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Abstract

We study a random game in which two players in turn play a fixed number of moves. For
each move, there are two possible choices. To each possible outcome of the game we assign
a winner in an i.i.d. fashion with a fixed parameter p. In the case where all different game
histories lead to different outcomes, a classical result due to Pearl (1980) says that in the
limit when the number of moves is large, there is a sharp threshold in the parameter p that
separates the regimes in which either player has with high probability a winning strategy.
We are interested in a modification of this game where the outcome is determined by the
exact sequence of moves played by the first player and by the number of times the second
player has played each of the two possible moves. We show that also in this case, there
is a sharp threshold in the parameter p that separates the regimes in which either player
has with high probability a winning strategy. Since in the modified game, different game
histories can lead to the same outcome, the graph associated with the game is no longer a
tree which means independence is lost. As a result, the analysis becomes more complicated
and open problems remain.

MSC 2010. Primary: 82C26; Secondary: 60K35, 91A15, 91A50.
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transition.
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1 Introduction and main results

1.1 Main results

Consider a game played by two players, Alice and Bob, who take turns to play n moves
each. Alice starts. For each move, each player has two options. The outcome of the game is
determined by the exact sequences of moves played by Alice and Bob. We assign a random
winner to each of the 22n possible outcomes of the game in an i.i.d. fashion. For each given
outcome, the probability that Bob is the winner is p. For later reference, we give this game the
name ABn(p). Since the game is finite, for each possible assignment of winners to outcomes,
precisely one of the players has a winning strategy.1 Let PAB

n (p) denote the probability that
Bob has a winning strategy. Pearl [Pea80] showed that, setting pAB

c := 1
2(3 −

√
5) ≈ 0.382,

which has the effect that pAB
c : 1− pAB

c is the golden ratio,2 one has that

PAB
n (p) −→

n→∞


0 if p < pAB

c ,
pAB
c if p = pAB

c ,
1 if p > pAB

c .
(1.1)

Note that pAB
c < 1/2, which is due to the fact that Bob has the last move, which gives him

an advantage.
Imagine now that we change the game in such a way that for the outcome of the game,

the whole history of the moves played by Alice is relevant as before, but all that matters
of Bob’s moves is the total number of times he plays each of the two possible moves. In
this case, there are 2n(n + 1) possible outcomes of the game. As before, we assign a winner
independently to each possible outcome, where p is the probability that Bob is the winner for
a given outcome. We call this game Abn(p) and let PAb

n (p) denote the probability that Bob
has a winning strategy. Similarly, we let aBn(p) denote the game in which the outcome is
determined by how often Alice has played each of the two possible moves and by the whole
history of the moves played by Bob. Finally, we let abn(p) denote the game in which both for
Alice and Bob, all that matters for the outcome is how often each of them has played each
of the possible moves. We denote the probability that Bob has a winning strategy in these
games by P aB

n (p) and P ab
n (p), respectively.

It seems that if for the outcome of a game, all that matters is how often a player has played
each of the two possible moves, then this player has less influence on the outcome compared
to the game in which the whole history of moves played by this player matters. It is natural
to conjecture that this gives such a player a disadvantage. Our first result partially confirms
this.

Proposition 1 (Less influence on the outcome) One has PAbn (p) ≤ PABn (p) and P aBn (p) ≥
PABn (p) for all p ∈ [0, 1] and n ≥ 1.

We conjecture that similarly P abn (p) ≤ P aBn (p) and P abn (p) ≥ PAbn (p), but we have not been
able to prove this.

From now on, we mostly focus on the games Abn(p) and aBn(p). Our next result says that
even though these games give Bob and Alice a disadvantage compared to the game ABn(p), for
values of p close enough to one or zero, they still have with high probability a winning strategy.
Moreover, similarly to (1.1), there is a sharp threshold of the parameter p that separates two
regimes where for large n either Alice or Bob have with high probability a winning strategy.

1This is a basic result from game theory, that can easily be proved using the inductive formula (1.9) below.
2In fact, setting β := 1

2
(1 +

√
5), one has that pAB

c = β−2 and 1− pAB
c = β−1.
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Figure 1: The probability PAb
n (p) that Bob has a winning strategy in the game Abn(p), as a

function of n, for different values of p. The data suggest a critical value pc ≈ 0.71. They also
suggest that limn→∞ PAb

n (pc) is either one or very close to one.

Theorem 2 (Sharp threshold) There exist constants 0 < pAb
c , paBc < 1 such that

PAb
n (p) −→

n→∞

{
0 if and only if p < pAb

c ,
1 if p > pAb

c ,

P aB
n (p) −→

n→∞

{
0 if p < paBc ,
1 if and only if p > paBc .

(1.2)

Contrary to (1.1), we have not been able to determine the limit behaviour as n → ∞ of
PAb
n (p) at p = pAb

c , but we know that the limit cannot be zero. Numerical data suggest the
limit is either one or close to one, see Figure 1. For P aB

n (p), the situation is similar except that
the roles of 0 and 1 have been interchanged. Numerical simulations suggest that pAb

c ≈ 0.71
and paBc ≈ 0.16. We have the following rigorous bounds.

Proposition 3 (Bounds on the thresholds) One has 1/2 ≤ pAb
c ≤ 7/8 and 1/16 ≤ paBc ≤

1
2(3−

√
5).

Recall that 1
2(3 −

√
5) = pAB

c is the threshold from (1.1), so the bound paBc ≤ 1
2(3 −

√
5)

follows from the inequality P aB
n (p) ≥ PAB

n (p) of Proposition 1.
The bound 1/2 ≤ pAb

c comes from the following observation. We can partition the possible
outcomes of the game into 2n sets of n+ 1 elements each, such that Alice’s moves determine
in which set the outcome lies, and then Bob’s moves determine the precise outcome within
each set. The probability that all outcomes in a given set are a win for Alice is (1 − p)n+1.
Since there are 2n sets, we see that if p < 1/2, then in the limit n→ ∞, with high probability,
there is at least one set in which all elements are a win for Alice. This means that Alice has
a particularly simple winning strategy: by choosing her moves in advance, she can make sure
she wins without even having to react to Bob’s moves.
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The proofs of the bounds pAb
c ≤ 7/8 and 1/16 ≤ paBc are a bit more complicated. We

will use a Peierls argument first invented by Toom [Too80] and further developed in [SST22].
Toom’s Peierls argument was invented to study perturbations of monotone cellular automata
started in the all-one initial state. In Toom’s original work, the time evolution is subject
to random perturbations, but as was recently demonstrated by Hartarsky and Szabó in the
context of bootstrap percolation [HS22], his method can also deal with perturbations of the
initial state. To prove that the threshold in Theorem 2 is sharp, we will use an inequality
from the theory of noise sensitivity first derived by Bourgain, Kahn, Kalai, Katznelson, and
Linial [BK+92].

For the game abn(p) our results are much less complete than for the games Abn(p) and
aBn(p). Using Toom’s Peierls argument, we are able to prove the following result, however.

Proposition 4 (Bounds for small and large parameters) One has

P ab
n (p) −→

n→∞

{
0 if p < 1/64,
1 if p > 15/16.

(1.3)

The paper is organised as follows. In the remainder of the introduction, we discuss the
graph structure of our games, we give an alternative interpretation of the quantities PAB

n (p),
PAb
n (p), P aB

n (p), and P ab
n (p) in terms of a cellular automaton, and we discuss related literature.

Detailed proofs are deferred till Section 2.

1.2 The graph structure of the games

To describe the graph structure of our games of interest, we first introduce some general
notation. Recall that a directed graph is a pair (G, E⃗) where G is a set whose elements are
called vertices and E⃗ is a subset of G × G whose elements are called directed edges. By a
slight abuse of notation, we will sometimes use G as a shorthand for (G, E⃗), when it is clear
how the set of directed edges is defined. We say that (G, E⃗) is finite if G is a finite set. For
v, w ∈ G we write v ⇝ w if there exist v = v0, . . . , vn = w such that (vk−1, vk) ∈ E⃗ for all
1 ≤ k ≤ n. We let dist(v, w) denote the smallest integer n ≥ 0 for which such v0, . . . , vn exist.
We say that G is acyclic if there do not exist v, w ∈ G with v ̸= w such that v ⇝ w ⇝ v. For
v ∈ G, we adopt the notation O(v) := {w ∈ V : (v, w) ∈ E⃗} and we write

G̊ :=
{
v ∈ V : O(v) ̸= ∅

}
and ∂G :=

{
v ∈ V : O(v) = ∅

}
. (1.4)

Quite generally, we can describe the graph structure of a finite turn-based game played by
two players by means of a quadruple (G, E⃗, 0, τ) where

(i) (G, E⃗) is a finite acyclic directed graph,

(ii) 0 ∈ G satisfies 0⇝ v for all v ∈ G,

(iii) τ : G̊→ {1, 2} is a function.

For the sake of the exposition, let us call such a quadruple a game-graph. Slightly abusing the
notation, we will sometimes write G as shorthand for (G, E⃗, 0, τ), when it is clear how G is
equipped with the structure of a game-graph. We call 0 the root. We interpret G as the set
of possible states of the game, 0 as the state at the beginning of the game, ∂G as the set of
possible outcomes of the game, G̊ as the non-final states of the game, and τ as a function that
tells us whose turn it is in each non-final state of the game. We write

G̊1 :=
{
v ∈ G̊ : τ(v) = 1

}
and G̊2 :=

{
v ∈ G̊ : τ(v) = 2

}
. (1.5)
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A (pure) strategy for Alice is a function

G̊1 ∋ v 7→ σ1(v) ∈ O(v), (1.6)

which has the interpretation that in the state v, Alice always plays the move that makes the
game progress to the state σ1(v). Likewise, a strategy for Bob is a function G̊2 ∋ v 7→ σ2(v) ∈
O(v). We let S1 (resp. S2) denote the set of all strategies for Alice (resp. Bob). Given a
strategy σ1 ∈ S1 of Alice and a strategy σ2 ∈ S2 of Bob, there is a unique sequence of vertices
v0, . . . , vn ∈ G with v0 = 0 and vn ∈ ∂G such that for each 0 ≤ k < n one has vk+1 = σ1(vk)
if vk ∈ G̊1 and vk+1 = σ2(vk) if vk ∈ G̊2. Then

o(σ1, σ2) := vn (1.7)

is the outcome of the game if Alice plays strategy σ1 and Bob plays strategy σ2. Given a
function x : ∂G → {0, 1} that assigns a winner to each possible outcome, with x(v) = 0
meaning that Alice is the winner and x(v) = 1 meaning that Bob is the winner, we say that
a strategy σ1 ∈ S1 is a winning strategy for Alice given x if

x
(
o(σ1, σ2)

)
= 0 ∀σ2 ∈ S2. (1.8)

Winning strategies for Bob are defined similarly (with 1 instead of 0). To find out who has a
winning strategy given x, we can work our way back from the set of all possible outcomes to
the initial state of the game. Given a function x : ∂G → {0, 1} that assigns a winner to each
possible outcome, we can define x : ∂G ∪ G̊ → {0, 1} by setting x(v) := x(v) for v ∈ ∂G and
then defining inductively

x(v) :=


∧

w∈O(v)

x(w) if v ∈ G̊1,∨
w∈O(v)

x(w) if v ∈ G̊2.
(1.9)

Then it is not hard to see that Alice (resp. Bob) has a winning strategy if and only if x(0) = 0
(resp. x(0) = 1). We let L : {0, 1}∂G → {0, 1} denote the monotone Boolean function defined
as

L(x) := x(0) where x solves (1.9) with x = x on ∂G. (1.10)

Then L(x) = 0 (resp. = 1) if Alice (resp. Bob) has a winning strategy given x.
The game-graphs of the games that we are interested in have a special structure: the

players alternate turns and play a fixed number of turns. Game graphs with various numbers
of turns are consistent, in the sense that the game-graph of the game with n turns can be
obtained by truncating a certain infinite graph at height n. Moreover, these infinite graphs
have a sort of product structure, in the sense that they are the “product” of two directed
graphs associated with the individual players. To describe this, it will be useful to introduce
some more notation.

Let us define a decision graph to be a triple (D, F⃗, 0) such that

(i) (D, F⃗ ) is a directed graph,

(ii) 0 ∈ D satisfies 0⇝ w for all w ∈ D,

(iii) |w| = |v|+ 1 for all (v, w) ∈ F⃗ , with |w| := dist(0, w) (w ∈ D),

(iv) O(w) ̸= ∅ for all w ∈ D.
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Note that (iii) implies that (D, F⃗ ) is acyclic. For a decision graph D, we introduce the notation

∂nD :=
{
w ∈ D : |w| = n

}
,

⟨D⟩n :=
{
w ∈ D : |w| < n

}
, and [D]n :=

{
w ∈ D : |w| ≤ n

}
.

(1.11)

Given a decision graph D and integer n ≥ 1, we can define a game-graph

Gn(D) = (Gn, E⃗n, 0, τ) (1.12)

by setting
Gn := [D]n and E⃗n :=

{
(v, w) ∈ Gn ×Gn : (v, w) ∈ F⃗

}
, (1.13)

which has the effect that G̊n = ⟨D⟩n and ∂Gn = ∂nD, and then defining

τ(v) :=

{
1 if |v| is even,
2 if |v| is odd.

(v ∈ G̊n). (1.14)

This corresponds to a game where Alice and Bob take turns to play n moves together, and
Alice starts. For the games we are interested in, D has a product structure, in the sense that
elements ofD are of the form (a, b) where a and b record all that is relevant of Alice’s and Bob’s
moves up to this point in the game. To formalise this, given two decision graphs (Di, F⃗ i, 0i)
(i = 1, 2), we define a third decision graph D1 ⋉D2 := (D, F⃗, 0) by setting 0 := (01, 02),

∂2nD :=
{
(a, b) : a ∈ ∂nD

1, b ∈ ∂nD
2
}
,

∂2n+1D :=
{
(a, b) : a ∈ ∂n+1D

1, b ∈ ∂nD
2
}
,

}
(n ∈ N), (1.15)

and

F⃗ :=
∞⋃
n=0

{
(
(a, b), (a′, b)

)
: (a, b) ∈ ∂2nD, (a, a

′) ∈ F⃗ 1
}

∪
∞⋃
n=0

{
(
(a, b), (a, b′)

)
: (a, b) ∈ ∂2n+1D, (b, b

′) ∈ F⃗ 2
}
.

(1.16)

The game-graphs of the games ABn(p), Abn(p), aBn(p), and abn(p) from the previous sub-
section are of the special form G2n(D

1⋉D2) for a suitable choice of D1 and D2. In fact, only
two different choices for D1 and D2 occur, which we now describe.

Let T denote the space of all finite words i = i1 · · · il (l ≥ 0) made up from the alphabet
{1, 2}. We call |i| := l the length of i and we let ∅ denote the word of length l = 0. If
i = i1 · · · il and j = j1 · · · jm, then we let ij = i1 · · · ilj1 · · · jm denote the concatenation of i
and j. We view T as a decision graph (D, F⃗, 0) with vertex set D := T, edge set

F⃗ :=
{
(i, ij) : i ∈ T, j ∈ {1, 2}

}
, (1.17)

and root 0 := ∅. Note that |i| = dist(∅, i).
Let N2 denote the set of all pairs (i, j) of nonnegative integers. We view N2 as a decision

graph (D, F⃗, 0) with vertex set D := N2, edge set

F⃗ :=
{(

(i, j), (i+ 1, j)
)
,
(
(i, j), (i, j + 1)

)
: (i, j) ∈ N2

}
, (1.18)

and root 0 := (0, 0). Note that
∣∣(i, j)∣∣ := i+ j = dist

(
(0, 0), (i, j)

)
.

With this notation, the game-graphs of the games ABn(p), Abn(p), aBn(p), and abn(p)
are given by

G2n(T ⋉ T), G2n(T ⋉ N2), G2n(N2 ⋉ T), and G2n(N2 ⋉N2), (1.19)
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Figure 2: The game-graph G4(T ⋉ N2) of the game Ab2(p).

respectively. We let
LAB
2n , LAb

2n , LaB
2n , and Lab

2n (1.20)

denote the corresponding monotone Boolean functions, defined as in (1.10). Then

PAB
n (p) = P

[
LAB
2n (Xp) = 1

]
where

(
Xp(v)

)
v∈∂G2n

are i.i.d. with intensity p, (1.21)

and the same holds with AB replaced by Ab, aB, or ab. Here ∂G2n(T ⋉ T) = ∂2n(T ⋉ T) =
(∂nT)× (∂nT) and similarly in the other three cases.

We observe that T ⋉ T ∼= T, i.e., the decision graph T ⋉ T has the structure of a binary
tree. This means that in the game ABn(p), to each possible outcome leads a unique game
history. On the other hand, in the games Abn(p), aBn(p), and abn(p), different game histories
can lead to the same outcome. See Figures 2 and 3 for pictures of the game-graphs of the
games Ab2(p) and Ab3(p).

1.3 Cellular automata

In Subsection 1.1 we gave a somewhat informal description of the functions PAB
n , PAb

n , P aB
n ,

and P ab
n in terms of winning strategies. In formula (1.21) of Subsection 1.2 we gave an

alternative description of these functions in terms of Boolean functions with i.i.d. input. In
the present subsection we will give yet another representation of these functions in terms of
cellular automata.

Let {0, 1}N2
be the set of functions x : N2 → {0, 1}. Given a random variable X0 with

values in {0, 1}N2
, we will be interested in a stochastic process (Xt)t∈N that evolves in a

deterministic way. At even times t > 0, we define Xt in terms of Xt−1 according to one of the
following two rules

A. Xt(i, j) = Xt−1(2i, j) ∧Xt−1(2i+ 1, j),

a. Xt(i, j) = Xt−1(i, j) ∧Xt−1(i+ 1, j),

(
(i, j) ∈ N2

)
, (1.22)

and at odd times t > 0, we define Xt according to one of the rules

B. Xt(i, j) = Xt−1(i, 2j) ∨Xt−1(i, 2j + 1),

b. Xt(i, j) = Xt−1(i, j) ∨Xt−1(i, j + 1),

(
(i, j) ∈ N2

)
. (1.23)
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Figure 3: Three projections of the game-graph G6(T ⋉ N2) of the game Ab3(p). Seen from
one side (picture on the left), the graph looks like the binary tree of height three [T]3 (in red),
with vertical edges added (in blue). Seen from the other side (picture on the right), the graph
looks like the game-graph [N2]3 (in blue), with vertical edges added (in red). In Figures 6 and
7 below, we make use of such projections of G6(T ⋉ N2) and G4(N2 ⋉N2).

The four possible combinations yield four possible ways to define a dynamic, which we denote
by AB, Ab, aB, and ab. Let Xp

0 =
(
Xp

0 (i, j)
)
(i,j)∈N2 be i.i.d. {0, 1}-valued random variables

with P[Xp
0 (i, j) = 1] = p (i, j ∈ N), and let (XAB,p

t )t∈N be defined according to the rules A

and B with initial state XAB,p
0 := Xp

0 . We claim that

P xx
n (p) = P

[
Xxx,p

2n (0, 0) = 1
]

where xx = AB, Ab, aB, or ab. (1.24)

We only sketch the proof for the combination of rules Ab. The main idea is to look at the
“genealogy” of a space-time point (i, j, 2n). By rule A, we have

X2n(i, j) = X2n−1(2i, j) ∧X2n−1(2i+ 1, j), (1.25)

where by rule b,

X2n−1(2i, j)=X2n−2(2i, j) ∨X2n−2(2i, j + 1),

X2n−1(2i+ 1, j)=X2n−2(2i+ 1, j) ∨X2n−2(2i+ 1, j + 1).
(1.26)

Continuing in this way, one can work out how X2n(0, 0) is defined in terms of
(
X0(i, j)

)
(i,j)∈N2 .

A careful inspection of the rules (see Figure 4) shows that this leads precisely to the structure
of the game-graph G2n(T ⋉ N2), so that (1.24) follows from (1.21). The proofs for the other
combinations of rules are similar.

Because of the tree structure of the decision graph T ⋉ T, it is easy to see that for the
cellular automaton

(
XAB,p
t

)
t∈N, one has that(

XAB,p
t (i, j)

)
(i,j)∈N2 are i.i.d. for all t ∈ N. (1.27)
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i

t

Figure 4: Time dependencies for rules A and a. In the picture on the left, in line with rule A,
we have drawn arrows from each point (i, t) ∈ N×N to the points (2i, t−1) and (2i+1, t−1),
which has the result that the set of points that can be reached from (0, t) has the structure of
a binary tree of depth t. In the picture on the right, in line with rule a, we have drawn arrows
from each point (i, t) ∈ N × Z to the points (i, t − 1) and (i + 1, t − 1), which has the result
that the set of points that can be reached from (0, t) has the structure of the game-graph
Gt(N2). In a similar way, one can equip N2 × N with the structure of a directed graph that
corresponds to applying at even times one of the rules A or a in one spatial direction, and at
odd times one of the rules B or b in the other spatial direction. In this case, the “genealogy”
of a space-time point (0, 0, t) is described by one of the game-graphs Gt(T ⋉ T), Gt(T ⋉ N2),
Gt(N2 ⋉ T), or Gt(N2 ⋉N2).

Because of this, the analysis of the game ABn(p) is relatively simple. For the cellular automa-

ton
(
XAb,p
t

)
t∈N, we will prove in Lemma 16 below that it is still true that(

XAb,p
t (i, ·)

)
i∈N are i.i.d. for all t ∈ N

where XAb,p
t (i, ·) :=

(
XAb,p
t (i, j)

)
j∈N (i ∈ N),

(1.28)

but in the j-direction dependencies develop. Because of this, the analysis of the game Abn(p)
is more difficult and it seems unlikely that an explicit formula for the critial value pAb

c can
be found. The situation for the game aBn(p) is similar, while for the cellular automaton(
Xab,p
t

)
t∈N independence is lost in both directions.

There exists a nice way of coupling cellular automata with different initial intensities p.
Let

(
U0(i, j)

)
(i,j)∈N2 be i.i.d. uniformly distributed [0, 1]-valued random variables. Then we

can inductively define cellular automata with values in [0, 1]N
2
by applying at even times t > 0

one of the rules

A. Ut(i, j) = Ut−1(2i, j) ∨ Ut−1(2i+ 1, j),

a. Ut(i, j) = Ut−1(i, j) ∨ Ut−1(i+ 1, j),

(
(i, j) ∈ N2

)
, (1.29)

and at odd times t > 0 one of the rules

B. Ut(i, j) = Ut−1(i, 2j) ∧ Ut−1(i, 2j + 1),

b. Ut(i, j) = Ut−1(i, j) ∧ Ut−1(i, j + 1),

(
(i, j) ∈ N2

)
. (1.30)

Note that compared to (1.22) and (1.23), the minimum and maximum operations have been
interchanged. Defining (UAB

t )t∈N, (U
Ab
t )t∈N, and so on in this way, it is straightforward to

check that for each p ∈ [0, 1], setting

Xxx,p
t (i, j) :=

{
1 if Uxx

t (i, j) ≤ p,

0 if Uxx
t (i, j) > p,

where xx = AB, Ab, aB, or ab. (1.31)
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t = 0 t = 1 t = 2 t = 3

t = 4 t = 8 t = 12 t = 24

Figure 5: Snapshots of the cellular automaton (UAb
t )t∈N. Grayscales indicate a value between

zero (white) and one (black). Initially, all lattice points are independent and uniformly dis-
tributed. At odd times, the value of (i, j) is replaced by the maximum of the values at (i, j)
and (i, j + 1), and at even times, the value at (i, j) is replaced by the minimum of the values
at (2i, j) and (2i+1, j). Columns remain independent of each other but dependencies develop
in the vertical direction. Our results imply that as time tends to infinity, the value of each
lattice point tends to pAb

c in probability.

defines a cellular automaton with values in {0, 1}N2
of the type described earlier. It follows

therefore from (1.24) that

P xx
n (p) = P

[
Uxx
2n(0, 0) ≤ p

]
where xx = AB, Ab, aB, or ab. (1.32)

See Figure 5 for a numerical simulation of the cellular automaton (UAb
t )t∈N.

This coupling has a nice interpretation in terms of a game. Let (G, E⃗, 0, τ) be a game-graph
as defined in Subsection 1.2 and let

(
U(v)

)
v∈∂G be i.i.d. uniformly distributed [0, 1]-valued

random variables, that have the interpretation that if the outcome of the game is v, then
Alice receives the pay-out U(v) and Bob receives the pay-out 1 − U(v). If both players play
optimally, then the game will end in some a.s. unique outcome v ∈ ∂G, which is characterised
by the fact that

U(v) = sup
σ1∈S1

inf
σ2∈S2

U
(
o(σ1, σ2)

)
, (1.33)

where as in (1.7), o(σ1, σ2) denotes the outcome of the game if Alice plays strategy σ1 and
Bob plays strategy σ2. Specialising to the game-graphs from (1.19), we can in this way define
random games ABn, Abn, aBn, and abn where the pay-out of Alice and Bob for each outcome
is determined by i.i.d. uniformly distributed [0, 1]-valued random variables. Then the random
variable 1 − UAB

2n (0, 0) from (1.32) can be interpreted as Bob’s pay-out in the game ABn if
both players play optimally, and similarly for the games Abn, aBn, and abn.
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1.4 Discussion and open problems

The game-graph of Pearl’s [Pea80] original game ABn(p) is the deterministic tree G2n(T⋉T).
Several authors have studied variants of the game ABn(p) where this tree is replaced by a
random tree. Martin and Stasiński in [MS18] studied min-max games on a Galton-Watson
tree, truncated at some height 2n. Pemantle and Ward in [PW06] studied a model on a binary
tree where i.i.d. random variables attached to the nodes determine whether the minimum or
maximum function should be applied. We refer to Broutin and Mailler [BM18] for an overview
of the literature on this type of problems.

For games with a large number of moves, it may be computationally unfeasible to find a
winning strategy. This motivates the study of efficient algorithms that can play games near
optimally. Indeed, this was the main motivation for Pearl [Pea80] to study the game ABn(p).
There is an extensive literature on this topic. We cite [DG95] for a somewhat older overview
and [SN15, MS18] for more recent contributions.

When trying to play a game near optimally, a natural approach is to find all possible states
that can be reached after a fixed number N of moves, then attach a utility to each possible
state using some statistical procedure, and finally use minimaxing in the spirit of (1.9) to
compute utility values for all states that lie less than N moves in the future. Surprisingly,
it was discovered by Nau [Nau80] that when the game-graph is a tree, such algorithms can
sometimes behave pathologically, in the sense that increasing N leads to worse, rather than
better game playing. This sort of pathology has been the subject of much further research
[LBG12].

An early suggestion, that has not been pursued much, is that this sort of pathologies may
be resolved if different game histories can lead to the same outcome [Nau83]. When the game
no longer has the structure of a tree, however, independence is lost. For this reason, such
games are harder to analyse and much less is known. There seems to be a general agreement,
however, that introducing dependence may resolve game-playing pathology. For this reason,
it would seem interesting to study game-playing algorithms for the games Abn(p) and aBn(p)
introduced in the present paper.

Our own motivation for studying these games comes from a different direction, which is
related to the cellular automata from Subsection 1.3. Attractive spin systems have two special
invariant laws, called the lower and upper invariant laws, that are the long-time limit laws
starting from the all zero and all one initial states [Lig85, Thm III.2.3]. If the dynamics of
the spin system are invariant under automorphisms of the lattice (such as translations on Zd),
then it is natural to ask if all invariant laws that are moreover invariant under automorphisms
of the lattice are convex combinations of the lower and upper invariant laws. Frequently, one
finds that mean-field models have an additional “intermediate” invariant law that lies between
the lower and upper invariant laws, but very little is known about the existence of such
intermediate invariant laws in a truly spatial setting. A notable exception are stochastic Ising
models, where such intermediate invariant laws are known to exist if the lattice is a Cayley
tree [Geo11, Section 12.2] but not on Zd. (The latter follows from [Bod06] (in dimensions
d ≥ 3) and [Hig81] (in dimension d = 2) combined with [Lig85, Thm IV.5.12]; see also the
discussion on [FV18, page 166]).

The cellular automaton XAB from Subsection 1.3 is a mean-field model.3 It has an inter-
mediate invariant law, which is the product measure with intensity pAB

c . Our original plan
was to prove that the cellular automata XAb and XaB also have an intermediate invariant law,
but this is still unresolved. This is closely related to the question about the limit behaviour of
PAb
n (p) at p = pAb

c . We have shown that this quantity does not tend to zero. It seems there

3The cellular automaton XAB, started from an i.i.d. law, remains i.i.d. for all time. This is characteristic of
mean-field models (sometimes called “propagation of chaos”) and is closely related to the tree structure of the
“genealogy” of XAB. Compare the relation between recursive tree processes and mean-field limits in [MSS20].
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are two plausible scenarios: either this quantity tends to one and the cellular automaton XAb

has no intermediate invariant law, or it tends to a value strictly between zero and one and
such an intermediate invariant law exists.

Another open problem concerns the size of the “critical window” where the function PAb
n

changes from a value close to zero to a value close to one. In Theorem 14 below, we prove an
upper bound of order 1/n, but it is doubtful this is sharp, given that for the game ABn(p)
the size of the critical window decreases exponentially in n. For the mean-field game ABn(p),
a detailed analysis of the critical behaviour, which involves a nontrivial limit law, has been
carried out in [ADN05].

There are lots of open problems concerning the game abn(p). Below Proposition 1 we
already mentioned the conjecture that P abn (p) ≤ P aBn (p) and P abn (p) ≥ PAbn (p) for all p ∈ [0, 1]
and n ≥ 1. Another obvious conjecture is the existence of a critical value pabc such that

P ab
n (p) −→

n→∞

{
0 if p < pabc ,
1 if p > pabc .

(1.34)

Our proof of Theorem 2 uses the special structure of the game-graphs associated with the
games Abn(p) and aBn(p) in two places: namely, in the preparatory Lemmas 15 and 18 we
use that the game-graphs have a product structure with one component a binary tree. Based
on numerical simulations, we conjecture that a critical value pabc as in (1.34) exists and that
the cellular automaton Xab started in product law with this intensity converges as time tends
to infinity to a convex combination of the delta-measures on the all-zero and all-one states.
Based on this, we conjecture that the cellular automaton Xab has no intermediate invariant
law.

2 Proofs

2.1 An inequality for monotone Boolean functions

In this subsection we prepare for the proof of Proposition 1 by establishing a general compar-
ison result for monotone Boolean functions applied to i.i.d. input.

A Boolean variable is a variable that takes values in the set {0, 1}. A Boolean function is
any function that maps a set of the form {0, 1}S , where S is a finite set, into {0, 1}. A Boolean
function is monotone if x ≤ y (pointwise) implies L(x) ≤ L(y). Let L : {0, 1}S → {0, 1} be a
monotone Boolean function. By definition, a one-set of L is a set A ⊂ S such that L(1A) = 1,
where 1A denotes the indicator function of A, and a zero-set of L is a set Z ⊂ S such that
L(1−1Z) = 0. A one-set (respectively zero-set) is minimal if it does not contain other one-sets
(respectively zero-sets) as a proper subset. We let A↑(L) and Z↑(L) denote the set of one-sets
and zero-sets of L, respectively, and we denote the sets of minimal one-sets and zero-sets by
A(L) and Z(L), respectively.4 We will prove the following result.

Proposition 5 (An inequality) Let S and T be finite sets and let L : {0, 1}S → {0, 1} be a
monotone Boolean function. Let ψ : S → T be a function such that∣∣ψ(A)∣∣ = |A| ∀A ∈ A(L), (2.1)

and let X = (X(i))i∈S and Y = (Y (j))j∈T by i.i.d. collections of Boolean random variables
with intensity p ∈ [0, 1]. Then

P
[
L(Y ◦ ψ) = 1

]
≤ P

[
L(X) = 1

]
. (2.2)

Similarly, if (2.1) holds with minimal one-sets replaced by minimal zero-sets, then (2.2) holds
with the reversed inequality.

4This notation is motivated by the fact that A↑(L) = {A ⊂ S : ∃A′ ∈ A(L) s.t. A′ ⊂ A} by the monotonicity
of L and also by the desire to have a simple notation for A(L) which is needed more often than A↑(L).
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The proof of Proposition 5 needs some preparations. If i1, . . . , in are n distinct elements
of S and x ∈ {0, 1}S , then we let Lxi1,...,in : {0, 1}n → {0, 1} denote the function

Lxi1,...,in(z1, . . . , zn) := L(x′) with x′(i) :=

{
zk if i = ik, 1 ≤ k ≤ n,

x(i) if i ̸∈ {i1, . . . , in}.
(2.3)

We let f∨ and f∧ denote the functions from {0, 1}2 to {0, 1} defined as

f∨(z1, z2) := z1 ∨ z2 and f∧(z1, z2) := z1 ∧ z2 (z ∈ {0, 1}2). (2.4)

For each B ⊂ T , we let ψ−1(B) := {i ∈ S : ψ(i) ∈ B} denote the inverse image of B under ψ.

Lemma 6 (Contraction of two points) In addition to the assumptions of Proposition 5,
assume that there exist two elements i1, i2 ∈ S and an element j0 ∈ T such that ψ−1({j0}) =
{i1, i2} and

∣∣ψ−1({j})
∣∣ = 1 for all j ̸= j0. Then

P
[
L(X) = 1

]
− P

[
L(Y ◦ ψ) = 1

]
= p(1− p)

{
P
[
LXi1,i2 = f∨

]
− P

[
LXi1,i2 = f∧

]}
. (2.5)

Proof Let f−, f+, f1, and f2 denote the functions from {0, 1}2 to {0, 1} defined as

f−(z1, z2) := 0, f+(z1, z2) := 1, f1(z1, z2) := z1, and f2(z1, z2) := z2 (2.6)

(z ∈ {0, 1}2). Then it is easy to check that f−, f+, f1, f2, f∨, f∧ are all monotone Boolean
functions from {0, 1}2 → {0, 1}. Using the fact that the collection X is i.i.d. with intensity p,
we see that

P
[
L(X) = 1

]
=P

[
LXi1,i2 = f+

]
+pP

[
LXi1,i2 = f1

]
+ pP

[
LXi1,i2 = f2

]
+
(
1− (1− p)2

)
P
[
LXi1,i2 = f∨

]
+ p2P

[
LXi1,i2 = f∧

]
.

(2.7)

Similarly
P
[
L(Y ◦ ψ) = 1

]
=P

[
LXi1,i2 = f+

]
+pP

[
LXi1,i2 = f1

]
+ pP

[
LXi1,i2 = f2

]
+pP

[
LXi1,i2 = f∨

]
+ pP

[
LXi1,i2 = f∧

]
.

(2.8)

Subtracting yields (2.5).

Proof of Proposition 5 It suffices to prove the statement for minimal one-sets. The state-
ment for minimal zero-sets then follows by the symmetry between zeros and ones. Let us say
that ψ is a pair contraction if ψ is surjective and |T | = |S| − 1. We first prove the statement
under the additional assumption that ψ is a pair contraction.

If ψ is a pair contraction, then there exist two elements i1, i2 ∈ S and an element j0 ∈ T
such that ψ−1({j0}) = {i1, i2} and

∣∣ψ−1({j})
∣∣ = 1 for all j ̸= j0, so Lemma 6 is applicable and

(2.2) follows from (2.5) provided we show that Lxi1,i2 ̸= f∧ for all x ∈ {0, 1}S . Assume that

Lxi1,i2 = f∧ for some x ∈ {0, 1}S . Since Lxi1,i2 only depends on the values of x(i) for i ̸∈ {i1, i2},
we can without loss of generality assume that x(i1) = x(i2) = 1. Define x1, x2 ∈ {0, 1}S by

x1(i) :=

{
0 if i = i1,
x(i) otherwise,

and x2(i) :=

{
0 if i = i2,
x(i) otherwise.

(2.9)

Then Lxi1,i2 = f∧ implies that L(x) = 1 while L(x1) = L(x2) = 0. This is possible only if
{i1, i2} ⊂ A for some A ∈ A(L), which contradicts (2.1). This completes the proof in the
special case that ψ is a pair contraction.
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Before we prove the general statement, we make some elementary observations. If S, T
are finite sets and ψ : S → T is a function, then we can define Ψ : {0, 1}T → {0, 1}S by
Ψ(x) := x ◦ ψ. With this notation, (2.2) takes the form

P
[
L ◦Ψ(Y ) = 1

]
≤ P

[
L(X) = 1

]
. (2.10)

We claim that
∀A′ ∈ A(L ◦Ψ) ∃A ∈ A(L) s.t. A′ ⊂ ψ(A). (2.11)

Indeed, for each y ∈ {0, 1}T , one has

∃A′ ∈ A(L ◦Ψ) s.t. y(j) = 1 ∀j ∈ A′

⇔ L ◦Ψ(y) = 1 ⇔ L(y ◦ ψ) = 1

⇔ ∃A ∈ A(L) s.t. y
(
ψ(i)

)
= 1 ∀i ∈ A

⇔ ∃A ∈ A(L) s.t. y(j) = 1 ∀j ∈ ψ(A),

(2.12)

and the implication ⇒ here can only hold for all y ∈ {0, 1}T if (2.11) is satisfied.
We now prove that (2.1) implies (2.10). We can without loss of generality assume that

ψ is surjective. Then we can find an integer n ≥ 0, finite sets S0, . . . , Sn with S0 = S and
Sn = T , and pair contractions ϕk : Sk−1 → Sk (1 ≤ k ≤ n), such that ψ = ϕn ◦ · · ·ϕ1. For
each 0 ≤ k ≤ n, let Lk : {0, 1}Sk → {0, 1} and ψk : S → Sk be defined as

Lk := L ◦Ψk with ψk := ϕk ◦ · · · ◦ ϕ1 and Ψk(x) := x ◦ ψk
(
x ∈ {0, 1}Sk

)
, (2.13)

where ψ0 is the identity map. For each 0 ≤ k ≤ n, let Xk = (Xk(i))i∈Sk
be an i.i.d. collection

of Boolean random variables with intensity q. We will prove (2.10) by showing that

P
[
L ◦Ψ(Y ) = 1

]
= P

[
Ln(Xn) = 1

]
≤ · · · ≤ P

[
L0(X0) = 1

]
= P

[
L(X) = 1

]
. (2.14)

Since Lk = Lk−1 ◦ Φk (1 ≤ k ≤ n) with Φk(x) := x ◦ ϕk, it suffices to show that

P
[
Lk−1 ◦ Φk(Xk) = 1

]
≤ P

[
Lk−1(Xk−1) = 1

]
(1 ≤ k ≤ n). (2.15)

Since ϕk is a pair contraction, by what we have already proved, it suffices to show that∣∣ϕk(A′)
∣∣ = ∣∣A′∣∣ ∀A′ ∈ A(Lk−1). (2.16)

The assumption (2.1) implies that |ψn(A)| = |ψ(A)| = |A| = |ψ0(A)| and hence |ψ0(A)| =
· · · = |ψn(A)| for all A ∈ A(L). In view of (2.11), for each A′ ∈ A(Lk−1), there exists an
A ∈ A(L) such that A′ ⊂ ψk−1(A). The fact that |ϕk ◦ ψk−1(A)| = |ψk(A)| = |ψk−1(A)| now
implies (2.16) and the proof is complete.

2.2 Comparison with the game on a tree

In this subsection we prove Proposition 1. We will apply Proposition 5 to the monotone
Boolean function LAB

2n from (1.20). We start with some general observations.
Let (G, E⃗, 0, τ) be a game-graph and let L : ∂G → {0, 1} be the monotone Boolean map

defined in (1.10). Using notation from Subsection 1.2, let S1 and S2 denote the set of strategies
of Alice and Bob, respectively, and as in (1.7) let o(σ1, σ2) denote the outcome of the game if
Alice plays strategy σ1 and Bob plays strategy σ2. For each σ1 ∈ S1 and σ2 ∈ S2, we let

Z(σ1) :=
{
o(σ1, σ

′) : σ′ ∈ S2

}
and A(σ2) :=

{
o(σ′, σ2) : σ

′ ∈ S1

}
(2.17)

denote the sets of possible outcomes of the game if Alice plays the strategy σ1 or Bob plays
the strategy σ2, respectively. We make the following simple observation.
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Lemma 7 (Strategies and zero-sets) Let

Zstrat :=
{
Z(σ1) : σ1 ∈ S1

}
and Astrat :=

{
A(σ2) : σ2 ∈ S2

}
. (2.18)

Then
Z(L) ⊂ Zstrat ⊂ Z↑(L) and A(L) ⊂ Astrat ⊂ A↑(L). (2.19)

Proof By symmetry, it suffices to prove the statement for zero-sets. We claim that

Z↑(L) =
{
Z ⊂ ∂G : ∃Z ′ ∈ Zstrat s.t. Z

′ ⊂ Z
}
. (2.20)

Indeed, using the fact that L(x) = 0 if and only if Alice has a winning strategy given x, we
see that

Z ∈ Z↑(L) ⇔ L(x) = 0 with x(v) :=

{
0 if v ∈ Z
1 if v ̸∈ Z

⇔ Alice has a winning strategy given x ⇔ ∃σ1 ∈ S1 s.t. x(v) = 0 ∀v ∈ Z(σ1)
⇔ ∃Z ′ ∈ Zstrat s.t. x(v) = 0 ∀x ∈ Z ′ ⇔ ∃Z ′ ∈ Zstrat s.t. Z

′ ⊂ Z,

which proves (2.20). As an immediate consequence, we obtain

Z ∈ Zstrat ⇒ Z ′ := Z satisfies Z ′ ∈ Zstrat and Z
′ ⊂ Z ⇒ Z ∈ Z↑(L),

i.e., Zstrat ⊂ Z↑(L).
To prove that Z(L) ⊂ Zstrat, assume that Z ∈ Z(L). Then, since Z(L) ⊂ Z↑(L) (2.20)

implies that there exists a Z ′ ∈ Zstrat such that Z ′ ⊂ Z. Since Zstrat ⊂ Z↑(L) we have
Z ′ ∈ Z↑(L), so the minimality of Z implies Z ′ = Z, proving that Z ∈ Zstrat.

Lemma 8 (Projection property) Let (D, F⃗, 0) and (D′, F⃗ ′, 0′) be decision graphs and as-
sume that ℓ : D → D′ satisfies

ℓ(0) = 0′ and ℓ maps O(v) surjectively into O(ℓ(v)) for all v ∈ D. (2.21)

Let n ≥ 1 and let Ln and L′
n be the Boolean functions defined as in (1.10) in terms of the

game-graphs Gn(D) and Gn(D
′), respectively. Then for each n ≥ 1, ℓ maps ∂Gn(D) into

∂Gn(D
′), and

L′
n(x) = Ln(x ◦ ℓ)

(
x ∈ {0, 1}∂Gn(D′)

)
, (2.22)

where x ◦ ℓ ∈ {0, 1}∂Gn(D) is defined as x ◦ ℓ(v) := x
(
ℓ(v)

) (
v ∈ ∂Gn(D)

)
.

Proof It is easy to see that (2.21) implies that
∣∣ℓ(v)∣∣ = |v| (v ∈ D). As a result, ℓ maps

∂Gn(D) = ∂nD into ∂Gn(D
′) = ∂nD

′. We can inductively extend the function x : ∂nD
′ →

{0, 1} to a function x : [D′]n → {0, 1} such that for all v ∈ ⟨D′⟩n,

x(v) =


∧

w∈O(v)

x(w) if |v| is even,∨
w∈O(v)

x(w) if |v| is odd.
(2.23)

Then L′
n(x) = x(0′). Define y : [D]n → {0, 1} by y(v) := x

(
ℓ(v)

)
(v ∈ [D]n). Then as a result

of (2.21), we see that y satisfies the inductive relation

y(v) =


∧

w∈O(v)

y(w) if |v| is even,∨
w∈O(v)

y(w) if |v| is odd.
(2.24)
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Letting y denote the restriction of y to ∂nD, it follows that

Ln(x ◦ ℓ) = Ln(y) = y(0) = x
(
ℓ(0)

)
= x(0′) = L′

n(x). (2.25)

An example of a function satisfying (2.21) is the function ℓ : T → N2 defined as

ℓ(i) :=
( n∑
k=1

1{ik=1},
n∑
k=1

1{ik=2}

)
(i ∈ T). (2.26)

Further examples are the functions ℓ1 : T ⋉ T → N2 ⋉ T and ℓ2 : T ⋉ T → T ⋉ N2 defined as

ℓ1(i, j) :=
(
ℓ(i), j

)
and ℓ2(i, j) :=

(
i, ℓ(j)

) (
(i, j) ∈ T ⋉ T

)
, (2.27)

where ℓ is as in (2.26). Lemma 8 now tells us that

LaB
n (x)=LAB

n (x ◦ ℓ1)
(
x ∈ ∂Gn(N2 ⋉ T)

)
,

LAb
n (x)=LAB

n (x ◦ ℓ2)
(
x ∈ ∂Gn(T ⋉ N2)

)
.

(2.28)

We wish to apply Proposition 5 to L = LAB
2n and ψ = ℓ1 or = ℓ2. The following special

property of the game-graph Gn(T ⋉ T) will be crucial in our proof of Proposition 1.

Lemma 9 (The game-graph that is a tree) For the game-graph Gn(T ⋉ T), let σ1 ∈ S1

and σ2 ∈ S2 be strategies for Alice and Bob, respectively, and let Z(σ1) and A(σ2) be defined
as in (2.17). Then for each j ∈ ∂nT, there exists precisely one i ∈ ∂nT such that (i, j) ∈ Z(σ1).
Likewise, for each i ∈ ∂nT, there exists precisely one j ∈ ∂nT such that (i, j) ∈ A(σ2).

Proof To prove the first statement, let σ1 ∈ S1 be a strategy for Alice and let j ∈ ∂nT.
Because of the tree structure of T, given j, we know exactly which moves Bob must make in
each of his turns for the outcome of the game to be of the form (i, j) for some i ∈ ∂nT. Since
we also know Alice’s strategy, this means that we have all necessary information to determine
the outcome of the game. This shows that i is unique. On the other hand, it is easy to see
that there exists at least one strategy for Bob that leads to the outcome (i, j). This completes
the proof of the first statement. The second statement follows from the same argument.

Proof of Proposition 1 Let

X =
(
X(a, b)

)
a∈∂nT, b∈∂nT and Y =

(
Y (a, b)

)
a∈∂nT, b∈∂nN2 (2.29)

be i.i.d. collections of Boolean random variables with intensity p ∈ [0, 1]. We claim that

PAb
n (p) = P

[
LAb
2n (Y ) = 1

]
= P

[
LAB
2n (Y ◦ ℓ2) = 1

]
≤ P

[
LAB
2n (X) = 1

]
= PAB

n (p). (2.30)

Indeed, the first and final equalities follow from formula (1.21), the second equality follows
from formula (2.28), and the inequality will follow from Proposition 5 provided we show that∣∣ℓ2(A)∣∣ = |A| ∀A ∈ A(LAB

2n ). (2.31)

We claim that (2.31) follows from Lemmas 7 and 9. Indeed, Lemma 9 implies that each
A ∈ Astrat(L

AB
2n ) has the property that for each i ∈ ∂nT, there exists precisely one j ∈ ∂nT

such that (i, j) ∈ A, so by Lemma 7 the same is true for each A ∈ A(LAB
2n ) ⊂ Astrat(L

AB
2n ).

Since ℓ2 acts only on the second coordinate, this implies (2.31). This completes the proof that
PAb
n (p) ≤ PAB

n (p). The proof that P aB
n (p) ≥ PAB

n (p) follows from the same argument.
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2.3 Toom cycles

In Subsection 2.5, we will derive upper bounds on the probability that Alice has a winning
strategy in the games Abn(p) and abn(p), and on the probability that Bob has a winning
strategy in the games aBn(p) and abn(p), which then translate into some of the bounds in
Propositions 3 and 4. To have a unified set-up, it will be convenient to introduce games Ab′n(p)
and ab′n(p) that are identical to the games Abn(p) and abn(p) except that instead of Alice,
Bob starts. Then the probability that Bob has a winning strategy in the games aBn(p) and
abn(p) is equal to the probability that Alice has a winning strategy in the games Ab′n(1− p)
and ab′n(1− p), respectively. Therefore, it suffices to derive upper bounds on the probability
that Alice has a winning strategy in the games Abn(p), abn(p), Ab

′
n(p), and ab′n(p).

We will use a Peierls argument first invented by Toom [Too80] and further developed in
[SST22]. To prepare for this, in the present subsection, we formulate a theorem that says
that if Alice has a winning strategy in any of these games, then a certain structure must be
present in the game-graph that following [SST22] we will call a “Toom cycle”. We first need
to introduce notation for the game-graphs of the games Ab′n(p) and ab′n(p).

Given a decision graph D and integer n ≥ 1, we define a game-graph

G′
n(D) = (G′

n, E⃗
′
n, 0, τ

′) (2.32)

exactly as in (1.13), but with (1.14) replaced by

τ ′(v) :=

{
1 if |v| is odd,
2 if |v| is even.

(v ∈ G̊n). (2.33)

In (1.15) and (1.16), we defined a sort of “product” D1 ⋉D2 of two decision graphs D1 and
D2. Elements of D1 ⋉D2 are pairs (a, b) with a ∈ D1 and b ∈ D2. If (a, b) is at distance n
from the root, then to reach a new state at distance n + 1 from the root, we replace either
a or b by a new state a′ or b′ in D1 or D2 that lies one step further from the root. Here we
replace a in case n is even and b in case n is odd, as is natural for a game where Alice starts.
For games where Bob starts, very much in the same spirit, we can define a second “product”
D1 ⋊D2 which differs from D1 ⋉D2 only in the fact that we replace a in case n is odd and b
in case n is even. Formally, we set

D1 ⋊D2 :=
{
(a, b) : (b, a) ∈ D2 ⋉D1

}
, (2.34)

which is then equipped with the structure of a decision graph in the obvious way. We will be
interested in the game-graphs

Gn(T ⋉ N2), G′
n(T ⋊ N2), Gn(N2 ⋉N2), and G′

n(N2 ⋊N2). (2.35)

Note that in each case, the decision graph of Bob is N2. We do not insist that n is even, so
we also allow for games where the same player has both the first and the last move. We will
show that given a function that assigns winners to possible outcomes, if Alice has a winning
strategy, then a “Toom cycle” must be present in these game-graphs.

Fix n ≥ 1 and let (G, E⃗, 0, τ) be any of the game-graphs in (2.35). Elements of G are pairs
(a, b) with a an element of T or N2 and b an element of N2. Recall that if i = i1 · · · im ∈ T
and k ∈ {1, 2}, then ik ∈ T denotes the word obtained by appending the letter k to the word
i. To have a unified notation, it will be convenient to introduce for the decision-graph N2 the
notation

(i, j)k :=

{
(i+ 1, j) if k = 1,
(i, j + 1) if k = 2.

(2.36)
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Recall that G̊1 and G̊2 are the sets of internal states when it is Alice’s and Bob’s turn,
respectively. Using notation as in (2.36), we set for k ∈ {1, 2}

A⃗k :=
{(

(a, b), (ak, b)
)
: (a, b) ∈ G̊1

}
and B⃗k :=

{(
(a, b), (a, bk)

)
: (a, b) ∈ G̊2

}
(2.37)

and write A⃗ := A⃗1 ∪ A⃗2 and B⃗ := B⃗1 ∪ B⃗2 so that E⃗ = A⃗ ∪ B⃗. For any set of directed edges
F⃗ , we let

←
F :=

{
(w, v) : (v, w) ∈ F⃗

}
(2.38)

denote the set of directed edges obtained by reversing the direction of all edges in F⃗ . A
walk in G of length l is a finite word ψ = ψ0 · · ·ψl made from the alphabet G such that
(ψk−1, ψk) ∈ E⃗ ∪

←
E for each 0 < k ≤ l. We call the substring ψk−1ψk the k-th step of the walk

ψ and we say that the k-th step is:

straight-up (su) if (ψk−1, ψk) ∈
→
A, straight-down (sd) if (ψk−1, ψk) ∈

←
A,

left-up (lu) if (ψk−1, ψk) ∈
→
B2, left-down (ld) if (ψk−1, ψk) ∈

←
B1,

right-up (ru) if (ψk−1, ψk) ∈
→
B1, right-down (rd) if (ψk−1, ψk) ∈

←
B2.

This terminology is inspired by the right picture in Figure 6. Steps of the types su, ru, and
lu are called up and steps of the types sd, ld, and rd are called down. Steps of the types su
and sd are called straight, those of the types lu and ld left, and those of the types ru and
rd right. For any walk ψ, we set N(ψ) = N := {0, . . . , l} and we partition N into subsets
N↑, N◦, N↓, N∗ defined as

N↑ :=
{
k : 0 < k < l, (ψk−1, ψk) is up, (ψk, ψk+1) is up

}
∪ {0},

N◦ :=
{
k : 0 < k < l, (ψk−1, ψk) is down, (ψk, ψk+1) is up

}
,

N↓ :=
{
k : 0 < k < l, (ψk−1, ψk) is down, (ψk, ψk+1) is down

}
∪ {l},

N∗ :=
{
k : 0 < k < l, (ψk−1, ψk) is up, (ψk, ψk+1) is down

}
.

(2.39)

We next define Toom cycles. A Toom cycle in G is a walk in G of length l ≥ 2 that must
satisfy a number of requirements. First, we require that

ψ0 = ψl = 0, the first step is of type su or ru, and the last step is of type sd or rd. (2.40)

Next for 0 < k < l, depending on the type of the k-th step and on whether ψk ∈ G̊ or ∈ ∂G,
we will put constraints on the type of the k + 1-th step. More precisely, if ψk ∈ G̊, then only
the following combinations are allowed for the types of the k-th and the k + 1-th step:

su → ru, ru → su, lu → su,

sd → rd/ld, rd → sd, ld → lu.
(2.41)

If, on the other hand, ψk ∈ ∂G, then only the following combinations are allowed:

su → sd, ru → rd/ld, lu → rd/ld. (2.42)

See Figure 6 for an illustration. Note that these rules imply that N∗(ψ) = {k : ψk ∈ ∂G}. In
addition to the requirements above, a Toom cycle has to fulfill the following two additional,
final requirements:

(i) ψk ̸= ψm for all k,m ∈ N∗ with k ̸= m,

(ii) if ψk = ψm for some k ∈ Ns and m ∈ Nt with s, t ∈ {↑, ◦, ↓} and s ≤ t with respect to
the total order on {↑, ◦, ↓} defined by ↑< ◦ < ↓, then k ≤ m.
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Figure 6: A Toom cycle in the game-graph G6(T ⋉ N2). The pictures on the left and right
show two projections of the same Toom cycle (compare Figure 3). The picture above shows
the possible outcomes (a, b) of the game that the Toom cycle passes through. If Alice has a
winning strategy, then there must exist a Toom cycle for which all these points correspond to
a win for Alice.

Requirement (i) says that vertices in ∂G are visited only once. Applying (ii) twice we see
that if ψk = ψm for some k,m ∈ Ns with s ∈ {↑, ◦, ↓}, then k = m, so (ii) can roughly be
described by saying that internal vertices can be visited at most three times, and these visits
have to take place in the right order depending on whether the walk is going up, is in a local
minimum, or goes down.

Given a function x : ∂G → {0, 1} that assigns a winner to each possible outcome, we say
that a Toom cycle ψ = ψ0 · · ·ψl is present in (G, x) if

x(ψk) = 0 for all 0 ≤ k ≤ l such that ψk ∈ ∂G. (2.43)

We will prove the following theorem.

Theorem 10 (Toom cycles) Let G be any of the game-graphs in (2.35) and let x : ∂G →
{0, 1} be a function that assigns a winner to each possible outcome. If Alice has a winning
strategy given x, then a Toom cycle is present in (G, x).

One can check that in Theorem 10, the converse implication does not hold, i.e., the presence
of a Toom cycle does not imply that Alice has a winning strategy. A counterexample for
the game-graph G4(N2 ⋉ N2) is shown in Figure 7. Intriguingly, we have not been able to
construct a counterexample for the game-graphs Gn(T ⋉ N2) and G′

n(T ⋊ N2), leaving open
the possibility that the converse implication holds in these cases. Theorem 10 is very similar
to [SST22, Thm 9] and so is its proof (see in particular [SST22, Figure 4] for the idea of loop
erasion), but since our setting is different and we will need some special properties of Toom
cycles that are specific to our setting we will give an independent proof here. Strategies for
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Figure 7: A Toom cycle in the game-graph G4(N2 ⋉ N2). The presence of this Toom cycle
does not imply that Alice has a winning strategy. The pictures below show the zeros of the
function x from (1.9) at different levels of the graph, if at the top level all possible outcomes
that the Toom cycle passes through have the value zero.

Alice have an analogue for general monotone cellular automata. In this general context, they
correspond to the so-called “minimal explanations” of [SST22, Section 7.1], whose relation to
Toom cycles is discussed in more detail in that article. We prove Theorem 10 in Subsection 2.4
and then apply it in Subsection 2.5.

2.4 Presence of Toom cycles

In this subsection we prove Theorem 10. Let G be any of the game-graphs in (2.35) and let
L be defined as in (1.10), i.e., this is the Boolean function defined by the requirement that if
x : ∂G→ {0, 1} be a function that assigns a winner to each possible outcome, then L(x) = 0 if
and only if Alice has a winning strategy given x. Using notation introduced in Subsection 2.1,
let Z↑(L) denote the set of zero-sets of L and let Z(L) denote its set of minimal zero-sets.
Defining Zstrat as in (2.18), we recall from Lemma 7 that

Z(L) ⊂ Zstrat ⊂ Z↑(L). (2.44)

Remark One can check that both inclusions in (2.44) are strict. We say that a strategy σ1 for
Alice is minimal if the set Z(σ1) from (2.17) satisfies Z(σ1) ∈ Z(L). Note that regardless of
how one assigns winners to possible outcomes, it actually never makes sense for Alice to play
a strategy that is not minimal, since for each non-minimal strategy she has at her disposal
another strategy that is guaranteed to be at least as good in each situation. For the game-
graphs Gn(T ⋉ N2) and G′

n(T ⋊ N2), it seems that with some effort, it is possible to give a
precise description of all minimal strategies for Alice, but for the game-graphs Gn(N2 ⋉ N2)
and G′

n(N2 ⋊N2), classifying the minimal strategies seems a hard task.

Proof of Theorem 10 For each Toom cycle ψ = ψ0 · · ·ψl, we write

Zψ :=
{
ψk : 0 < k < l, ψk ∈ ∂G

}
, (2.45)

and we set
ZToom :=

{
Zψ : ψ is a Toom cycle

}
. (2.46)
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We will prove that
∀Z ∈ Zstrat ∃Z ′ ∈ ZToom s.t. Z ′ ⊂ Z, (2.47)

which clearly implies the statement of the theorem. The proof is by induction on n. For
concreteness, we write down the proof for the game-graphs Gn(T⋉N2) and Gn(N2⋉N2), and
at the end remark on how the proof has to be adapted for the other two game-graphs. To
have a unified notation, we write D ⋉ N2 where D = T or = N2. Let Zstrat(n) and ZToom(n)
denote the sets defined in (2.18) and (2.46) for a given value of n. It will be convenient to
also include the case n = 0. For this purpose, we use the convention that in this case there
is precise one Toom cycle, which is the walk of length l = 0 given by ψ = ψ0 = (0, 0), where
(0, 0) denotes the root of D ⋉ N2. Then Zstrat(0) and ZToom(0) both have a single element,
which is the singleton {(0, 0)}, and (2.47) holds for n = 0.

If n is even, Z ∈ Zstrat(n) is given, and Z ∋ (a, b) 7→ κ(a,b) ∈ {1, 2} is a function, then we

can define Z̃ ∈ Zstrat(n+ 1) by

Z̃ :=
{
(aκ(a,b), b) : (a, b) ∈ Z

}
, (2.48)

where aκ(a,b) is defined as in (2.36) if the decision graph of Alice is N2. Formula (2.48)
corresponds to Alice playing the strategy that defined Z up to the n-th turn of the game and
then playing the move κ(a,b) if at that moment the state of the game is (a, b). We see from this

that Z̃ ∈ Zstrat(n+1), and each element of Zstrat(n+1) is of this form for some Z ∈ Zstrat(n).
Similarly, if n is odd and Z ∈ Zstrat(n) is given, then we can define Z̃ ∈ Zstrat(n+ 1) by

Z̃ :=
{
(a, b1), (a, b2) : (a, b) ∈ Z

}
. (2.49)

Indeed, this corresponds to Alice playing the strategy that defined Z up to the n-th turn of
the game, while Bob has now one extra final move. We see from this that Z̃ ∈ Zstrat(n+ 1),
and each element of Zstrat(n + 1) is of this form for some Z ∈ Zstrat(n). In view of this, to
complete the induction step of the proof, it suffices to show that:

If for Z ∈ Zstrat(n) there exists a Z ′ ∈ ZToom(n) such that Z ′ ⊂ Z and Z̃ is defined
as in (2.48) or (2.49) depending on whether n is even or odd, then there exists a Z̃ ′ ∈
ZToom(n+ 1) such that Z̃ ′ ⊂ Z̃.

To prove this, let ψ = ψ0 · · ·ψl be a Toom cycle such that Z ′ = Zψ. If n is even, then we
modify ψ in such a way that for each k such that ψk ∈ ∂Gn(D⋉N2), in place of ψk = (a, b) we
insert the string (a, b)(aκ(a,b), b)(a, b). Note that this adds two steps to the Toom cycle, the
first of which is straight-up and the second straight-down. If n is odd, then we modify ψ in
such a way that for each k such that ψk ∈ ∂Gn(D ⋉N2), in place of ψk = (a, b) we insert the
string (a, b)(a, b1)(a, b)(a, b2)(a, b). Note that this adds four steps to the Toom cycle: right-up,
left-down, left-up, and right-down.

Let ψ̃ denote the modified walk. Then it is straightforward to check that Z̃ ′ := Zψ̃ ⊂ Z̃

and ψ̃ satisfies all requirements of a Toom cycle, except possibly for requirement (i), i.e., it
may now be the case that some potential outcomes of the game are visited more than once.
To remedy this, we apply the procedure of loop erasion which is also the main idea behind
the proof of [SST22, Thm 9]. If ψ̃k = ψ̃k′ ∈ ∂Gn+1 for some k < k′, then we remove the string
ψ̃k+1 · · · ψ̃k′ from ψ̃. One can check that this preserves all the requirements of a Toom cycle
that ψ̃ satisfies. Moreover, by applying this procedure till it is no longer possible to do so,
we can make sure that also requirement (i) becomes valid again. In this way, we find a new
modified Toom cycle ψ̃ such that Z̃ ′ := Zψ̃ ⊂ Z̃. Note, however, that because of the loop

erasion, even if we started with Z ′ = Z, it may happen that Z̃ ′ is a strict subset of Z̃.
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The proof for the game-graphs G′
n(T ⋊ N2) and G′

n(N2 ⋊ N2) is essentially the same. It
differs only in the sense that the roles of even and odd n are interchanged.

Remark For the game-graphs Gn(N2 ⋉ N2) and G′
n(N2 ⋊ N2), one can check that because

of the loop erasion, the construction in the proof of Theorem 10 can yield Toom cycles in
which a right-up step is followed by a right-down step, as explicitly allowed in (2.42). For the
game-graphs Gn(T ⋉ N2) and G′

n(T ⋊ N2), it seems that on the other hand such transitions
never arise from the construction in the proof of Theorem 10, so for these game-graphs it
should be possible to prove a stronger version of the theorem in which the Toom cycle satisfies
additional properties. Since we do not need this for our main results, we do not pursue this
further.

2.5 The Peierls argument

Recall the definition of the games Ab′n(p) and ab′n(p) at the beginning of Subsection 2.3. In
this subsection, we apply Theorem 10 to derive upper bounds on the probability that Alice has
a winning strategy in the games Abn(p), abn(p), Ab

′
n(p), and ab′n(p). We start by considering

game-graphs where Alice starts, since in this case the argument is slightly easier.

Lemma 11 (Toom cycles if Alice starts) If ψ is a Toom cycle in G = G2n(T ⋉ N2) or
G2n(N2 ⋉ N2), then there exists an integer m ≥ 1 such that the number of steps of each of
the types su, sd, lu, ld, ru, rd equals m, and the Toom cycle passes through precisely m + 1
different possible outcomes of the game.

Proof We see from (2.41) and (2.42) that after a step of a type in {su, ld, rd} there always
follows a step of a type in {ru, lu, sd} and vice versa. Therefore, since the first step of the
Toom cycle is straight-up and the last step is straight-down, the number of steps of the Toom
cycle is even and if we divide its steps in pairs of two consecutive steps, then the first step
of such a pair is always of a type in {su, ld, rd} and the second step of a type in {ru, lu, sd}.
It follows from the structure of G = G2n(T ⋉ N2) and G2n(N2 ⋉ N2) that a straight-up step
cannot end in ∂G2n, so by (2.41) only three types of pairs of two consecutive steps are possible:

su followed by ru, ld followed by lu, or rd followed by sd. (2.50)

By a slight abuse of notation, let us also write su to denote the number of straight-up steps
in the Toom cycle, and similarly for the other five types of steps. Then (2.50) implies that

su = ru, ld = lu, rd = sd. (2.51)

Since the distance from the root increases by one in each up move and decreases by one in
each down move, and the cycle ends where it began, the number of up moves must equal the
number of down moves, which gives

su + lu + ru = sd + ld + rd. (2.52)

Similarly, if f
(
a, (i, j)

)
:= i−j denotes the difference between number of 1 moves and 2 moves

played by Bob when the state of the game is (a, (i, j)), then the function f increases by one
in each right move, decreases by one in each left move, and stays the same in straight moves,
so we see that the number of right moves must equal the number of left moves, which gives

lu + ld = ru + rd. (2.53)

Combining (2.51), (2.52), and (2.53), we see that there exists an integer m ≥ 1 such that

su = sd = lu = ld = ru = rd =: m. (2.54)
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In view of (2.41), each change from the down direction to the up direction is associated with
a pair consisting of a left-down step followed by a left-up step, so the number of these changes
is precisely m. Since the first step is up and the last step is down, we change from the up
direction to the down direction once more than the other way around. Because of (2.41) and
(2.42), changes from the up direction to the down direction can only happen in states that
are a possible outcome of the game, and because of the crucial condition (i) in the definition
of a Toom cycle, the walk visits each possible outcome at most once. It follows that the Toom
cycle passes through precisely m+ 1 different possible outcomes of the game.

Proposition 12 (Peierls estimates if Alice starts) For each n ≥ 1, the probability that
Alice has a winning strategy in the games Abn(p) and abn(p) can be estimated from above by

1− PAb
n (p) ≤

∞∑
m=n

23m(1− p)m+1 and 1− P ab
n (p) ≤

∞∑
m=n

24m(1− p)m+1. (2.55)

In particular,

PAb
n (p) −→

n→∞
1 for all p >

7

8
and P ab

n (p) −→
n→∞

1 for all p >
15

16
. (2.56)

Proof Let G = G2n(T ⋉ N2) and let
(
X(a, b)

)
(a,b)∈∂G be i.i.d. Boolean random variables

with intensity p. By Theorem 10, the probability that Alice has a winning strategy in the
game Abn(p) can be estimated from above by the probability that a Toom cycle is present
in (G,X), which in turn can be estimated from above by the expected number of such Toom
cycles. By Lemma 11, the length of such a Toom cycle must be of the form 6m with m an
integer. We have m ≥ n since the cycle must make at least n straight-up steps before it can
start walking down. Since by Lemma 11, a Toom cycle of length 6m visits precisely m + 1
possible outcomes, the probability that a given Toom cycle of length 6m is present in (G,X)
is precisely (1− p)m+1. This gives the bound

1− PAb
n (p) ≤

∞∑
m=n

Mm(1− p)m+1, (2.57)

where Mm denotes the number of distinct Toom cycles of length 6m in G. We claim that

Mm ≤ 2m · 2m+1 · 2m−1. (2.58)

Here the first factor comes from the fact that for each straight-up step we have two choices
(corresponding to the two possible moves of Alice), the second factor comes from the fact
that each time we arrive in a possible outcome of the game, we have to choose whether the
next step is left-down or right-down, and the third factor comes from the fact that after each
straight-down step except the very last one, we have to choose whether the next step is left-
down or right-down. By (2.41) and (2.42) these are the only choices we need to make to
uniquely determine a Toom cycle.

The argument for the game abn(p) is precisely the same, except that now the decision graph
of Alice is no longer a tree which has the effect that also at the beginning of each straight-down
step we may have to choose between two possible ways of making a straight-down step (see
Figure 7).

For the game-graphs where Bob starts, the argument is only slightly more complicated.

Proposition 13 (Peierls estimates if Bob starts) For each n ≥ 1, the probability that
Alice has a winning strategy in the games Ab′n(p) and ab′n(p) can be estimated from above by

∞∑
m=n

24m(1− p)m+1 and

∞∑
m=n

26m(1− p)m+1. (2.59)
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As a result,

P aB
n (p) −→

n→∞
0 for all p <

1

16
and P ab

n (p) −→
n→∞

0 for all p <
1

64
. (2.60)

Proof The proof is very similar to the proof of Proposition 12, but we have to modify
Lemma 11. Toom cycles in the game-graphs G′

2n(T⋊N2) and G′
2n(N2 ⋊N2) can be obtained

from Toom cycles in the game-graphs G2n(T ⋉ N2) and G2n(N2 ⋉ N2) by removing the first
and last steps (which were straight-up and straight-down), and then inserting at each instance
where the Toom cycle changes from the up to the down direction one extra straight-up step
followed my a straight-down step. The argument then proceeds as before up to the point where
we count the number of modified Toom cycles for which the original (unmodified) Toom cycle
had length 6m. For the game-graph G′

2n(T⋊N2), we get a factor 2 for each straight-up step.
Due to the modification, the number of straight-up steps has decreased by one and increased
by m + 1, so we gain an extra factor 2m. For the game-graph G′

2n(N2 ⋊ N2), we also get a
factor 2 for each straight-down step, so we gain a factor 22m. This explains (2.59).

Formula (2.60) follows from (2.59) and the fact that the probability that Bob has a winning
strategy in the games aBn(p) and abn(p) is equal to the probability that Alice has a winning
strategy in the games Ab′n(1− p) and ab′n(1− p), respectively.

The bounds for P ab
n (p) from Propositions 12 and 13 immediately imply Proposition 4,

while the bounds for PAb
n (p) and P aB

n (p) will translate into the upper bound on pAb
c and lower

bound on paBc from Proposition 3, once sharpness of the transition is established.

2.6 Sharpness of the transition

Throughout this subsection, G2n denotes any of the game-graphs G2n(T⋉N2) and G2n(N2⋉T),
which are the game-graphs of the games Abn(p) and aBn(p), respectively, and L2n denotes
any of the Boolean functions LAb

2n and LaB
2n that tell us who has a winning strategy for each

given assignment x =
(
x(v)

)
v∈∂G2n

of winners to possible outcomes, with 0 and 1 indicating
a win for Alice and Bob, respectively.

For each p ∈ [0, 1], we let
(
Xp(v)

)
v∈∂G2n

be i.i.d. Boolean variables with intensity p and
for each v ∈ ∂G2n, we define

Xp
v,0(w) :=

{
0 if w = v,

Xp(w) otherwise,
and Xp

v,1(w) :=

{
1 if w = v,

Xp(w) otherwise,
(2.61)

(w ∈ ∂G2n). By definition, a possible outcome v ∈ ∂G2n is pivotal for L2n if L2n(X
p
v,0) ̸=

L2n(X
p
v,1), which by the monotonicity of L2n means that L2n(X

p
v,0) = 0 and L2n(X

p
v,1) = 1.

The influence of v is defined as

Ip2n(v) := P
[
v is pivotal for L2n

]
(v ∈ ∂G2n) (2.62)

and Russo’s formula (see, e.g., [GS14, Thm 3.2]) tells us that the probability Pn(p) :=
P[L2n(X

p) = 1] that Bob has a winning strategy is continuously differentiable with

∂
∂pPn(p) =

∑
v∈∂G2n

Ip2n(v). (2.63)

It is easy to see that each possible outcome has a positive influence, so Russo’s formula implies
that Pn is strictly increasing. Since moreover Pn(0) = 0 and Pn(1) = 1, we conclude that the
function Pn is invertible. We will prove the following result.

Theorem 14 (Sharpness of the transition) For each 0 < ε ≤ 1
2 , there exists a constant

C <∞ such that

P−1
n (1− ε)− P−1

n (ε) ≤ C

n
(n ≥ 1). (2.64)

24



We start with a preparatory lemma.

Lemma 15 (Lower bound on the total influence) There exists a constant c > 0 such
that for all p ∈ [0, 1], one has∑

v∈∂G2n

Ip2n(v) ≥ inf
J>0

[
2nJ ∨ cVar

(
L2n(X

p)
)
log(1/J)

]
. (2.65)

Proof Let us write

Ip2n :=
∑

v∈∂G2n

Ip2n(v) and Jp2n := max
v∈∂G2n

Ip2n(v). (2.66)

For the game-graph G2n = G2n(T⋉N2), the set of possible outcomes is ∂G2n = ∂nT× ∂nN2,
where ∂nT has 2n elements that play a completely symmetric role in G2n, so that the influence
Ip2n(a, b) of an element (a, b) ∈ ∂G2n depends on b but not a. Choosing b∗ ∈ ∂nN2 such that
Ip2n(a, b∗) = Jp2n for all a ∈ ∂nT gives the trivial bound

Ip2n ≥
∑
a∈∂nT

Ip2n(a, b∗) = 2nJp2n. (2.67)

For the game-graph G2n = G2n(N2 ⋉ T), we get the same bound by reversing the roles of a
and b. To complete the proof, we apply an inequality from the theory of noise sensitivity. By
[GS14, Thm 3.4], which is based on [BK+92], there exists a universal constant c > 0 such that

Ip2n ≥ cVar
(
L2n(X

p)
)
log(1/Jp2n). (2.68)

Combining these two estimates one arrives at (2.65).

Proof of Theorem 14 Since Pn : [0, 1] → [0, 1] is strictly increasing we have

Var
(
L2n(X

p)
)
= Pn(p)

(
1− Pn(p)

)
≥ ε(1− ε)

(
p ∈ [P−1

n (ε), P−1
n (1− ε)]

)
. (2.69)

Russo’s formula (2.63) and Lemma 15 now tell us that there exists a constant c > 0 such that

∂
∂pPn(p) ≥ inf

J>0

[
2nJ ∨ cε(1− ε) log(1/J)

] (
p ∈ [P−1

n (ε), P−1
n (1− ε)]

)
. (2.70)

Making c smaller if necessary, we can without loss of generality assume that

cε(1− ε) log 2 ≤ 1. (2.71)

To estimate the right-hand side of (2.70) from below, we set Jn := n2−n. Since the function
J 7→ 2nJ is increasing and J 7→ cε(1− ε) log(1/J) is decreasing, we have

2nJ ∨ cε(1− ε) log(1/J)

{
≥ 2nJn for J ≥ Jn,

≥ cε(1− ε) log(1/Jn) for J ≤ Jn.
(2.72)

We observe that by (2.71),

cε(1− ε) log(1/Jn) = cε(1− ε)(n log 2− log n) ≤ n = 2nJn. (2.73)

Choose 0 < c′ < cε(1− ε) log 2. Then (2.70), (2.72), and (2.71) combine to give

∂
∂pPn(p) ≥ cε(1− ε)(n log 2− log n) ≥ c′n

(
p ∈ [P−1

n (ε), P−1
n (1− ε)]

)
. (2.74)

Setting C := 1/c′, we obtain (2.64).
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2.7 The cellular automata

In this subsection we study the cellular automata (XAb,p
t )t≥0 and (XaB,p

t )t≥0 from Subsec-
tion 1.3. It will be convenient to change the notation a bit. Given a random variable X0 with
values in {0, 1}N2

, we can define a discrete-time process (Xt)t≥0 with values in {0, 1}N2
by

setting

Xt(i, j) :=

{
Xt−1(2i, j) ∧Xt−1(2i+ 1, j) if t is even,

Xt−1(i, j) ∨Xt−1(i, j + 1) if t is odd,

(
t > 0, (i, j) ∈ N2

)
. (2.75)

In particular, if
(
X0(i, j)

)
(i,j)∈N2 are i.i.d. with intensity p, then this is the cellular automaton

(XAb,p
t )t≥0 defined in Subsection 1.3. Similarly, given a random variable X̂0 with values in

{0, 1}N2
, we can define a discrete-time process (X̂t)t≥0 with values in {0, 1}N2

by setting

X̂t(i, j) :=

{
X̂t−1(2i, j) ∧ X̂t−1(2i+ 1, j) if t is odd,

X̂t−1(i, j) ∨ X̂t−1(i, j + 1) if t is even,

(
t > 0, (i, j) ∈ N2

)
, (2.76)

where compared to (2.75) all we have done is that we have interchanged the rules at even and
odd times. The cellular automaton (X̂t)t≥0 is similar to the cellular automaton (XaB,p

t )t≥0

from Subsection 1.3, but compared to the definitions there, the roles of i and j and the roles
of 0 and 1 are interchanged. More precisely, if

(
X̂0(i, j)

)
(i,j)∈N2 are i.i.d. with intensity 1− p,

then setting
XaB,p
t (i, j) := 1− X̂t(j, i)

(
t ≥ 0, (i, j) ∈ N2

)
(2.77)

yields a cellular automaton (XaB,p
t )t≥0 as defined in Subsection 1.3.

As observed in (1.28), the cellular automaton (XAb,p
t )t≥0 has the property that at each

time its columns are independent. This holds not only for product initial laws but more
generally if the initial state X0 has the property that its columns are independent, and the
same holds for (X̂t)t≥0. This motivates the following definitions.

We let S := {0, 1}N denote the space of all functions y : N → {0, 1}. We equip S with the
product topology and the associated Borel-σ-field and we set

M :=
{
µ : µ is a probability law on S

}
and S :=

{
µ ∈ M : µ is stationary

}
. (2.78)

We equip M with the topology of weak convergence of probability laws. Then S is a closed
subset of M. We define maps ΦA : S2 → S and Φb : S → S by

ΦA(y, z)(k) := y(k) ∧ z(k) and Φb(y)(k) := y(k) ∨ y(k + 1) (k ∈ N), (2.79)

we define maps FA and Fb from M to M by

FA(µ) := P
[
ΦA(Y, Z) ∈ ·

]
and Fb(µ) := P

[
Φb(Y ) ∈ ·

]
where Y and Z are independent with law µ ∈ M,

(2.80)

and we set
F := FA ◦ Fb and F̂ := Fb ◦ FA. (2.81)

The following lemma is a more precise formulation of the observation (1.28).

Lemma 16 (Law of the columns) Let (Xt)t≥0 be the cellular automaton defined in (2.75)
started in an initial law such that(

X0(i, · )
)
i∈N are i.i.d. with common law µ. (2.82)
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Then for each n ∈ N, (
X2n(i, · )

)
i∈N are i.i.d. with common law Fn(µ), (2.83)

where Fn denotes the n-th iterate of the map defined in (2.81). The same is true with (Xt)t≥0

replaced by (X̂t)t≥0 and F replaced by F̂ .

Proof The proof is by induction on n. Assuming that the statement holds for n− 1, we see
from (2.75) that

X2n−1(i, · ) = Φb

(
X2n−2(i, · )

)
(i ∈ N), (2.84)

which implies (compare Figure 4) that(
X2n−1(i, · )

)
i∈N are i.i.d. with common law Fb ◦ Fn−1(µ). (2.85)

Using again (2.75), we see that

X2n(i, · ) = ΦA

(
X2n−1(2i, · ), X2n−1(2i+ 1, · )

)
(i ∈ N), (2.86)

which implies (2.83). The proof for (X̂t)t≥0 is the same, but we apply ΦA and Φb in the
opposite order.

We let πp denote the product measure on S = {0, 1}N with intensity p and for any µ ∈ S,
we let ⟨µ⟩ :=

∫
µ(dy)y(i) which by stationarity does not depend on i ∈ N. Then our main

functions of interest can be expressed in terms of the “column maps” F and F̂ as

PAb
n (p) = ⟨Fn(πp)⟩ and P aB

n (p) = 1− ⟨F̂n(π1−p)⟩
(
p ∈ [0, 1], n ∈ N

)
, (2.87)

where the first equality follows from (1.24), Lemma 16, and the fact that (Xt)t≥0 started in

product measure with intensity p is the cellular automaton (XAb,p
t )t≥0 from Subsection 1.3,

and in the second equality we have used (2.77).
Recall that S = {0, 1}N is equipped with the product topology, M is equipped with the

topology of weak convergence, and S ⊂ M denotes the set of stationary measures.

Lemma 17 (Properties of the column maps) The maps FA, Fb, F , and F̂ are continuous
with respect to the topology on M and map S into itself.

Proof In view of (2.81) it suffices to prove the statement for FA and Fb. Preservation of
stationarity is obvious. To prove continuity, assume that µn ⇒ µ. By Skorohod’s representa-
tion theorem [Bil99, Thm 6.7], we can find random variables Yn, Y with laws µn, µ such that
Yn → Y a.s. with respect to the topology on S. Let (Y ′

n)n∈N be an independent copy of (Yn)n∈N
and let Y ′ be the a.s. limit of Y ′

n. Then ΦA(Yn, Y
′
n) → ΦA(Y, Y

′) a.s. and Φb(Yn) → Φb(Y ) a.s.
with respect to the topology on S, which implies that FA(µn) ⇒ FA(µ) and Fb(µn) ⇒ Fb(µ).

Lemma 18 (Upper bound on the density) One has

⟨FA(µ)⟩ = ⟨µ⟩2 and ⟨Fb(µ)⟩ ≤ 2⟨µ⟩ (µ ∈ S), (2.88)

and consequently,

⟨F(µ)⟩ ≤ 4⟨µ⟩2 and ⟨F̂(µ)⟩ ≤ 2⟨µ⟩2 (µ ∈ S). (2.89)
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Proof Let Y and Z be independent random variables with law µ ∈ S. Then

P
[
ΦA(Y,Z)(j) = 1

]
= P

[
Y (j) ∧ Z(j) = 1

]
= ⟨µ⟩2 (j ∈ N), (2.90)

and

P
[
Φb(Y )(j) = 1

]
= P

[
Y (j) ∨ Y (j + 1) = 1

]
≤ P

[
Y (j) = 1

]
+ P

[
Y (j + 1) = 1

]
= 2⟨µ⟩ (2.91)

(j ∈ N), proving (2.88). It follows that

⟨F(µ)⟩ = ⟨FA ◦ Fb(µ)⟩ = ⟨Fb(µ)⟩2 ≤
(
2⟨µ⟩

)2
,

⟨F̂(µ)⟩ = ⟨Fb ◦ FA(µ)⟩ ≤ 2⟨FA(µ)⟩ = 2⟨µ⟩2.
(2.92)

Let 0, 1 ∈ S denote the configurations that are constantly zero and one, respectively. Since
ΦA(0, 0) = 0 and Φb(0) = 0, the delta-measure δ0 on 0 is a fixed point of the maps FA and

Fb and hence also of F and F̂ . The same applies to the delta-measure δ1 on 1. We define the
domains of attraction of these fixed points as

D0 :=
{
µ ∈ S : Fn(µ) =⇒

n→∞
δ0
}
, D1 :=

{
µ ∈ S : Fn(µ) =⇒

n→∞
δ1
}
,

D̂0 :=
{
µ ∈ S : F̂n(µ) =⇒

n→∞
δ0
}
, D̂1 :=

{
µ ∈ S : F̂n(µ) =⇒

n→∞
δ1
}
,

(2.93)

where ⇒ denotes weak convergence of probability measures on S. The following proposition
is the main result of this subsection.

Proposition 19 (Domains of attraction) D0 and D̂0 are open, dense subsets of S.

Proof Let O := {µ ∈ S : ⟨µ⟩ < 1/4}. Since S ∋ x 7→ x(0) is a bounded continuous function,
the map S ∋ µ 7→ ⟨µ⟩ :=

∫
S x(0)µ(dx) is continuous with respect to weak convergence of

probability measures, and hence O, being the inverse image of [0, 1/4) under this map, is an
open subset of S. We claim that

D0 =
{
µ ∈ S : Fn(µ) ∈ O for some n ≥ 1

}
. (2.94)

Indeed, the inclusion ⊂ follows from the fact that O is an open set containing δ0 and the
inclusion ⊃ follows from the fact that O ⊂ D0 by Lemma 18. Since the map F is continuous
by Lemma 17, the inverse image F−n(O) of O under the map Fn is open for each n, and
hence

D0 =
⋃
n≥1

F−n(O), (2.95)

being a union of open sets, is open. The same argument shows that also D̂0 is an open subset
of S.

We observe that the map Fb is linear but FA is not. It is easy to check that for any µ ∈ S,
we have

FA

(
rµ+ (1− r)π0

)
= r2FA(µ) + (1− r2)π0. (2.96)

Using the linearity of Fb, we see that the same formula holds with FA replaced by F or F̂ . It
follows that

Fn
(
rµ+ (1− r)π0

)
= rn+1F̂(µ) + (1− rn+1)π0 =⇒

n→∞
π0 ∀r ∈ [0, 1), (2.97)

which shows that rµ + (1 − r)π0 ∈ D0 for all r ∈ [0, 1). Since rµ + (1 − r)π0 ⇒ µ as r → 1,
and µ ∈ S is arbitrary, we conclude that D0 is dense in M. The proof for D̂0 is the same.
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2.8 Proof of the main results

In this subsection we prove the results stated in Subsection 1.1 that have not been proved
yet. Proposition 1 has already been proved in Subsection 2.2 and Proposition 4 follows from
Propositions 12 and 13, so it remains to prove Theorem 2 and Proposition 3.

Proof of Theorem 2 and Proposition 3 We first prove the results for the game Abn(p).
Since the map LAb

2n from (1.20) is monotone with LAb
2n (0) = 0 and LAb

2n (1) = 1, formula (1.21)
tells us that the set

I :=
{
p ∈ [0, 1] : PAb

n (p) −→
n→∞

0
}

(2.98)

is an interval containing 0 but not 1. By formula (2.87),

I =
{
p ∈ [0, 1] : πp ∈ D0

}
, (2.99)

so Proposition 19 tells us that I is an open set. It follows that there exists a constant
0 < pAb

c ≤ 1 such that
PAb
n (p) −→

n→∞
0 if and only if p < pAb

c . (2.100)

We recall from the discussion above Theorem 14 that PAb
n is strictly increasing and so also

invertible. We observe that if PAb
n (p) = 1

4 , then by formula (2.87) and Lemma 18,

PAb
n+1(p) = ⟨Fn+1(πp)⟩ ≤ 4⟨Fn(πp)⟩2 = 1

4 (n ≥ 1), (2.101)

which proves that
(PAb

n )−1(14) ≤ (PAb
n+1)

−1(14) (n ≥ 1). (2.102)

It follows that the increasing limit

p′c := lim
n→∞

(PAb
n )−1(14) (2.103)

exists in [0, 1], and using Theorem 14 we see that

(PAb
n )−1(q) −→

n→∞
p′c ∀0 < q < 1, (2.104)

which implies that

PAb
n (p) −→

n→∞

{
0 if p < p′c,
1 if p > p′c.

(2.105)

Combining this with (2.100) we see that p′c = pAb
c . Proposition 12 implies that pAb

c ≤ 7/8,
while the bound 1/2 ≤ pAb

c follows from the simple argument given in the text below Propo-
sition 3. This completes the proofs for the game Abn(p).

For the game aBn(p), the arguments are similar. In this case, by formula (2.87),

I :=
{
p ∈ [0, 1] : P aB

n (p) −→
n→∞

1
}
=

{
p ∈ [0, 1] : π1−p ∈ D̂0

}
, (2.106)

is an open interval containing 1 but not 0. Combining this with Lemma 18 and Theorem 14,
the arguments above show that there exists a 0 ≤ paBc < 1 such that

P aB
n (p) −→

n→∞

{
0 if p < paBc ,
1 if and only if p > paBc .

(2.107)

Proposition 13 implies that 1/16 ≤ paBc and the bound paBc ≤ 1
2(3 −

√
5) follows from (1.1)

and Proposition 1.
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[LBG12] M. Luštrek, I. Bratko, and M. Gams. Independent-valued minimax: Pathological or
beneficial? Theor. Comput. Sci. 422 (2012), 59–77.

[Lig85] T.M. Liggett. Interacting Particle Systems. Springer-Verlag, New York, 1985.
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