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Abstract

We say that a probability kernel Q is intertwined on top of another probability kernel P if
there exists a third probability kernel K such that PK = KQ. Given a probability kernel
P that is a square matrix, we are interested in the problem of finding probability kernels
Q and K of the same size as P such that Q is intertwined on top of P with intertwiner
K. We describe a numerical method that is sometimes capable of finding such Q and K
and present some numerical results.
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1 Intertwining of probability kernels

We will be interested in relations of the form

PK = KQ, (1)

where P,Q, and K are square matrices that are all of the same size d× d for some d ≥ 1. A
relation of the form (1) is called an intertwining relation. The matrix K is the intertwiner. If
K is invertible, then we can rewrite (1) as

Q = K−1PK or P = KQK−1. (2)

This relation says that P and Q are similar. It is known that this implies that P and Q have
the same spectrum. By definition, the matrix P is diagonalisable if and only if K can be
chosen such that Q is diagonal.

Recall that a d× d matrix P is a probability kernel if P (x, y) ≥ 0 for all 1 ≤ x, y ≤ d and∑
y P (x, y) = 1 for all 1 ≤ x ≤ d. We will especially be interested in intertwining relations

of the form (1) where P is a probability kernel. The n-th power of P then gives the n-step
transition probabilities of the Markov chain that has P as its transition kernel. If we can
diagonalise P , then we have very good control over the powers of P , since (2) implies

Pn = KQnK−1 (t ≥ 0), (3)

and it is trivial to calculate the powers of a diagonal matrix. A potential drawback is that
typically, the matrices Q and K in (2) are not probability kernels, which means that diago-
nalisation ignores the very special property of P that it is a probability kernel. If we want
to retain this information, then it may be advantageous to work instead with an intertwining
relation of the form (1) such that not only P , but also Q and K are probability kernels. Then
(1) implies that

PnK = KQn (t ≥ 0). (4)

If we can find a relation between probability kernels of the form (1) such that Q is “simple”
enough for us to have good control over its powers Qn, then via (4) this gives information
about the powers of the original probability kernel P that we are interested in. Thus, we can
think of intertwining of probability kernels as an alternative to diagonalisation if we want to
stay in the world of probability kernels.

As (2) shows, similarity of matrices is a symmetric relation: if P is similar to Q, then Q
is similar to P . On the other hand, since the inverse of a probability kernel is usually not a
probability kernel, in an intertwining relation between probability kernels of the form (1), P
and Q do not play symmetric roles. To stress the difference, we will use the convention that if
(1) holds, then we say that Q is intertwined “on top” of P , or that P is intertwined “below”
Q. Given P , we will be interested in the problem of finding simple Q that are intertwined
on top of P . One could similarly ask for Q that are interwined below P and much of what
follows could be adapted to this case, but for concretness in this note we focus on Q that are
intertwined on top of P .
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2 The basic idea

We fix a square probability kernel P , i.e., an real matrix of size d× d such that

P (x, y) ≥ 0 ∀1 ≤ x, y ≤ d and
d∑

y=1

P (x, y) = 1 ∀1 ≤ x ≤ d.

We consider the problem how to find a probability kernel Q of size d × d intertwined on top
of P that is “as simple as possible”. The basic idea is to define K0 to be the identity matrix
and then inductively define probability kernels K1,K2,K3, . . . by

Kt+1 := Kt + PKt −KtQ(P,Kt) (t ≥ 0), (5)

for some cleverly chosen function Q. If we are lucky, then there exist probability kernels K
and Q such that

Kt −→
t→∞

K and Q(P,Kt) =: Qt −→
t→∞

Q, (6)

which implies

PK −KQ = lim
t→∞

(
PKt −KtQt

)
= lim

t→∞

(
Kt+1 −Kt

)
= 0, (7)

leading to a solution of (1).
Recall that our aim is to find Q and K such that (1) holds. In this note we investigate the

evolution (5) for a specific choice of the function Q that is based on the following two guiding
principles:

� We want the kernel Q to be as simple in possible, in the sense that as many as possible
of its off-diagonal elements are zero.

� We put restrictions on K by requiring some of its off-diagonal elements to be zero.

More precisely, we fix a set

Z ⊂
{
(x, y) ∈ {1, . . . , d}2 : x ̸= y

}
(8)

that has the interpretation that these are the off-diagonal elements of K that we want to be
zero, and define Q = QZ as follows. First, we set

KZ :=
{
K :K is a probability kernel of size d× d

such that K(x, y) = 0 for all (x, y) ∈ Z
}
,

(9)

and we let CZ(P,K) denote the set

CZ(P,K) :=
{
Q :Q is a probability kernel of size d× d

such that K ′ := K + PK −KQ ∈ KZ

}
.

(10)

For given probability kernels P,K of size d × d such that K ∈ KZ , we then define QZ(P,K)
by setting

QZ(P,K) := the unique minimiser of Q 7→
∑
x ̸=y

Q(x, y) in CZ(P,K), (11)

3



where the sum runs over all 1 ≤ x, y ≤ d such that x ̸= y. The idea of minimising this function
is that we want as many as possible of the off-diagonal elements of Q to be zero. It is should
be noted that a priori, it is not clear that this is a good definition since in general we do
not know whether such a minimiser exists (since CZ(P,K) could be empty) or whether the
minimiser is unique. We will not really solve this problem but just hope that in the numerical
examples that we will investigate things will turn out to be OK.

It should be noted that there is one case where it is clear that the evolution in (5) is
well-defined. This is the case when Z = ∅, i.e., the case when we do not require any of the
off-diagonal elements of K to be zero. In this case the function in (11) has a unique minimiser,
which is the identity matrix. As a result, in this case, the evolution equation (5) reduces to

Kt+1 = PKt (t ≥ 0), (12)

which together with the initial condition K0 = 1 means that Kt = P t (t ≥ 0). This does in
general not lead to interesting intertwining relations, which is the main reason why we require
some of the off-diagonal elements of K to be zero.

3 Numerical implementation

3.1 Basic usage of the scripts

A couple of scripts, written in the scientific programming language GNU Octave, allow one to
numerically solve the evolution equation (5) for a given probability kernel P and choice of the
set Z from (8). These scripts are available from my homepage [Swa24]. The basic scripts are
step, which calculates one step of the evolution (5), and evolve, which runs the evolution (5)
until an intertwining is found within the required precision. Before one can run these scripts,
the following variables must be defined:

P. A square matrix of size d× d for some d ≥ 1 that is the probability kernel that we want
to intertwine.

Z. A square matrix of size d× d containing only zeros and ones, where the ones represent
the set Z from (8).

Instead of setting P and Z by hand, one can also load any of a number of datasets with
names of the form setup xxx.dat that contain predefined variables P and Z of a certain form.
Alternatively, one can run any of a number of scripts with names of the form setup xxx.m.
Some of these scripts have optional parameters such as the size d of P . This is explained in
the comments at the beginning of these scripts.

The script evolve numerically solves the evolution equation (5) and calculates in each
step the quantity

εt := sup
1≤x,y ̸=n

∣∣PKt+1(x, y)−Kt+1Qt(x, y)
∣∣ (t ≥ 0). (13)

The script evolve runs until one of the following conditions is satisfied:

� εt ≤ tol,

� the program has been running longer than hour hours, minu minutes, and seco seconds.
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The variables tol, hour, minu, and seco are optional. Their default values are

tol = 10−7, hour = 0, minu = 0, seco = 3.

Before running evolve, they can be set to different values. If hour or minu are set to a nonzero
value, then the default value of seco is zero.

The script evolve produces the following output:

Q A probability kernel of size d× d that corresponds to Qt where s is the last step of the
evolution.

K A probability kernel of size d × d that corresponds to Kt+1 where s is the last step of
the evolution.

erro The quantity εt defined in (13) where s is the last step of the evolution. If this is small,
then the program has found an approximate intertwining relation.

3.2 The way the scripts work

Let P and K be probability kernels of size d × d, let Z be a set as in (8), and assume that
K(x, y) = 0 for all (x, y) ∈ Z. Then we claim that the space CZ(P,K) defined in (10) is the
set of all d× d matrices that satisfy

(i) Q(x, y)≥ 0 (1 ≤ x, y ≤ d),

(ii)

d∑
y=1

Q(x, y)= 1 (1 ≤ x ≤ d),

(iii) KQ(x, y)=K(x, y) + PK(x, y)
(
(x, y) ∈ Z

)
,

(iv) KQ(x, y)≤K(x, y) + PK(x, y)
(
(x, y) ∈ [d]2\Z

)
.

(14)

Indeed, (i) and (ii) say that Q is a probability kernel while (iii) and (iv) guarantee that
K ′ := K + PK − KQ is a nonnegative matrix that satisfies K ′(x, y) = 0 for all (x, y) ∈ Z.
The latter then implies that K is a probability kernel since the relation

∑
y K

′(x, y) = 1
(1 ≤ x ≤ d) is an automatic consequence of the fact that P , K and Q are probability kernels.
As a result, we see that given Z, P , and K, to calculate Q = QZ(P,K) as defined in (11), one
needs to solve the following problem:

Find the minimiser of Q 7→
∑

x ̸=y Q(x, y) subject to the constraints (14) (15)

Note that at most d2 of the constraints (14) are equalities while the space of d × d matrices
has dimension d2, so it is reasonable to hope that there is at least one minimiser.

The linear optimisation problem (15) is a standard exercise in linear programming for
which we use the predefined Octave function glpk. The script evolve calls the function
Qfunc, which in turn calls the function Lipo, which is based on the predefined function glpk.
The description of the functions Lipo and Qfunc is as follows:

Lipo(A,b,c,I). The input are: a matrix A of size d × d, a column vector b of length
N , a row vector c of length d, and a row vector I of length N containing only zeros and
ones. The output is a column vector x of length d that minimises the function x 7→ c · x
subject to the constraints x(k) ≥ 0 for all k, Ax(k) = b(k) for all k with I(k) = 1, and
Ax(k) ≤ b(k) for all k with I(k) = 0.
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Qfunc(P,K,Z). The input are: probability kernels P and K of size d× d and a matrix
Z of size d × d containing only zeros and ones such that K(x, y) = 0 for all (x, y) with
Z(x, y) = 0. The output is a solution Q of the linear optimisation problem (15).

As described in Subsection 3.1, the script evolve iterates the evolution equation (5) until
it has found an approximate intertwining relation within the set tolerance or time is up. To
counter the effect of small numerical errors that tend to multiply, in each step of the evolution,
small corrections to K are carried out to ensure that it remains a probability kernel.

4 Results

4.1 An intertwining of birth-and-death chains

Loading setup birth1.dat or running setup birth1 creates matrices P and Z of the following
form:

P =



1
2

1
2 0 0 0

1
4

1
2

1
4 0 0

0 1
4

1
2

1
4 0

0 0 1
4

1
2

1
4

0 0 0 0 1

 Z =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

 . (16)

Running evolve now produces the matrices

Q =


0.9619 0.0381 0 0 0

0 0.6913 0.3087 0 0

0 0 0.3087 0.6913 0

0 0 0 0.0381 0.9619

0 0 0 0 1

 (17)

and

K =


1.0000 0 0 0 0

0.9239 0.0761 0 0 0

0.7071 0.1989 0.0940 0 0

0.3827 0.1838 0.1737 0.2599 0

0 0 0 0 1.0000

 (18)

and the calculated error is erro = 9.8 · 10−08. As one can verify by typing sort(eig(P)), the
values on the diagonal of Q are the eigenvalues of P. Since

PnK = KQn (t ≥ 0), (19)

the following two procedures have the same effect:

1. Starting from an initial state in {1, . . . , 5}, first evolve the state for n time steps according
to the Markov chain with transition kernel P , then map the final state into a new state
according to the probability kernel K.

2. Starting from an initial state in {1, . . . , 5}, first map the initial state into a new state
according to the probability kernel K, then evolve the state for n time steps according
to the Markov chain with transition kernel Q.
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1 2 3 4 5

1 2 3 4 5

P

Q

K

1− λ1 1− λ2 1− λ3 1− λ4

Figure 1: Interwining for a birth-and-death process with a trap. The eigenvalues of P are
1 = λ0 > λ1 > · · · > λ4.

We have symbolically depicted this intertwining relation in Figure 1, where black arrows
indicate positive transition probabilities of the kernels P and Q and blue arrows indicate
positive transition probabilities of the kernel K. (For better readability of the pictures, we
have not drawn jumps from a point to itself.) If before running setup birth1, one sets
the value of the parameter n to a different value than 5, then one can verify that analogue
intertwining relations hold for transition kernels P of birth-and-death Markov chains with
state spaces of a different size. The script setup birth1r.m produces random P of the form

P =



1
2

1
2 0 0 0

1
2r2

1
2

1
2(1− r2) 0 0

0 1
2r3

1
2

1
2(1− r3) 0

0 0 1
2r4

1
2

1
2(1− r4)

0 0 0 0 1

 (20)

where r2, . . . , r4 are independent uniformly distributed on [0, 1]. Also in this case, evolve
finds an intertwining relation of the type depicted in Figure 1.

In [Swa10], intertwining relations of the type depicted in Figure 1 have been theoretically
derived in the case that P = Pt is the transition kernel of a continuous-time birth-and-
death process. This built on earlier work in [DM09] which was concerned with Q that are
intertwined below P , rather than on top of it. Based on the numerical evidence, we conjecture
that such intertwining relations exist quite generally for probability kernels P on sets of the
form {1, . . . , d} that satisfy:

(i) P (x, y) = 0 for all |x− y| ≥ 2,

(ii) P (n, n) = 1,

(iii) the spectrum of P is contained in [0, 1].

Condition (iii) is satisfied for lazy kernels, i.e., P of the form 1
2(P

′ + 1) where P ′ is another
probability kernel. Condition (iii) is necessary for intertwinings of the type depicted in Figure 1
since for such intertwinings the eigenvalues λ1, . . . , λ4 need to be probabilities. Condition (iii)
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may fail in general for birth-and-death kernels. A example is:

P =



1
2

2
3 0 0 0

1
3

1
3

1
3 0 0

0 1
3

1
3

1
3 0

0 0 1
3

1
3

1
3

0 0 0 0 1

 (21)

which has an eigenvalue λ4 ≈ −0.282586.

4.2 A different intertwining of birth-and-death chains

Loading setup birth2a.dat or running setup birth2 creates matrices P and Z of the fol-
lowing form:

P =



1
2

1
2 0 0 0

1
4

1
2

1
4 0 0

0 1
4

1
2

1
4 0

0 0 1
4

1
2

1
4

0 0 0 0 1

 Z =


0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

0 1 0 0 1

0 0 1 0 0

 . (22)

Note that this differs from (16) only in the choice of Z. Running evolve now produces the
matrices

Q =


0.7706 0.2294 0 0 0

0.2257 0.5560 0.2183 0 0

0 0.2025 0.6353 0.1622 0

0 0 0 0.0381 0.9619

0 0 0 0 1

 (23)

and

K =


1 0 0 0 0

0.5412 0.4588 0 0 0

0 0.5995 0.4005 0 0

0 0 0.7401 0.2599 0

0 0 0 0 1

 (24)

and the calculated error is erro = 7.96 · 10−08. This intertwining is depicted in the lower part
of Figure 2. As indicated in that figure, one can find probability kernels Q0, Q1, Q2, Q3 and
K1,K2,K3 such that Q0 = P and Qi−1Ki = KiQi, which implies that

PK = Q0K1K2K3 = K1Q1K2K3 = K1K2Q2K3 = K1K2K3Q3 = KQ, (25)

where K := K1K2K3 is the intertwiner from Subsection 4.1. By setting d to a different value
than the default d = 5 before running setup birth2 one can check that similar intertwinings
hold for birth-and-death kernels of a different size, and with the script setup birth2r one
can investigate randomly created birth-and-death kernels. Intertwining relations of the form
depicted in Figure 2 seem to be new, as they do not occur in [Swa10].

It is not completely clear in what generality intertwining relations of this form exist. The
script setup birth2r sometimes produces probability kernels P for which evolve finds an
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1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Q0 = P

Q1

Q2

Q3

K1

K2

K3

1− λ4

1− λ3 1− λ4

1− λ1 1− λ2 1− λ3 1− λ4

Figure 2: The intertwining from Subsection 4.1 can be obtained as a concatenation of inter-
twinings of the form described in Subsection 4.2. The kernels Q and K from Figure 1 are
given in terms of those in the present figure by Q = Q3 and K = K1K2K3.

intertwining relation with a probability kernel Q of a different form. To see an example of
this, load setup birth2b.dat and then run evolve.

5 Open problems

The general problem of finding intertwining relations for a given probability kernel, as a
probabilistic alternative to diagonalisation, seems interesting. Before trying to attack this
problem theoretically, it is probably wise to investigate it numerically first, to get a rough
idea of the kind of statements that one might want to prove. We have demonstrated that the
evolution equation (5) together with the choice of the function Q = QZ in (11) can sometimes
yield interesting numerical results for transition kernels P birth-and-death chains. For lack of
time, we have not investigated other P , but it would seem interesting to do so.

A disadvantage of the definition of the functionQ = QZ in (11) is that there is no guarantee
that the minimiser is exists or is unique. To see that the minimiser can sometimes fail to exist,
run setup contact and then run step two times. In this example, that is inspired by a contact
process on a lattice of size two, in the first step, Q1 can still be calculated, but in the second
step the set CZ(P,K1) (numerically) turns out to be empty which means that the evolution
(5) is not defined from this point on.

Clearly, there are a lot of alternative approaches one can try. One can try to tweak the
definition of Q = QZ in (11) or try to replace the evolution equation (5) by something different
altogether. For example, an obvious thing one could try is to find probability kernels K and
Q that minimise the quadratic function

(K,Q) 7→ (PK −KQ)†(PK −KQ), (26)

where A† denotes the transpose of a matrix A, with the idea that the function in (26) assumes
its minimal value zero exactly on those pairs (K,Q) for which the intertwining relation (1)
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holds. By requiring certain elements of K and Q to be zero one can then try to restrict the
space of solutions and search for intertwining relations of a certain form.
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