist i(0), . . . , i(k) ∈ ∂U−

n−1 with i(0) = i, i(k) = in, and i(0) ≈ · · · ≈ i(k). Now
there exists a j′ ∈ U such that i(k − 1) ⇝ j′ and in ⇝ j′. If j′ ̸= in, then let j be the first
vertex after in on the path from in to j′, and if j′ = in, then choose for j any vertex with
(in, j) ∈ G⃗. In either case, we then have i(k − 1) ≈ j which implies that j ∈ C, and clearly
(in, j) ∈ G⃗.

Definition 38 For 1 ≤ s ≤ σ, we define a spoke of charge s to be a sequence
(
i(0), . . . , i(k)

)
of vertices in U such that k ≥ 1, i(k) ∈ U∗,

(
i(0), i(1)

)
∈ G⃗, and

(
i(l − 1), i(l)

)
∈ G⃗s for all

2 ≤ l ≤ k. We say that a spoke
(
i(0), . . . , i(k)

)
intersects a set V ⊂ U if i(l) ∈ V for some

0 ≤ l ≤ k. A pole at vertex i ∈ U is a collection
(
is(0), . . . , is(ks)

)
1≤s≤σ

of spokes of charges

1 ≤ s ≤ σ, respectively, such that is(0) = i for all 1 ≤ s ≤ σ.
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Proof of Theorem 34 We have already shown that the statement is trivial if 0 is a defective
site, so we continue assuming that |U | > 1 and 0 ̸∈ U∗. We fix a time-ordering of (U, G⃗) as
in Lemma 35 and define U±

n as in Definition 36. Let N(n) denote the number of connected
components of ∂U−

n (1 ≤ n ≤ m). It follows from Lemma 37 that N(n) increases to N(m) =
|U∗|. We will show by induction that for each 1 ≤ n ≤ m, it is possible to construct poles(

irs(0), . . . , i
r
s(k

r
s)
)
1≤s≤σ

(
1 ≤ r ≤ N(n)

)
(4.11)

at vertices i1, . . . , iN(n) ∈ U−
n such that

(i) i1 = 0 and
(
i1s(0), i

1
s(1)

)
∈ G⃗s (1 ≤ s ≤ σ),

(ii) for each connected component C of ∂U−
n and for each 1 ≤ s ≤ σ, there exists precisely

one 1 ≤ r ≤ N(n) such that the spoke
(
irs(0), . . . , i

r
s(k

r
s)
)
intersects C.

We start by proving the claim for n = 1. By Proposition 33 (iii), for each 1 ≤ s ≤ σ, at
each i ∈ U\U∗ there is precisely one outgoing edge of charge s. Thus, for each 1 ≤ s ≤ σ,
there starts a unique spoke

(
i1s(0), . . . , i

1
s(k

1
s)
)
at 0 such that

(
i1s(l − 1), i1s(l)

)
∈ G⃗s for all

1 ≤ l ≤ ks, and these spokes together form a pole at 0 such that (i) holds. If ∂U−
1 has only

one connected component, then (ii) also holds and we are now done. In the opposite case, we
can add additional poles at 0 so that (ii) holds.

We now continue by induction on n. We will show that by adding poles, we can make sure
(ii) remains valid as we increase n. Since (i) also obviously stays true if we add poles, this then
completes the proof that (i) and (ii) can be satisfied for all n. Assume that we have poles at
vertices i1, . . . , iN(n−1) ∈ U−

n−1 such that conditions (i) and (ii) are satisfied. By Lemma 37,
if C is a connected component of ∂U−

n−1 that does not contain in, then C is also a connected
component of ∂U−

n , so for such a connected component C condition (ii) remains satisfied even
without adding new poles. Let C1, . . . , Ck be the other connected components of ∂U−

n−1, which
contain all vertices of the connected component of ∂U−

n−1 that contains in, except in itself, as

well as all vertices j ∈ U such that (in, j) ∈ G⃗. Using this and the induction hypothesis, we
see that for each 1 ≤ s ≤ σ, there exists precisely one 1 ≤ r ≤ N(n− 1) such that the spoke(
irs(0), . . . , i

r
s(k

r
s)
)
intersects C1 ∪ · · · ∪Ck. By Lemma 37, each of the components C1, . . . , Ck

contains an element j such that (in, j) ∈ G⃗. Using this and the fact that the edge between
the first two vertices along each pole is in G⃗, we see that we can add additional poles in in so
that condition (ii) is satisfied for C1, . . . , Ck. This completes the induction step.

In particular, setting n = m, we have now shown that it is possible to construct poles(
irs(0), . . . , i

r
s(k

r
s)
)
1≤s≤σ

(
1 ≤ r ≤ |U∗|

)
(4.12)

at vertices in U\U∗ such that

(i) i1 = 0 and
(
i1s(0), i

1
s(1)

)
∈ G⃗s (1 ≤ s ≤ σ),

(ii) for each i ∈ U∗ and for each 1 ≤ s ≤ σ, there exists precisely one 1 ≤ r ≤ |U∗| such that
the spoke

(
irs(0), . . . , i

r
s(k

r
s)
)
ends in irs(k

r
s) = i.

It is straightforward to check that these poles together define a Toom graph (V, E) that is
embedded in (U,G) in such a way that conditions (i)–(iii) of the theorem are satisfied. Indeed,
each pole corresponds to a source and its σ spokes to the σ charges emerging from the source.
To see that ψ satisfies condition (ii) of Definition 18 of an embedding of a rooted Toom graph,
one uses the fact that if two spokes of the same charge would enter the same vertex, then these
spokes would have to be equal starting from that vertex, which would lead to two spokes of
the same charge ending in the same defective site, contradicting point (ii) above. Also, since
there are no incoming edges at 0 in the explanation graph, we never add internal vertices that
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overlap with the root. The fact that conditions (ii) and (iii) of the theorem are satisfied follows
our definition of a spoke of charge s, which includes the condition that

(
i(l− 1), i(l)

)
∈ G⃗s for

all 2 ≤ l ≤ k, as well as point (i) above.

4.3 Toom cycles

In this subsection, we prove Theorem 26. As in the proof of Theorem 23, we will construct
the Toom cycle inside a typed explanation graph. Apart from this similarity, the proof will
be completely different.

ψ0 = 0 = ψn

ψv i

j1

j2

exploration loop erasion

Figure 5: The process of exploration and loop erasion. The Toom cycle is constructed on the
explanation graph of Figure 4. We can see that in the Toom cycle on the left v is a sink, but
ψv = i is not a defective site. In the exploration step, v is replaced by two internal vertices,
one of each charge, and two new sinks are added to the cycle at the positions j1 and j2. This
leads to the new sink at j2 overlapping with a preexisting sink. In the loop erasion step, this
is resolved by erasing the part of the cycle between the first and second visit to j2.

Proof of Theorem 26 We fix a typed explanation graph (U,G) as in Proposition 33, with two
types of edges. By Proposition 32 (iv), for each i ∈ U , there exist i0, . . . , in ∈ U with i0 = 0
and in = i such that (ik−1, ik) ∈ G⃗ for all 1 ≤ k ≤ n. We let dist(i) denote the smallest integer
n for which such i0, . . . , in can be found, i.e., dist(i) is the length of the shortest directed path
in (U, G⃗) from 0 to i. We will use an inductive construction. At each point in the construction,
we have a Toom cycle (V, E⃗, ψ) rooted at 0, and we let

M := sup
v∈V

dist(ψv) (4.13)

denote the largest distance from 0 of all vertices of the Toom cycle. We will make sure that
at each point in our construction, the following induction hypotheses are satisfied:

(i)′ if ψv ̸∈ U∗ for some v ∈ V∗, then dist(ψv) ≥M − 1,
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(ii) (ψv, ψw) ∈ H⃗s for all (v, w) ∈ E⃗s with v ∈ V ′
s (s = 1, 2),

(iii) (ψv, ψw) ∈ H⃗3−s for all (v, w) ∈ E⃗s with v ∈ V ′
◦ (s = 1, 2).

Our construction will end as soon as in place of (i)′ we have the stronger condition

(i) ψv ∈ U∗ for all v ∈ V∗,

since this then guarantees that (V, E⃗, ψ) is present in (Λ,H). We note that in order to
specify the Toom cycle, it suffices to know the function ψ : [n] → U only, since the induction
hypotheses (ii) and (iii) imply that for 1 ≤ v ≤ n,

(v − 1, v) ∈ E⃗ if (ψv−1, ψv) ∈ H⃗ and (v, v − 1) ∈ E⃗ if (ψv, ψv−1) ∈ H⃗. (4.14)

Thus, at each step in the induction, we only specify an integer n ≥ 1 and a function ψ : [n] →
U ; it is then implicit that E⃗ is defined by (4.14). It will be useful to view ψ as a word ψ0 · · ·ψn

of length n + 1, made up from the alphabet U , with ψ0 = 0 = ψn. We start with n = 1 and
ψ0 = ψ1 := 0. If 0 ∈ U∗ (and hence |U | = 1), then we are done. In the opposite case, as long
as (i) is not yet satisfied, we modify ψ according to the following two steps, that are illustrated
in Figure 5.

I. Exploration. We pick a v ∈ V∗ such that i := ψv ̸∈ U∗. If it is possible to pick v such that
dist(ψv) =M −1, then we do so; in the opposite case we pick v such that dist(ψv) =M .
By Proposition 33 (iii) there are unique j1, j2 ∈ U such that (i, js) ∈ G⃗s (s = 1, 2). We
modify the word ψ0 · · ·ψn by inserting in place of the letter ψv = i the string i j1 i j2 i.

II. Loop erasion. If as the result of the exploration, there are v1, v2 ∈ V∗ with v1 < v2 such
that i := ψv1 = ψv2 , then in place of the string ψv1 · · ·ψv2 we insert the letter i. We
repeat this until there are no more v1, v2 ∈ V∗ with v1 < v2 such that ψv1 = ψv2 .

We must check that at the end of each induction step, we obtain a Toom cycle satisfying the
induction hypotheses (i)′, (ii), (iii). We first investigate the effect of exploration.

After the exploration step, it is clear that ψ via (4.14) defines an oriented cycle. The map
ψ may no longer satisfy condition (i) of Definition 24 (this will be fixed in the loop erasion
step), but because of the way we have chosen v, after the exploration step, it will be true that:

if ψw = ψw′ for some w ∈ V∗ and w′ ∈ V with w ̸= w′,
then dist(w) = dist(w′) =M and w′ ∈ V∗.

(4.15)

Indeed, the fact that dist(w) = dist(w′) = M follows from the fact that the newly added
vertices are at the largest distance M from 0, while (2.17) and (4.14) imply that vertices
at distance M from 0 must be elements of V∗. We claim that after the exploration step ψ
still satisfies condition (ii) of Definition 24. Indeed, before the exploration step, (i) was still
satisfied so the sink at i did not overlap with any other vertices. In the exploration step,
we add two sinks at the positions j1 and j2 and replace the old sink at the position i by
three vertices in V1, V◦, and V2, respectively, in this order. From this we see that after the
exploration step, condition (ii) of Definition 24 is still satisfied.

We claim that after the exploration step, the induction hypotheses (i)′, (ii), and (iii) remain
valid. Indeed, (i)′ remains valid since M does not increase unless all v ∈ V∗ for which ψv ̸∈ U∗
are at distance M from 0, and hence at least at distance M − 1 after M has increased.
For the remaining induction hypotheses, we observe that in the exploration step, all existing
edges of the oriented cycle keep their orientation. Their starting and endvertices also stay in
whichever of the sets V◦, V∗, V1, and V2 they were in before, except (in the case v ̸= 0) for
the edges that ended in the vertex v ∈ V∗, whose new endvertices now belong to the sets V1

32



and V2, respectively. This has no influence on the induction hypotheses (ii) and (iii), however,
for which only the starting vertices matter. Also, it is straightforward to check that the new
edges inserted in the exploration step satisfy (ii) and (iii).

We next investigate the effect of loop erasion. During a loop erasion, all edges keep their
charge and (because we are assuming v1, v2 ∈ V∗) also all vertices stay in whichever of the
sets V◦, V∗, V1, and V2 they were in before. Since they moreover preserve their relative order
in V , this implies that condition (ii) of Definition 24 and the induction hypotheses (ii) and
(iii) remain valid. In view of (4.15), during loop erasion, M does not change and hence the
induction hypothesis (i)′ also remains valid. Furthermore, the process of loop erasion also
restores condition (i) of Definition 24. This completes the induction step.

To complete the proof, we observe that in each step, either M increases, or the number of
vertices v ∈ V∗ with dist(ψv) =M − 1 and ψv ̸∈ U∗ decreases. By the finiteness of (U,G), this
implies that our inductive construction terminates after a finite number of steps. It follows
from our induction hypotheses and the fact that (U,G) is a subgraph of the typed dependence
graph (Λ,H) that at the end we obtain a Toom cycle that is present in (Λ,H).

5 The Peierls argument

5.1 Set-up

In this section we prove Theorem 9, which gives sufficient conditions for the stability of
monotone cellular automata with intrinsic randomness, as well as Proposition 11, which gives
lower bounds on the critical noise parameter for two deterministic monotone cellular automata.
Both proofs are based on the Peierls bound from Theorem 27. In the present subsection we
translate the setting of Theorem 9 and Proposition 11 into the more general language of
Theorem 27 and make a choice for the typed dependence graph (Λ,H) of Theorem 27 based
on a linear polar function.

Throughout this section we assume that:

� φ1, . . . , φm : {0, 1}Zd → {0, 1} are non-constant monotone local functions,

� r =
(
r(1), . . . , r(m)

)
is a probability distribution on {1, . . . ,m}.

For each p ∈ [0, 1], we let Φp = (Φp
i,t)(i,t)∈Zd+1 be an i.i.d. collection of maps as in (1.2). We set

Λ := Zd+1 and for each (i, t) ∈ Λ (with i ∈ Zd and t ∈ Z) we define Φp
(i,t) as in (2.4), so that

(Φp
(i,t))(i,t)∈Λ is a random monotone cellular automaton of the type considered in Theorem 27.

It will be convenient to define κ : Λ → {0, . . . ,m} by

Φi,t =: φκ(i,t)

(
(i, t) ∈ Λ

)
. (5.1)

Then, in the notation of Theorem 27,

Λ0 =
{
(i, t) ∈ Λ : κ(i, t) = 0

}
and Λ• =

{
(i, t) ∈ Λ : κ(i, t) ∈ {1, . . . ,m}

}
. (5.2)

In order to apply Theorem 27, we need to choose As,(i,t) ∈ A(Φ(i,t)) for each 1 ≤ s ≤ σ
and (i, t) ∈ Λ•. We will let our choice be guided by a polar function. Throughout this section
we assume that L : Rd → Rσ is a linear polar function of dimension σ ≥ 2 such that

ε :=
σ∑

s=1

εs > 0 with εs := inf
1≤k≤m

εφk
(Ls) (1 ≤ s ≤ σ), (5.3)

where εφk
(Ls) is the edge speed defined in (1.15). For each 1 ≤ s ≤ σ and 1 ≤ k ≤ m, we fix

As,k ∈ A(φk) such that

sup
A∈A(φk)

inf
i∈A

Ls(i) =: εφk
(Ls) = inf

i∈As,k

Ls(i) (1 ≤ s ≤ σ, 1 ≤ k ≤ m), (5.4)
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i.e., As,k is a set for which the supremum in the definition of the edge speed in (1.15) is
achieved. Then setting

As,(i,t) :=
{
(i+ j, t− 1) : j ∈ As,κ(i,t)

} (
1 ≤ s ≤ σ, (i, t) ∈ Λ•

)
(5.5)

defines sets As,(i,t) ∈ A(Φ(i,t)) as needed for the application of Theorem 27. In Subsection 5.3
below we will explain why this is the “right” choice for these sets. We let (Λ,H) denote the
typed dependence graph defined in terms of the sets As,(i,t) as in (2.21), and

(
X

p
(i, t)

)
(i,t)∈Λ

denote the maximal trajectory of Φp. We denote the origin in Zd+1 = Zd × Z by (0, 0), and
write T(0,0) for the set of Toom contours rooted at (0, 0), up to equivalence. Then Theorem 27
tells us that

1− ρ(p) = P
[
X

p
(0, 0) = 0

]
≤

∑
T∈T(0,0)

P
[
T is present in (Λ,H)

]
. (5.6)

We observe that as a consequence of properties (ii) and (iii) of Definition 22, each Toom
contour T = (v◦,V, E , ψ) with σ charges that is present in (Λ,H) must satisfy:

(ii)′ ψ(w) = ψ(v) + (j,−1) for some j ∈ ∆s for all (v, w) ∈ E⃗•
s (1 ≤ s ≤ σ),

(iii)′ ψ(w) = ψ(v) + (j,−1) for some j ∈ ∆ for all (v, w) ∈ E⃗◦,
(5.7)

where

∆s :=
m⋃
k=1

As,k (1 ≤ s ≤ σ) and ∆ :=
σ⋃

s=1

∆s. (5.8)

We let T ′
(0,0) denote the set of all T ∈ T(0,0) that satisfy (5.7). Then clearly, in (5.6) we can

restrict the sum to T ∈ T ′
(0,0) since all other terms are zero.

For Toom cycles, similar arguments apply. In this case, we won’t need the concept of
equivalence of Toom contours defined in Definition 20 but can use the slightly weaker but
more intuitive concept of isomorphism of Toom contours. In line with this, we let T̄(0,0) denote
the set of Toom cycles rooted at (0, 0), up to isomorphism, and inspired by Definition 25, we
let T̄ ′

(0,0) denote the subset of Toom cycles that moreover satisfy, for s = 1, 2,

(ii)′′ ψ(w) = ψ(v) + (j,−1) for some j ∈ ∆s for all (v, w) ∈ E⃗s with v ∈ V ′
s ,

(iii)′′ ψ(w) = ψ(v) + (j,−1) for some j ∈ ∆3−s for all (v, w) ∈ E⃗s with v ∈ V ′
◦ .

(5.9)

Then Theorem 27 tells us that

1− ρ(p) = P
[
X

p
(0, 0) = 0

]
≤

∑
T∈T̄ ′

(0,0)

P
[
T is present in (Λ,H)

]
. (5.10)

5.2 Stability of cellular automata with intrinsic randomness

In this subsection we prove Theorem 9. For each Toom contour T = (v◦,V, E , ψ) rooted at
(0, 0) let

n∗(T ) := |V◦| = |V∗| (5.11)

denote its number of sinks and sources, each. Recall that T ′
(0,0) denotes the set of Toom

contours with the additional properties (ii)’ and (iii)’ from (5.7). The following lemma states
that each T ∈ T ′

(0,0) has an equal number of charged edges of each charge.

Lemma 39 (Number of charged edges) For each Toom contour T = (v◦,V, E , ψ) ∈ T ′
(0,0)

with σ ≥ 2 charges there exists an integer ne(T ) such that

ne(T ) := |E⃗1| = · · · = |E⃗σ|. (5.12)
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Proof We write ψ(v) =
(
ψ1(v), . . . , ψd+1(v)

)
where ψd+1(v) denotes the time coordinate.

The conditions in (5.7) imply that ψd+1(v) − ψd+1(w) = 1 for each (v, w) ∈ E⃗. Recall that
by Definition 16 in a Toom graph at each source there emerge σ charges, one of each type,
that then travel via internal vertices of the corresponding charge through the graph until they
arrive at a sink, in such a way that at each sink there converge precisely σ charges. This
implies

|E⃗1| = · · · = |E⃗σ| =
∑
v∈V∗

ψd+1(v)−
∑
v∈V◦

ψd+1(v). (5.13)

To prove Theorem 9 we need two more lemmas, the proof of which will be postponed till
later. To state the first lemma, let

Nn :=
∣∣{T ∈ T ′

(0,0) : ne(T ) = n}
∣∣ (n ≥ 0) (5.14)

denote the number of non-equivalent contours in T ′
(0,0) that have n edges of each charge. In

Subsection 5.4 we will prove the following exponential bound on Nn.

Lemma 40 (Exponential bound) Let M :=
∣∣∆∣∣ with ∆ defined in (5.8) and let τ := ⌈12σ⌉

denote 1
2σ rounded up to the next integer. Then

Nn ≤ nτ−1(τ + 1)2τnMσn (n ≥ 1). (5.15)

For our next lemma, we fix a polar function L satisfying the assumptions of Theorem 9
and we define

R :=
σ∑

s=1

Rs with Rs :=− inf
i∈∆

Ls(i) (1 ≤ s ≤ σ), (5.16)

and we recall that ε and εs are defined in (5.3). We will prove the following lemma in
Subsection 5.3.

Lemma 41 (Upper bound on the number of edges) Each Toom contour T ∈ T ′
(0,0)

satisfies ne(T ) ≤ (1 +R/ε)
(
n∗(T )− 1

)
.

Proof of Theorem 9 We use (5.6) which follows from Theorem 27. To prove the stability
of Φ0, it is enough to prove that the right-hand-side of (5.6) goes to 0 as p→ 0, while by the
remarks below (5.6) it suffices to sum over all T ∈ T ′

(0,0). By condition (i) of Definition 18 of an

embedding, sinks of a Toom contour do not overlap. By condition (i) of Definition 22 of what
it means for a Toom contour to be present, each sink corresponds to a space-time point (i, t)
that is defective, meaning that Φp

i,t = φ0, which happens with probability p, independently for
all space-time points. As a result, the probability that a given contour T is present in (Λ,H)
can be estimated from above by pn∗(T ). By Lemma 41, it follows that

1− ρ(p) ≤
∑

T∈T ′
(0,0)

P
[
T is present in (Λ,H)

]
≤

∑
T∈T ′

(0,0)

pn∗(T ) = p
∑

T∈T ′
(0,0)

pn∗(T )−1

≤ p
∑

T∈T ′
(0,0)

pne(T )/(1+R/ε) = p
∞∑
n=0

Nnp
n/(1+R/ε),

(5.17)

Combining (5.17) and Lemma 40, we see that this sum is finite for p sufficiently small and
hence (by dominated convergence) tends to zero as p → 0. This proves that ρ(p) → 1 as
p→ 0.
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5.3 Bounding the edges in terms of the sinks

In this subsection, we prove Lemma 41, which says that for Toom contours in T ′
(0,0), the

number of edges can be bounded in terms of the number of sinks. Before we give the formal
proof, we explain the main idea, which is really the central idea behind the proof of Theorem 9
and the definition of Toom contours.

As explained in the previous subsection, the probability that a contour T is present can
be estimated from above by pn∗(T ), where n∗(T ) is the number of sinks of the Toom contour.
Therefore, we can estimate the expected number of Toom contours that is present in (Λ,H)
from above by

∑
nMnp

n, where Mn denotes the number of non-equivalent contours in T ′
(0,0)

with n sinks. In general, it is difficult to control the number of contours with a given number
of sinks. As shown in Lemma 40, however, we have good control over the number of contours
with a given number of edges. Therefore, as we have seen in the proof of Theorem 9, to show
that the Peierls sum in (5.6) is small if p is small, it suffices to have a result like Lemma 41
that bounds the number of edges from above in terms of the number of sinks.

It is precisely here that condition (1.21) of Theorem 9 on the worst-case edge speeds is
used. Recall that E⃗s are the directed edges of charge s, which are distinguished as in (2.15)
into those that come out of a source other that the root (the set E⃗◦

s ) and the others (the set
E⃗•

s ). Condition (ii) of Definition 22 says that edges in E⃗•
s must be embedded at edges of the

same charge of the typed dependence graph (Λ,H). Here H⃗s is defined in (2.21) where the
sets As,i are chosen in relation to the polar function L as in (5.4) and (5.5). The result of all
this is that:

� The function Ls must increase by at least εs along each edge of charge s, except for
edges that come out of sources other than the root.

Using this, condition (1.21), Lemma 39, and the fact that one edge of each charge originates
at each source and one edge of each charge arrives at each sink, we can bound the number
of edges in E⃗•

s in terms of the number of edges in E⃗◦
s . Since there are |E⃗◦

s | + 1 sources and
an equal number of sinks, this allows us to bound the total number of edges in terms of the
number of sinks.

We now make these ideas precise and prove Lemma 41. We start with a general observation.
On any set Λ, we define a polar function of dimension σ ≥ 2 to be a function L : Λ → Rσ

such that
σ∑

s=1

Ls(i) = 0 (i ∈ Λ). (5.18)

The following lemma makes a connection between Toom contours and polar functions.

Lemma 42 (Zero sum property) Let (v◦,V, E , ψ) be a Toom contour with σ ≥ 2 charges
and let L : Λ → Rσ be a polar function of dimension σ. Then

σ∑
s=1

∑
(v,w)∈E⃗s

(
Ls(ψ(w))− Ls(ψ(v))

)
= 0. (5.19)

Proof We can rewrite the sum in (5.19) as

∑
v∈V

{ σ∑
s=1

∑
(v,w)∈E⃗s,out(v)

Ls(ψ(v))−
σ∑

s=1

∑
(u,v)∈E⃗s,in(v)

Ls(ψ(v))
}
. (5.20)

At internal vertices, the term inside the brackets is zero because the number of incoming edges
of each charge equals the number of outgoing edges of that charge. At the sources and sinks,
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the term inside the brackets is zero by the defining property (5.18) of a polar function, since
there is precisely one outgoing (resp. incoming) edge of each charge.

Proof of Lemma 41 We trivially “lift” the linear polar function L, which is defined on Zd,
to the space-time set Λ = Zd+1 by setting

Ls(i, t) := Ls(i)
(
i ∈ Zd, t ∈ Z). (5.21)

Let (v◦,V, E , ψ) = T ∈ T ′
(0,0). We claim that

Ls

(
ψ(w)

)
− Ls

(
ψ(v)

)
≥ εs if (v, w) ∈ E⃗•

s ,

Ls

(
ψ(w)

)
− Ls

(
ψ(v)

)
≥ −Rs if (v, w) ∈ E⃗◦

s .
(5.22)

Indeed, by condition (ii)’ in the definition of the set T ′
(0,0) in (5.7), (v, w) ∈ E⃗•

s implies

ψ(w) = ψ(v) + (j,−1) for some j ∈ ∆s =
⋃m

k=1As,k. The linearity of Ls implies that
Ls(ψ(w)) − Ls(ψ(v)) = Ls(j), which is ≥ εs for all j ∈ ∆s by (5.3) and (5.4). The second
inequality in (5.22) follows in the same way from condition (iii)’ in (5.7) and (5.16).

By their definition in (2.15) and Lemma 39, we have

|E⃗◦
s | = n∗(T )− 1 and |E⃗•

s | = ne(T )− n∗(T ) + 1 (1 ≤ s ≤ σ). (5.23)

Lemma 42, (5.22), and (5.23) now imply that

0=
σ∑

s=1

( ∑
(v,w)∈E⃗•

s

(
Ls(ψ(w))− Ls(ψ(v))

)
+

∑
(v,w)∈E⃗◦

s

(
Ls(ψ(w))− Ls(ψ(v))

))
≥

σ∑
s=1

[(
ne(T )− n∗(T ) + 1

)
εs −

(
n∗(T )− 1

)
Rs

]
= εne(T )− (ε+R)

(
n∗(T )− 1

)
,

(5.24)

which implies ne(T ) ≤ (1 +R/ε)
(
n∗(T )− 1

)
.

5.4 Exponential bounds on the number of contours

In this subsection, we provide the only missing ingredient in the proof of Theorem 9, which
is the proof of Lemma 40. If we would be satisfied with just any exponential bound, then the
proof could be quite short, but with a view towards Proposition 11 we will argue a bit more
carefully to get a sharper bound.

Proof of Lemma 40 We first consider the case that the number of charges σ is even. Let
T = (v◦,V, E , ψ) ∈ T ′

(0,0). Recall that (V, E) is a typed directed graph with σ types of edges,

that are called charges. In (V, E), all edges point in the direction from the sources to the sinks.
We modify (V, E) by reversing the direction of edges of the charges 1

2σ + 1, . . . , σ. Let (V, E ′)
denote the modified graph. In (V, E ′), the number of incoming edges at each vertex equals
the number of outgoing edges. Since moreover the undirected graph (V,E) is connected, it is
not hard to see8 that it is possible to walk through the directed graph (V, E ′) starting from
the root using an edge of charge 1, in such a way that each directed edge of E ′ is traversed
exactly once.

Let l := σne(T ) denote the total number of edges of (V, E ′) and for 0 < k ≤ l, let
(vk−1, vk) ∈ E⃗′

sk
denote the k-th step of the walk, which has charge sk. Write ψ(vk) =:

ψ(vk−1) + (δk,±1) where δk is the spatial increment of the k-th step and ±1 is the temporal
increment, which is determined by the charge sk of the k-th step: it is -1 for charges 1, . . . , 12σ

8This is a simple variation of the “Bridges of Königsberg” problem that was solved by Euler.
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and 1 otherwise. Let k0, . . . , kσ/2 denote the times when the walk visits the root v◦. We
claim that in order to specify (v◦,V, E , ψ) uniquely up to equivalence, in the sense defined in
Definition 20, it suffices to know the sequences

(s1, . . . , sl), (δ1, . . . , δl), and (k0, . . . , kσ/2). (5.25)

Indeed, the sinks and sources correspond to changes in the temporal direction of the walk which
can be read off from the charges. Although the images under ψ of sources may overlap, we can
identify which edges connect to the root, and we also know the increment of ψ(vk)− ψ(vk−1)
in each step, hence all objects in (2.11) can be identified.

The first charge s1 is 1 and after that, in each step, we have the choice to either continue
with the same charge or choose one of the other 1

2σ available charges. This means that there
are no more than (12σ + 1)l−1 possible ways to specify the charges (s1, . . . , sl). Recalling
M = |∆| =

∣∣⋃σ
s=1

⋃m
k=1As,k

∣∣, we see that there are no more than M l possible ways to specify
the spatial increments (δ1, . . . , δl). Since k0 = 0, kσ/2 = l, we can roughly estimate the number

of ways to specify the visits to the root from above by nσ/2−1. Recalling that l = σne(T ), this
yields the bound

Nn ≤ nσ/2−1(12σ + 1)σn−1Mσn. (5.26)

This completes the proof when σ is even.
When σ is odd, we modify (V, E) by doubling all edges of charge σ, i.e., we define (V,F)

with
F⃗ = (F⃗1, . . . , F⃗σ+1) := (E⃗1, . . . , E⃗σ, E⃗σ), (5.27)

and next we modify (V,F) by reversing the direction of all edges of the charges ⌈12σ⌉ +
1, . . . , σ + 1. We can define a walk in the resulting graph (V,F ′) as before and record the
charges and spatial increments for each step, as well as the visits to the root. In fact, in order
to specify (v◦,V, E , ψ) uniquely up to equivalence, we do not have to distinguish the charges
σ and σ + 1. Recall that edges of the charges σ and σ + 1 result from doubling the edges of
charge σ and hence always come in pairs, connecting the same vertices. Since sinks do not
overlap and internal vertices of a given charge do not overlap, and since we traverse edges of
the charges σ and σ + 1 in the direction from the sinks towards the sources, whenever we are
about to traverse an edge that belongs to a pair of edges of the charges σ and σ+1, we know
whether we have already traversed the other edge of the pair. In view of this, for each pair,
we only have to specify the spatial displacement at the first time that we traverse an edge of
the pair. Using these considerations, we arrive at the bound

Nn ≤ n⌈σ/2⌉−1(⌈12σ⌉+ 1)(σ+1)n−1Mσn. (5.28)

5.5 Some bounds for Toom cycles

With Theorem 9 proved, we start to prepare for the proof of Proposition 11. In the present
subsection, we prove more precise versions of Lemmas 40 and 41 that hold only for Toom
cycles and that will help us to get a better bound for the critical noise parameter pc of the
cellular automaton defined by the map φcoop. Recall that at the end of Subsection 5.1 we
denoted the set of non-isomorphic Toom cycles rooted at (0, 0) by T̄(0,0) and we wrote T̄ ′

(0,0)

for the set of T ∈ T̄(0,0) that satisfy (5.9).
Similarly to (5.14), we let

N̄n :=
∣∣{T ∈ T̄ ′

(0,0) : ne(T ) = n}
∣∣ (n ≥ 0) (5.29)

denote the number of non-isomorphic Toom cycles in T̄ ′
(0,0) that have n edges of each charge.

We then have the following analogue of Lemma 40.

38



Lemma 43 (Exponential bound for σ = 2) Let Ms := |∆s| (s = 1, 2) with ∆s defined in
(5.8). Then

N̄n ≤ 1
2(4M1M2)

n (n ≥ 1). (5.30)

Proof The proof goes along the same lines as that of Lemma 40 for the case σ is even. Observe
that for σ = 2, the walk visits the root 0 twice: k0 = 0, k1 = l, where l is the total number of
edges of the cycle. Thus (k0, k1) is deterministic, and we only need to specify the sequences

(s1, . . . , sl), (δ1, . . . , δl). (5.31)

Note that in this case, these sequences determine the Toom cycle up to isomorphism and not
only up to equivalence as in the proof of Lemma 40. The first charge s1 is 1 and after that,
in each step, we have the choice to either continue with the same charge or choose charge 2.
This means that there are no more than 2l−1 possible ways to specify the charges (s1, . . . , sl).
Once we have done that, by condition (iii)” of (5.9), we know for each 0 < k ≤ l whether the
spatial increment δk is in ∆1 or ∆2. Recalling Ms = |∆s| (s = 1, 2) and using the fact that

|E⃗1| = |E⃗2| = ne(T ) = l/2, we see that there are no more than M
l/2
1 ·M l/2

2 possible ways to
specify (δ1, . . . , δl). This yields the bound

N̄n ≤ 22n−1Mn
1 ·Mn

2 . (5.32)

From now on, we fix a polar function L of dimension 2 satisfying the assumptions of
Theorem 9. In analogy with (5.16), but with a view towards (5.9) which in the present
context replaces (5.7), we define

R̄ :=
2∑

s=1

R̄s with R̄1 := − inf
i∈∆2

L1(i) and R̄2 := − inf
i∈∆1

L2(i). (5.33)

The following lemma is similar to Lemma 41.

Lemma 44 (Upper bound on the number of edges for σ = 2) Let ε be defined in (1.21)
and let R̄ be defined in (5.33). Then each T ∈ T̄ ′

(0,0) satisfies ne(T ) ≤ (1 + R̄/ε)
(
n∗(T )− 1

)
.

Proof The proof is the same as that of Lemma 41, with the only difference that condition
(iii)” of (5.9) allows us to use R̄s instead of Rs (s = 1, 2) as upper bounds.

5.6 Finiteness of the Peierls sum

We continue our preparations for the proof of Proposition 11. Our aim is to derive a lower
bound p∗ on the critical noise parameter pc defined in (1.7), which requires us to prove that
ρ(p) > 0 for all p < p∗. By (5.6), we have ρ(p) > 0 as soon as the Peierls sum on the right-hand
side of (5.6) is less than one. In the present subsection, we will prove that in fact it (more or
less) suffices to show that the Peierls sum is finite. This will not only lead to slightly better
bounds but also simplify our calculations later. Similar results, which say that finiteness of
the Peierls sum already implies a phase transition, have been proved before. For percolation,
the argument is quite simple [Dur88, Section 6a] but for other models such results can be a
bit harder to obtain [KSS14].

We will work in the set-up of Subsection 5.1, but specialised to the case m = 1, which
means that Φ0 is a deterministic monotone cellular automaton. To simplify notation, we set
φ := φ1 and As := As,1. We recall from (5.4) that As is chosen such that

sup
A∈A(φ)

inf
i∈A

Ls(i) = inf
i∈As

Ls(i) (1 ≤ s ≤ σ), (5.34)
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and that by (1.15) and (5.3)

ε =

σ∑
s=1

εs with εs = εφ(Ls) = inf
i∈As

Ls(i) (1 ≤ s ≤ σ). (5.35)

In our present setting, the definition of the sets ∆s and ∆ from (5.8) simplifies to

∆s = As (1 ≤ s ≤ σ) and ∆ =

σ⋃
s=1

As. (5.36)

As in Subsection 5.1, we let T ′
(0,0) denote the set of Toom contours rooted at (0, 0) that satisfy

(5.7). In the special case σ = 2, we let T̄ ′
(0,0) denote the set of Toom cycles rooted at (0, 0)

that satisfy (5.9). As in (5.11) we let n∗(T ) denote the number of sinks of a Toom contour T ,
which equals the number of sources. Here is the main result of this subsection.

Proposition 45 (Finiteness of the Peierls sum) Assume that ε > 0. Then the condition∑
T∈T ′

(0,0)

pn∗(T ) <∞ (5.37)

implies that ρ(p) > 0. If σ = 2, then the same conclusion can be drawn if in (5.37) the sum
over T ′

(0,0) is replaced by the sum over T̄ ′
(0,0).

Proposition 45 actually stops short of what we promised, since the sum in (5.37) is only
an upper bound for the Peierls sum on the right-hand side of (5.6). For our purposes, the
statement of Proposition 45 will be sufficient, however.

The proof of Proposition 45 needs some preparations. Recall that Λ = Zd+1 and that
the function κ is defined in (5.1). In the present setting,

(
κ(i, t)

)
(i,t)∈Λ are i.i.d. {0, 1}-valued

random variables with P[κ(i, t) = 1] = p, and

Λ0 :=
{
(i, t) ∈ Λ : κ(i, t) = 0

}
and Λ• :=

{
(i, t) ∈ Λ : κ(i, t) = 1

}
. (5.38)

Recall that sites in Λ0 are called defective. In our present setting, the definition of the typed
dependence graph (Λ,H) simplifies to

H⃗s :=
{(

(i, t), (i+ j, t− 1)
)
: (i, t) ∈ Λ•, j ∈ As

}
(1 ≤ s ≤ σ). (5.39)

It will be convenient to define a modified typed dependence graph (Λ,H<) that has no defective
sites (i, t) with time coordinates t > 0. Formally, we define Λ<

0 :=
{
(i, t) ∈ Λ0 : t ≤ 0

}
,

Λ<
• := Λ\Λ<

0 , and we define H< = (H⃗<
1 , . . . , H⃗

<
σ ) as in (5.39) but with Λ• replaced by Λ<

• .
We let Ψ< denote the monotone cellular automaton associated with (Λ,H<), in the sense of

Definition 21, and we let Y
<
denote the maximal trajectory of Ψ<.

Lemma 46 (Presence of a large contour) Fix js ∈ As (1 ≤ s ≤ σ) and r ∈ N. Let
Cr ⊂ Zd with r ∈ N be inductively defined by

C0 := {0} and Cr+1 :=
{
i+ js : i ∈ Cr, 1 ≤ s ≤ σ

}
(r ≥ 0). (5.40)

Then on the event that Y
<
(i, 0) = 0 for all i ∈ Cr, there is a Toom contour (v◦,V, E , ψ) rooted

at (0, r) present in (Λ,H<). If σ = 2, then a Toom cycle rooted at (0, r) is present in (Λ,H<).
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Proof Since there are no defective sites with positive time coordinates, by Definition 21 and
(5.39) we have

Y
<
(i, t) =

σ∨
s=1

∧
j∈As

Y <(i+ j, t− 1) (i ∈ Zd, t > 0). (5.41)

Using this and the assumption that Y
<
(i, 0) = 0 for all i ∈ Cr we see by induction that

Y
<
(i, t) = 0 for all i ∈ Cr−t (0 ≤ t ≤ r) and hence in particular Y

<
(0, r) = 0. The claim now

follows from Theorems 23 and 26.

Lemma 47 (Many sinks) Let ε and R be defined as in (1.21) and (5.16). Assume that T
is a Toom countour rooted at (0, r) that is present in (Λ,H<). Then n∗(T ) ≥ rε/R+ 1.

Proof This follows from an argument similar to the proof of Lemma 41. Since (Λ,H<) has
no defective sites with positive time coordinates, any Toom contour T = (v◦,V, E , ψ) that is
rooted at (0, r) and present in (Λ,H<) must satisfy |E⃗•

s | ≥ r (1 ≤ s ≤ σ), so a calculation as
in (5.24) gives

0 ≥
σ∑

s=1

[
rεs − (n∗(T )− 1)Rs

]
= rε− (n∗(T )− 1)R. (5.42)

Proof of Proposition 45 Let Ψ denote the monotone cellular automaton associated with
(Λ,H). Let X

p
denote the maximal trajectory of Φp and let Y denote the maximal trajectory

of Ψ. As in the proof of Theorem 27 we see that Y ≤ X
p
(pointwise). Moreover, since (Λ,H)

and (Λ,H<) agree up to time zero, it is easy to see that Y (i, t) = Y
<
(i, t) for all t ≤ 0. Let

Mn denote the number of non-equivalent contours in T ′
(0,0) with n sinks. Lemmas 46 and 47

tell us that

P
[
Y

<
(i, 0) = 0 ∀i ∈ Cr

]
≤

∞∑
n=rε/R+1

Mnp
n, (5.43)

and the same is true with Y
<
replaced by Y , since they are equal at time zero. Using (5.37)

and the assumption that ε > 0, we see that we can choose r large enough such that the
probability in (5.43) is less than one. It follows that

0 < P
[
Y (i, 0) = 1 for some i ∈ Cr

]
≤ |Cr| · P

[
Y (0, 0) = 1

]
≤ |Cr| · P

[
X

p
(0, 0) = 1

]
, (5.44)

proving that ρ(p) > 0. The proof for Toom cycles is the same.

5.7 Bounds on the critical noise parameter

In this subsection we prove Proposition 11. We work in the set-up of Subsection 5.1, specialised
to the case m = 1, as summarised in Subsection 5.6.

Proof of Proposition 11 First we consider the cellular automaton that applies the map
φcoop (recall (1.11)) at each space-time point. We chose σ := 2, and the polar function

L1(z) := −z1 − z2, L2(z) := z1 + z2 (z1, z2) ∈ R2. (5.45)

Recalling the minimal one-sets of φcoop from (1.12), we then choose A1, A2 ∈ A(φcoop) satis-
fying (5.34) by setting A1 := {(0, 0)}, and A2 := {(0, 1), (1, 0)}. This has the result that the
constants from (1.21), (5.16) and (5.33) are given by ε = 1, R = 1 and R̄ = 1. We first give a
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bound using Toom contours. Applying Lemma 40 with M = 3, σ = 2 and τ = 1, the Peierls
bound (5.17) gives

1− ρ(p) ≤
∑

T∈T ′
(0,0)

pn∗(T ) ≤ p
∞∑
n=0

Nnp
n/(1+R/ε) ≤ p

∞∑
n=0

22τn32npn/2. (5.46)

By Proposition 45, to prove that ρ(p) > 0, it actually suffices to prove that the right-hand
side of (5.46) is finite, which happens when 36p1/2 < 1, leading to the bound pc ≥ 36−2.

Since σ = 2, we can use Toom cycles instead. Using (5.6), Lemma 43 with M1 = 1,
M2 = 2, and Lemma 44, we find that

1− ρ(p) ≤
∑

T∈T̄ ′
(0,0)

pn∗(T ) ≤ p
∞∑
n=0

N̄np
n/(1+R̄/ε) ≤ p+ 1

2p
∞∑
n=1

8npn/2. (5.47)

Again, by Proposition 45, it suffices to prove that the right-hand side is finite, which happens
when 8p1/2 < 1, leading to the bound pc ≥ 1/64.

Now consider the cellular automaton that applies the map φNEC (recall (1.11)) at each
space-time point. We chose σ := 3, and the polar function

L1(z1, z2) := −z1, L2(z1, z2) := −z2, L3(z1, z2) := z1 + z2. (5.48)

Recalling the minimal one-sets of φNEC from (1.12) we choose A1, A2, A3 ∈ A(φNEC) satisfying
(5.34) by setting A1 := {(0, 0), (0, 1)}, A2 := {(0, 0), (1, 0)}, and A3 := {(0, 1), (1, 0)}. This has
the result that the constants from (1.21) and (5.16) are given by ε = 1 and R = 2. Applying
Lemma 40 with M = 3, σ = 3 and τ = 2, the Peierls bound (5.17) gives

1− ρ(p) ≤
∑

T∈T ′
(0,0)

pn∗(T ) ≤ p
∞∑
n=0

n34n33npn/3. (5.49)

By Proposition 45, it suffices to prove that the right-hand side is finite, which happens when
37p1/3 < 1, leading to the bound pc ≥ 3−21.
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[Gac21] P. Gács. A new version of Toom’s proof. Preprint (2021), arXiv:2105.05968.
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[HS22] I. Hartarsky and R. Szabó. Subcritical bootstrap percolation via Toom contours.
Electron. Commun. Probab. 27 (2022), 1–13.

[HT24] I. Hartarsky and F.L. Toninelli. Kinetically constrained models out of equilibrium.
Preprint, 2024, arXiv:2212.08437.
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