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Abstract

The duality theory for monotone interacting particle systems was initiated by Gray (1986)
and further developed by Sturm and Swart (2018). It contains the better known additive
duality as a special case but differs in the sense that the dual process contains not only
single particles but also pairs, triples, and general n-tuples of particles, which correspond
to the fact that in the forward process sometimes several particles are needed to create one
particle at a later time. In earlier work, the dual process was constructed for finite initial
states only, but, assuming that the empty state is a trap for the forward process, we show
that the dual process can be started in infinite initial states and has an upper invariant
law. It can therefore be viewed as some sort of interacting particle system in its own right.
For the monotone dual of a cooperative contact process, we show that the upper invariant
law is the long-time limit started from any nontrivial homogeneous invariant law. We use
this to prove continuity of the survival probability of the forward process as a function of
its parameters.
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1 Introduction and main results

1.1 Monotone particle systems

Let S be a finite set, called the local state space and let Λ be a countable set, called the grid.1

Elements i ∈ Λ are called sites. Let SΛ denote the space of functions x : Λ → S, equipped with
the product topology. Elements of SΛ are called configurations. A local map is a continuous
function m : SΛ → SΛ for which the set

D(m) :=
{
i ∈ Λ : ∃x ∈ SΛ s.t. m(x)(i) ̸= x(i)

}
(1.1)

of sites whose state can be changed by m is finite. An interacting particle system is a Markov
process (Xt)t≥0 with state space SΛ and generator of the form

Gf(x) :=
∑
m∈G

rm
{
f
(
m(x)

)
− f

(
x
)}

(x ∈ SΛ), (1.2)

where G is a countable collection of local maps and (rm)m∈G are nonnegative rates. Under
suitable conditions on the rates (which will be discussed below), it can be shown that the
closure of G, which is a priori defined for functions depending on finitely many coordinates,
is the generator of a Feller process (Xt)t≥0 on SΛ.

To have a concrete example in mind, assume that S = {0, 1}. For each i, i′, j ∈ Λ, we
define local maps by:

(death) dthj(x)(k) :=

{
0 if k = j,
x(k) otherwise,

(branching) braij(x)(k) :=

{
x(i) ∨ x(j) if k = j,
x(k) otherwise,

(cooperative branching) coopii′j(x)(k) :=

{ (
x(i) ∧ x(i′)

)
∨ x(j) if k = j,

x(k) otherwise.

(1.3)

Assume that (Λ, E) is a locally finite graph in which each vertex has degree at least two. For
each j ∈ Λ, we set

Nj :=
{
i ∈ Λ : {i, j} ∈ E

}
and N (2)

j :=
{
(i, i′) ∈ Λ2 : i, i′ ∈ Nj , i ̸= i′

}
. (1.4)

We will be interested in the interacting particle system with generator

Gf(x) := (1− α)
∑
j∈Λ

1

|Nj |
∑
i∈Nj

{
f
(
braij(x)

)
− f

(
x
)}

+α
∑
j∈Λ

1

|N (2)
j |

∑
(i,i′)∈N (2)

j

{
f
(
coopii′j(x)

)
− f

(
x
)}

+ δ
∑
j∈Λ

{
f
(
dthj(x)

)
− f

(
x
)}
,

(1.5)
where α ∈ [0, 1] and δ ≥ 0 are model parameters. We call this process the cooperative contact
process with cooperation parameter α and death rate δ. For α = 0, this is a classical contact
process while for α = 1 is is purely cooperative.

If the local state space S is equipped with a partial order, then we equip SΛ with the
product order and say that a local map m : SΛ → SΛ is monotone if x ≤ y implies m(x) ≤
m(y). If S is a lattice (i.e., each pair of elements x, y ∈ S has a least upper bound x ∨ y and
greatest lower bound x∧ y), then we denote its least element by 0 and greatest element by ⊤.

1This is often called the lattice but we reserve the latter term for its order-theoretic meaning.
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We say that a local map m : SΛ → SΛ is additive if m(0) = 0 and m(x ∨ y) = m(x) ∨m(y)
(x, y ∈ SΛ). It is easy to see that additive maps are monotone. In our example, the death
and branching maps are additive, while the cooperative branching maps are monotone but not
additive. We say that an interacting particle system is monotone2 or additive if its generator
can be written in the form (1.2) with each m ∈ G monotone, or additive, respectively. A spin
system is an interacting particle system with generator of the form (1.2) such that S = {0, 1}
and |D(m)| = 1 for all m ∈ G.

Duality theory for monotone Markov processes with a totally ordered state space has a long
history, see Siegmund [Sie76] and references therein. Interacting particle systems have a state
space that is only partially ordered, which necessitates the distinction between additive duality,
which is most similar to Siegmund’s duality but needs stronger assumptions than monotonicity
only, and the more general monotone duality. The duality theory for additive interacting
particle systems with local state space S = {0, 1} was developed by Harris [Har76, Har78] and
Griffeath [Gri79]. Later, Gray [Gra86] developed a duality theory for monotone spin systems.
Foxall [Fox16] studied additive duality for more general local state spaces while Sturm and
Swart [SS18] studied both additive and monotone duality in this more general setting. In the
present paper, we further develop the general duality theory for interacting particle systems
satisfying the following assumptions:

(i) S is a partially ordered set containing a least element 0.
(ii) Each m ∈ G is monotone with m(0) = 0.

(1.6)

The main novelty of our work is that we allow the dual system to be started in infinite initial
states, which allows us to discuss its upper invariant law. To demonstrate the abstract theory,
we apply it to the cooperative contact process with generator as in (1.5). In the remainder
of Section 1 we state our results and discuss them. Our main results are Theorems 7, 10, 12,
and 13. Proofs will be postponed till Section 2.

1.2 Graphical representations

Under suitable conditions on the rates, interacting particle systems with a generator of the
form (1.2) can be constructed from a Poisson point process, that in this context is called a
graphical representation. We recall this construction here. For each local map m : SΛ → SΛ,
we set

R(m) :=
{
(i, j) ∈ Λ2 : ∃x, y ∈ SΛ s.t. x(k) = y(k) ∀k ̸= i and m(x)(j) ̸= m(y)(j)

}
, (1.7)

and for i, j ∈ Λ we define

R↑
i (m) :=

{
j ∈ Λ : (i, j) ∈ R(m)

}
and R↓

j (m) :=
{
i ∈ Λ : (i, j) ∈ R(m)

}
. (1.8)

Each set R↑
i (m) is finite since it is contained in D(m)∪ {i}; moreover each R↓

j (m) is finite by
[Swa22, Lemma 4.13] and the continuity of m. Let ω be a Poisson point set on G × R with
intensity measure µ defined as

µ
(
{m} × [s, t]

)
:= rm(t− s) (m ∈ G, s ≤ t). (1.9)

We call ω a graphical representation. Recall that a function [0,∞) ∋ t 7→ ft is called cadlag if it
is right continuous with left limits ft− := lims↑t fs for all t > 0. As detailed in Appendix A.2,
the following theorem follows from results in [Swa22]. In (1.10) below we write 1A for the
indicator of a set A. In (1.12) 1 denotes the identity map. Then (1.12) says that the collection
of random maps (Xs,t)s≤t form a stochastic flow.

2More precisely, this should be called representably monotone, but we ignore this subtlety.
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Theorem 1 (Poisson construction of particle systems) Assume that the rates (rm)m∈G
satisfy

(i) sup
i∈Λ

∑
m∈G

rm1D(m)(i) <∞, (ii) sup
j∈Λ

∑
m∈G

rm
∣∣R↓

j (m)\{j}
∣∣ <∞. (1.10)

Then almost surely, for each s ∈ R and x ∈ SΛ, there exists a unique cadlag function Xs,x :
[s,∞) → SΛ such that Xs,x

s = x and

Xs,x
t =

{
m(Xs,x

t− ) if (m, t) ∈ ω,

Xs,x
t− otherwise

(t > s). (1.11)

Setting Xs,t(x) := Xs,x
t (s ≤ t, x ∈ SΛ) defines a collection of random continuous maps

(Xs,t)s≤t from SΛ into itself such that almost surely

Xs,s = 1 and Xt,u ◦Xs,t = Xs,u (s ≤ t ≤ u). (1.12)

If s ∈ R and X0 is an SΛ-valued random variable, independent of ω, then the process (Xt)t≥0

defined as
Xt := Xs,s+t(X0) (t ≥ 0) (1.13)

is a Feller process whose generator is the closure of the operator G defined in (1.2).

We note that the stochastic flow (Xs,t)s≤t from (1.12) is stationary in the sense that
(Xs+r,t+r)s≤t is equally distributed with (Xs,t)s≤t, for each r ∈ R. Using the fact that the
restrictions of a Poisson point process to disjoint sets are independent, it is moreover easy to
see that (Xs,t)s≤t has independent increments in the sense that

Xt0,t1 , . . . ,Xtn−1,tn are independent for all t0 < · · · < tn. (1.14)

We will need the following result, that will be proved in Appendix A.2.

Proposition 2 (Finite perturbations) Assume that in addition to (1.10),

sup
i∈Λ

∑
m∈G

rm
∣∣R↑

i (m)\{i}
∣∣ <∞. (1.15)

Then almost surely, for each s ≤ t and x, y ∈ SΛ such that {i ∈ Λ : x(i) ̸= y(j)} is finite, the
set {

i ∈ Λ : Xs,t(x) ̸= Xs,t(y)
}

(1.16)

is finite.

1.3 Duality

Let T be a finite set and let C(SΛ, T ) denote the set of continuous functions ϕ : SΛ → T . It
turns out that such functions depend on finitely many coordinates [Swa22, Lemma 4.13] and
as a result C(SΛ, T ) is countable. Under the assumptions of Theorem 1, setting

Ft,s(ϕ) := ϕ ◦Xs,t

(
t ≥ s, ϕ ∈ C(SΛ, T )

)
(1.17)

defines a collection of random maps (Ft,s)t≥s on C(SΛ, T ) such that

Fs,s = 1 and Ft,s ◦ Fu,t = Fu,s (u ≥ t ≥ s), (1.18)

i.e., (Ft,s)t≥s is a backward stochastic flow. It is easy to see that (Ft,s)t≥s is stationary with
independent increments (defined analogously to (1.14)). If u ∈ R and Φ0 is a random variable
with values in C(SΛ, T ), independent of the graphical representation ω, then setting

Φt := Fu,u−t(Φ0) (t ≥ 0) (1.19)
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defines a continuous-time Markov chain (Φt)t≥0 with countable state space C(SΛ, T ). This
continuous-time Markov chain jumps from ϕ to ϕ ◦ m with rate rm, for each m ∈ G. As
a consequence of time-reversal one can check that, somewhat unusually, (Φt)t≥0 has left-
continuous sample paths.

From now on, we assume that our interacting particle system satisfies (1.6). We set

SΛ
fin :=

{
x ∈ SΛ : |x| <∞

}
with |x| :=

∣∣{i ∈ Λ : x(i) ̸= 0}
∣∣ (x ∈ SΛ), (1.20)

and we equip SΛ
fin, which is countable, with the discrete topology. We make the following

observation.

Lemma 3 (Finite systems) Assume (1.6), and assume that the rates (rm)m∈G satisfy (1.10)
and (1.15). Then, almost surely

Xs,t(x) ∈ SΛ
fin ∀s ≤ t, x ∈ SΛ

fin. (1.21)

Proof This follows from Proposition 2 and the fact that Xs,t(0) = 0 (s ≤ t), which is a
consequence of (1.6) (ii).

We let L(SΛ, {0, 1}) denote the space of lower semi-continuous functions ϕ : SΛ → {0, 1}.
We say that ϕ : SΛ → {0, 1} is monotone if x ≤ y implies ϕ(x) ≤ ϕ(y) and write

L+(S
Λ, {0, 1}) :=

{
ϕ ∈ L(SΛ, {0, 1}) : ϕ is monotone with ϕ(0) = 0

}
,

C+(SΛ, {0, 1}) :=
{
ϕ ∈ C(SΛ, {0, 1}) : ϕ is monotone with ϕ(0) = 0

}
.

(1.22)

Combining (1.6) (ii) and Theorem 1, it is easy to prove that the backward stochastic flow
(Ft,s)t≥s defined in (1.17) maps C+(SΛ, {0, 1}) into itself. Moreover, (Ft,s)t≥s can be extended
to L+(S

Λ, {0, 1}) and maps this space into itself too:

Lemma 4 (Preserved subspaces) Assume (1.6) and (1.10) and for s ≤ t and ϕ ∈
L+(S

Λ, {0, 1}) define Ft,s(ϕ) as in (1.17). Then, almost surely, for each s ≤ t the map
Fs,t maps the spaces L+(S

Λ, {0, 1}) and C+(SΛ, {0, 1}) into themselves. Moreover, the maps
(Ft,s)t≥s on L+(S

Λ, {0, 1}) form a backward stochastic flow in the sense of (1.18).

As in (1.19) we can use the backward stochastic flow (Ft,s)t≥s from Lemma 4 to define
a Markov process (Φt)t≥0 with state space L+(S

Λ, {0, 1}). This Markov process is the main
subject of our paper. We start by giving a more concrete description of this process. For any
function ϕ : SΛ → {0, 1}, we write

Oϕ :=
{
x ∈ SΛ : ϕ(x) = 1

}
. (1.23)

We note that ϕ ∈ L+(S
Λ, {0, 1}) if and only if Oϕ is open, increasing, and not equal to SΛ. It

will be convenient to characterise ϕ by the minimal elements of Oϕ. For x, y ∈ SΛ we write
x < y if x ≤ y and x ̸= y. We recall that a minimal element of a set A ⊂ SΛ is a configuration
y ∈ A such that x ̸∈ A for all x < y. For A ⊂ SΛ, we write

A◦ :=
{
y ∈ A : y is a minimal element of A

}
,

A↑ :=
{
x ∈ SΛ : ∃y ∈ A s.t. y ≤ x

}
.

(1.24)

Then a set A is increasing precisely if A↑ = A. We introduce the spaces

H(Λ) :=
{
Y ⊂ SΛ

fin : Y ◦ = Y, Y ̸= {0}
}
,

Hfin(Λ) :=
{
Y ∈ H(Λ) : |Y | <∞

}
,

(1.25)

where |Y | denotes the cardinality of Y . We will prove the following fact. Below 1Y ↑ is the
indicator function of Y ↑.
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Proposition 5 (Encoding monotone lower semi-continuous functions) The map Y 7→
1Y ↑ is a bijection from H(Λ) to L+(S

Λ, {0, 1}) and the map ϕ 7→ O◦
ϕ is its inverse. Moreover

Y 7→ 1Y ↑ is a bijection from Hfin(Λ) to C+(SΛ, {0, 1}).

Combining Lemma 4 and Proposition 5, we can define a backward stochastic flow (Yt,s)t≥s

on H(Λ) by
1Yt,s(Y )↑ := Ft,s(1Y ↑)

(
t ≥ s, Y ∈ H(Λ)

)
. (1.26)

Note that Lemma 4 and Proposition 5 tell us that this backward stochastic flow maps the
space Hfin(Λ) into itself. Let ψmon : SΛ ×H(Λ) → {0, 1} be defined as

ψmon(x, Y ) := 1Y ↑(x)
(
x ∈ SΛ, Y ∈ H(Λ)

)
, (1.27)

i.e., ψmon(x, Y ) := 1 if there exists a y ∈ Y such that y ≤ x, and ψmon(x, Y ) := 0 otherwise.
We claim that the backward stochastic flow (Yt,s)t≥s defined in (1.26) is dual to the stochastic
flow (Xs,t)s≤t of our interacting particle system with respect to the duality function ψmon in
the sense that

ψmon

(
Xs,t(x), Y

)
= ψmon

(
x,Yt,s(Y )

) (
s ≤ t, x ∈ SΛ, Y ∈ H(Λ)

)
. (1.28)

Indeed, this follows from the definitions (1.26) and (1.27) by writing

ψmon

(
Xs,t(x), Y

)
= 1Y ↑ ◦Xs,t(x) = Ft,s(1Y ↑)(x) = 1Yt,s(Y )↑(x) = ψmon

(
x,Yt,s(Y )

)
. (1.29)

1.4 The dual process

Let (Yt,s)t≥s be the backward stochastic flow defined in (1.26). It is not hard to see that
similar to (1.19), (Yt,s)t≥s can be used to define a Markov process (Yt)t≥0 that we can think
of a “running backwards in time” compared to the forward process (Xt)t≥0. In this subsection,
we study this Markov process. We start by studying its state space H(Λ).

Proposition 6 (Dual topology) There exists a unique metrisable topology on H(Λ) such
that a sequence Yn ∈ H(Λ) converges to a limit Y ∈ H(Λ) if and only if

1
Y ↑
n
(x) −→

n→∞
1Y ↑(x) ∀x ∈ SΛ

fin. (1.30)

The space H(Λ), equipped with this topology, is compact.

Our next result says that the Markov process (Yt)t≥0 defined by the backward stochas-
tic flow is in fact a Feller process with compact metrisable state space. We call (Yt)t≥0 the
monotone dual of (Xt)t≥0. Abstract theory tells us that each Feller process is uniquely char-
acterised by its generator. We leave the explicit analytic identification of the generator of
(Yt)t≥0 for future investigations. In Proposition 24 below we will show, however, that (Yt)t≥0

can be obtained as the unique solution of an evolution equation similar to (1.11). We say that
a function is caglad if it is left continuous with right limits. The fact that the dual process
has left-continuous sample paths is a consequence of time reversal.

Theorem 7 (Dual process) Assume (1.6), and assume that the rates (rm)m∈G satisfy (1.10)
and (1.15). Let u ∈ R and let Y0 be a random variable with values in H(Λ), independent of
the graphical representation ω. Then the process (Yt)t≥0 defined as

Yt := Yu,u−t(Y0) (t ≥ 0) (1.31)

is a Feller process with caglad sample paths, state space H(Λ), and Feller semigroup (Qt)t≥0

defined as
Qt(Y, · ) := P

[
Y0,−t(Y ) ∈ ·

] (
t ≥ 0, Y ∈ H(Λ)

)
. (1.32)
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It follows from the remark below (1.26) that if the dual process (Yt)t≥0 is started in an
initial state Y0 ∈ Hfin(Λ), then Yt ∈ Hfin(Λ) for all t ≥ 0. In earlier work [Gra86, SS18], the
dual process was only constructed as a continuous-time Markov chain with countable state
space Hfin(Λ). The fact that we allow infinite initial states allows us to define the upper
invariant law of (Yt)t≥0, which we discuss next.

We equip H(Λ) with a partial order such that

Y ≤ Z ⇔ Y ↑ ⊂ Z↑ (Y, Z ∈ H(SΛ)). (1.33)

The next lemma says that the dual process (Yt)t≥0 is monotone with respect to this partial
order.

Lemma 8 (Monotonicity of the dual process) Almost surely, one has Yt,s(Y ) ≤ Yt,s(Z)
for all t ≥ s and Y, Z ∈ H(Λ) such that Y ≤ Z.

For a ∈ S and i ∈ Λ, we define eai ∈ SΛ by

eai (j) :=

{
a if j = i,

0 else,
(j ∈ Λ). (1.34)

In particular, if S = {0, . . . , n}, then we write ei := e1i . We define Ytop ∈ H(Λ) by

Ytop :=
{
eai : i ∈ Λ, a ∈ Ssec

}
with Ssec := (S\{0})◦. (1.35)

In particular, if S = {0, . . . , n}, then Ssec = {1} and Ytop = {ei : i ∈ Λ}. Elements of Ssec are
“second from below” in the order on S, which explains the notation. The next proposition
says that Ytop is the “top” element of H(Λ).

Proposition 9 (Order on the dual state space) The partial order defined in (1.33) is
compatible with the topology on H(Λ) in the sense that the set{

(Y,Z) ∈ H(Λ)2 : Y ≤ Z
}

(1.36)

is closed with respect to the product topology on H(Λ)2. The partially ordered set H(Λ) has a
least element, which is ∅, and a greatest element, which is Ytop.

As a result of the compatibility condition (1.36), one can define a stochastic order for
probability measures on H(Λ) in the usual way, see Appendix A.1. Together with Lemma 8
this allows us to apply an abstract result (Proposition 38 in the appendix) to draw the following
conclusions.

Theorem 10 (Upper invariant law) Assume (1.6), and assume that the rates (rm)m∈G
satisfy (1.10) and (1.15). Then the Feller process (Yt)t≥0 with semigroup (Qt)t≥0 defined in
(1.32) has an invariant law νY with the property that if ν is another invariant law, then ν ≤ νY
in the stochastic order. Moreover, the process started in Ytop satisfies

PYtop
[
Yt ∈ ·

]
=⇒
t→∞

νY, (1.37)

where ⇒ denotes weak convergence of probability measures on H(Λ).

More trivially, the process (Yt)t≥0 also has a lower invariant law, but since this is simply
the delta measure concentrated on the least element of H(Λ), which is ∅, this lower invariant
law is less interesting. It is easy to see that the partial order and the topology on SΛ satisfy a
condition similar to (1.36) and hence are also “compatible”. As a result, if the local state space
S has a greatest element ⊤, then we can apply Proposition 38 in the appendix to conclude
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that under the assumptions of Theorem 10, the interacting particle system (Xt)t≥0 also has
an upper invariant law νX, which is given by

P⊤[Xt ∈ ·
]
=⇒
t→∞

νX, (1.38)

where ⊤ denotes the configuration that is identically equal to ⊤ and ⇒ denotes weak conver-
gence of probability measures on SΛ. This upper invariant law dominates all other invariant
laws of (Xt)t≥0 in the stochastic order.

1.5 Survival and stability

Throughout this subsection we assume (1.6), (1.10), and (1.15). We also assume that S has a
greatest element ⊤ so that the upper invariant law νX of the forward process is well-defined.
We say that the interacting particle system (Xt)t≥0 is stable if νX ̸= δ0, the delta measure
on the all zero configuration. It is easy to see that this implies that νX({0}) = 0. Indeed,
if this would not be the case then we could write νX = pν ′ + (1 − p)δ0 for some 0 < p < 1,
where ν ′ would be an invariant law that is larger than νX in the stochastic order, contradicting
the maximality of the latter. We say that the dual process (Yt)t≥0 is stable if νY ̸= δ∅, the
delta measure on ∅, which is the least element of H(Λ). By the same argument as before, this
implies that νY({∅}) = 0.

We say that the interacting particle system (Xt)t≥0, respectively its monotone dual (Yt)t≥0

dies out if
P
[
∃t ≥ 0 s.t. X0,t(x) = 0

]
= 1 (x ∈ SΛ

fin),

P
[
∃t ≥ 0 s.t. Y0,−t(Y ) = ∅

]
= 1

(
Y ∈ Hfin(Λ)

)
.

(1.39)

If these probabilities are less than one for some x ∈ SΛ
fin or Y ∈ Hfin(Λ), then we say that

(Xt)t≥0 or (Yt)t≥0 survives. The following lemma links these concepts to stability.

Lemma 11 (Survival and stability) Assume (1.6), (1.10), and (1.15), and assume that S
has a greatest element ⊤. Let (Xt)t≥0 be the interacting particle system with generator (1.2)
and let (Yt)t≥0 be its monotone dual. Then:

(i) (Xt)t≥0 is stable if and only if (Yt)t≥0 survives.

(ii) (Xt)t≥0 survives if and only if (Yt)t≥0 is stable.

We note that part (i) of the lemma (specialised to spin systems) already occurs as formula
(30) in [Gra86]. Part (ii) had to wait to the present paper, since (Yt)t≥0 has (to the best of
our knowledge) not previously been constructed for infinite initial states.

This is a good moment to demonstrate the abstract theory developed so far on the coop-
erative contact process with generator as in (1.5). For concreteness, we look at the system on
Λ = Zd with nearest neighbour edges. We let

ρ(α, δ) :=

∫
νX(dx)x(i) and θ(α, δ) := Pei

[
Xt ̸= 0 ∀t ≥ 0

]
(i ∈ Zd) (1.40)

denote the density of the upper invariant law and the survival probability started from a
configuration containing a single one, respectively. Note that by translation invariance, these
quantities do not depend on i ∈ Zd. Figure 1 shows the conjectured phase diagram in dimen-
sion d = 2. The phase diagram is believed to be similar in higher dimensions, but not in one
dimension. Figure 1 is based on numerical data for the quantities ρ(α, δ) and θ(α, δ), partial
rigorous results for this and a related model, and heuristics based on the mean-field equation.
Simple coupling arguments (see Lemma 31 below) show that ρ and θ are nonincreasing in α
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and δ. As a result, there exist δc(α) ≥ 0 and δ′c(α) ≥ 0 that are nonincreasing as a function
of α ∈ [0, 1] such that

ρ(α, δ)

{
> 0 for δ < δc(α),
= 0 for δ > δc(α),

and θ(α, δ)

{
> 0 for δ < δ′c(α),
= 0 for δ > δ′c(α).

(1.41)

Numerical data suggest the existence of a critical value 0 < αc < 1 such that δ′c(α) = δc(α)
for α ≤ αc and δ′c(α) < δc(α) for α > αc.

survival and stability

extinction and instability

extinction and
stability

δ′c = δc

δ′c

δc

α

δ

0.2

0.4

0.6

0.2 0.4 0.6 0.8 1

Figure 1: Conjectured phase diagram for the cooperative contact process on Z2. The density
of the upper invariant law ρ(α, δ) is positive for δ < δc(α) and the survival probability θ(α, δ)
is positive for δ < δ′c(α). Numerically, one sees that ρ(α, δ) > 0 also for δ = δc(α) in the
regime where δ′c(α) < δc(α) while the functions ρ and θ are continuous everywhere else.

Let (Xs,t)s≤t be the stochastic flow of the cooperative contact process (Xt)t≥0 and let
(Yt,s)t≥s be the backward stochastic flow associated with its monotone dual (Yt)t≥0. Recall
that the dual process (Yt)t≥0 takes values in the space H(Λ) of subsets Y ⊂ SΛ

fin that satisfy
Y ◦ = Y and Y ̸= {0}. The duality relation (1.28) says that

∃y ∈ Y s.t. y ≤ Xs,t(x) ⇔ ∃y ∈ Yt,s(Y ) s.t. y ≤ x (1.42)

for all s ≤ t, x ∈ SΛ, and Y ∈ H(Λ). Taking into account that Yt,s(Y )◦ = Yt,s(Y ), this mean
that:

Yt,s(Y ) is the set of minimal elements of
{
x ∈ SΛ

fin : Xs,t(x) ∈ A
}

where A :=
{
x′ ∈ SΛ

fin : ∃y ∈ Y s.t. y ≤ x′
}
.

(1.43)

In particular, setting Y = {ei} we have A = {x′ ∈ SΛ
fin : x′(i) = 1} and Yt,s(Y ) is the set of

minimal configurations required at time s to create a particle at i a time t. Letting 1 denote
the configuration that is identically one, one has, for any i ∈ Λ,

P1
[
Xt(i) = 1

]
= E

[
ψmon

(
X0,t(1), ei

)]
= E

[
ψmon

(
1,Yt,0(ei)

)]
= Pei

[
Yt ̸= ∅

]
, (1.44)

so taking the limit t→ ∞ we see that

ρ(α, δ) = Pei
[
Yt ̸= ∅ ∀t ≥ 0

]
, (1.45)

proving Lemma 11 (i) for the cooperative contact process. The proof of Lemma 11 (ii) is
similar. For any i ∈ Λ, one has

Pei
[
Xt ̸= 0

]
= E

[
ψmon

(
X0,t(ei), Ytop

)]
= E

[
ψmon

(
ei,Yt,s(Ytop)

)]
= PYtop

[
ei ∈ Yt

]
, (1.46)
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which after taking the limit t→ ∞ yields

θ(α, δ) = Pei
[
Xt ̸= 0 ∀t ≥ 0

]
=

∫
H(Λ)

νY(dY )1{ei∈Y }. (1.47)

We can give a more explicit description of the evolution of the process (Yt)t≥0 as follows.
In general, if S is a partially ordered set containing a least element 0 and m : SΛ → SΛ is a
continuous map satisfying m(0) = 0, then we will show in Lemma 21 below that there exists
a unique dual map m̂ : H(Λ) → H(Λ) such that

ψmon

(
m(x), Y

)
= ψmon

(
x, m̂(Y )

) (
s ≤ t, x ∈ SΛ, Y ∈ H(Λ)

)
. (1.48)

The formal generator of (Yt)t≥0 is then given by

Ĝf(Y ) :=
∑
m∈G

rm
{
f
(
m̂(Y )

)
− f

(
Y
)} (

Y ∈ H(Λ)
)
. (1.49)

In the special case of the cooperative contact process, one can check that

d̂thj(Y ) = {y ∈ Y : y(j) = 0}, b̂raij(Y ) =
(
Y ∪ {(y − ej) ∨ ei : y ∈ Y, y(j) = 1}

)◦
ĉoopii′j(Y ) =

(
Y ∪ {(y − ej) ∨ ei ∨ ei′ : y ∈ Y, y(j) = 1}

)◦
.

(1.50)
We observe that the maps d̂thj and b̂raij have the property that they map the space

Hadd(Λ) :=
{
Y ∈ H(Λ) : |y| = 1 ∀y ∈ Y

}
(1.51)

into itself. As a consequence, for α = 0 the monotone dual (Yt)t≥0 of the cooperative contact
process has the property that Y0 ∈ Hadd(Λ) implies Yt ∈ Hadd(Λ) for all t ≥ 0. We claim
that this is a consequence of the fact that the process with α = 0 is additive. Indeed, we can
naturally identify {0, 1}Λ with Hadd(Λ) via the bijection

{0, 1}Zd ∋ z 7→
{
ei : z(i) = 1

}
∈ Hadd(Λ). (1.52)

Identifying Yt with an element of {0, 1}Λ in this way, one can check that (Yt)t≥0 is the additive
dual of (Xt)t≥0 in the sense of additive systems duality. In particular, because of the well-
known self-duality of the contact process, (Yt)t≥0 is in fact a contact process. Thus, one can
view the monotone duals considered in this article as an extension of the classical additive
duals of additive interacting particle systems.

1.6 Ergodicity of the dual process

We continue to look at the cooperative contact process on Zd with nearest neighbour edges.
We define translation operators Si : {0, 1}Z

d → {0, 1}Zd
and Si : H(Zd) → H(Zd) by

(Six)(j) := x(j − i) (j ∈ Zd) and (SiY ) :=
{
Siy : y ∈ Y

}
. (1.53)

We say that a probability law µ on H(Zd) is homogeneous if it is invariant under translations,
i.e., µ ◦ S−1

i = µ for all i ∈ Zd. We will prove the following result.

Theorem 12 (Homogeneous initial laws) Assume that (α, δ) ̸= (1, 0). Let (Yt)t≥0 be
the monotone dual of the cooperative contact process on Zd started in an initial law that is
homogeneous and satisfies Y0 ̸= ∅ a.s. Then

P
[
Yt ∈ ·

]
=⇒
t→∞

νY, (1.54)

where ⇒ denotes weak convergence of probability measures on H(Zd).
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As a consequence of Theorem 12, by a well-known argument based on the relation (1.47),
we can prove the following fact about the process we were originally interested in.

Theorem 13 (Continuity of the survival probability) The function (α, δ) 7→ θ(α, δ) is
upper semi-continuous on [0, 1]× [0,∞), and continuous on the set

A :=
{
(α, δ) ∈ [0, 1)× [0,∞) : ∃ε > 0 s.t. θ(α+ ε, δ + ε) > 0

}
. (1.55)

1.7 Discussion and open problems

We have extended the duality theory for monotone interacting particle systems to allow the
dual process to be started in infinite initial states, and used this to prove a property of one
particular monotone interacting particle system, the cooperative contact process. Apart from
monotonicity, we also assumed that the all-zero configuration 0 is a trap for the interacting
particle system. As long as one is only interested in the dual process started in finite initial
states, this condition can be dropped, as already shown by Gray [Gra86]. In this case, the
state space Hfin(Λ) needs to be extended so that it also contains {0} (compare (1.25)), which
now becomes a trap for the dual process. In principle, this construction also works for infinite
initial states but it seems that in most cases of interest, the dual process started in an infinite
initial state now jumps to the trap {0} immediately. Only when 0 is a trap for the interacting
particle system, the trap {0} for the dual process becomes inaccessible, which is why we have
made this assumption throughout.

There are plenty of open problems for monotone interacting particle systems that are not
additive, and for the cooperative contact process in particular. Here we only briefly discuss
the latter. For α = 0 the process reduces to a standard contact process, which is self-dual. As
a consequence, ρ(0, δ) = θ(0, δ) for all δ ≥ 0 and therefore δ′c(0) = δc(0). It is well-known that
0 < δc(0) < ∞ [Lig99]. Since ρ and θ are nonincreasing in α it follows that δc(α) and δ′c(α)
are finite for all α ∈ [0, 1]. A simple monotone coupling with a process without cooperative
branching, together with a rescaling of time, tells us that δc(α) ≥ (1−α)δc(0) and likewise for
δ′c(α), so both functions are > 0 for all α < 1. It is easy to see that δ′c(1) = 0, since the process
with α = 1, started in a finite interval, rectangle, or (hyper)cube cannot escape from such a
set and hence a.s. dies out for each δ > 0. In dimensions d ≥ 2 it is known that δc(1) > 0.
This follows from [Gra99, Thm 18.3.1]. The proof is quite hard and does not yield a lower
bound on δc(1) that is anywhere near the numerically observed value.

Well-known results for the contact process [Lig99] tell us that the function δ 7→ θ(0, δ) is
continuous, with the most difficult statement, continuity at δc(0), having been proved in
[BG90]. The methods of the latter paper were generalised in [BG94]. Applying [BG94,
Thm 2.4] to the cooperative contact process one finds that:

The set
{
(α, δ) ∈ [0, 1]× (0,∞) : θ(α, δ) > 0

}
is an open subset of [0, 1]× (0,∞), (1.56)

which combined with our Theorem 13 shows that θ is continuous everywhere except in the
point (α, δ) = (1, 0). The methods of [BG94] can also be used to show that θ(α, δ) > 0
implies ρ(α, δ) > 0 and hence δ′c(α) ≤ δc(α) for all α ∈ [0, 1]. This is folklore; the details have
unfortunately never been written down.

Apart from the facts we have just mentioned, little seems to be known. It is not known if
δ′c(α) = δc(α) for α sufficiently small, as suggested by numerical simulations of the process on
Z2, nor do there seem to be known results that would allow us to conclude that δ′c(α) < δc(α)
for α sufficiently close to one. The continuity of ρ on the set {(α, δ) : ρ(α, δ) > 0} also
seems to be an open problem, except on the strip α = 0. This continuity would follow if
one could prove that all homogeneous invariant laws are convex combinations of νX and the
delta measure on 0. To prove this, it would suffice to prove in analogy with Theorem 12 that
the process (Xt)t≥0 started in arbitrary nontrivial homogeneous initial law µ converges to νX.
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The latter statement is well-known for the contact process [Har76] but it seems plausible it is
in general not true for the cooperative contact process. Let Pπp denote the law of the process
started in product law πp with intensity p, and let

η(α, δ) := inf
{
p ∈ [0, 1] : Pπp

[
Xt ∈ ·

]
=⇒
t→∞

νX
}

(1.57)

denote the minimal initial density for which the process started in product law converges to
the upper invariant law. Then we conjecture that η(α, δ) > 0 in the regime δ′c(α) < δ ≤ δc(α).
Proving this is an open problem. Finally, numerical simulations suggest that δ 7→ ρ(α, δ) is
continuous at δc(α) if δ

′
c(α) = δc(α), but not if δ

′
c(α) < δc(α). Proving this, except at α = 0,

is an open problem too. As a last remark, it is worth mentioning that [BG94] and [Gra99] use
the structure of Zd in an essential way and cannot easily be generalised to different grids, so
that on more general grids even less is known.

At this moment, it is too early to tell if monotone duality can help resolve some of these
open problems. An interesting line of thought seems to be to try and prove that for α
sufficiently small, the dual process behaves almost as in the additive case α = 0, for example
in the sense that if Y is distributed according to the upper invariant law, then elements
y ∈ Y with |y| ≥ 2 have a low density. Another question is under what assumptions the
homogeneity assumption in Theorem 12 can be dropped, i.e., if one can prove some form of
complete convergence for the dual process. (See [Lig99] for this terminology in the context of
the contact process.)

Outline

The remainder of the paper is devoted to proofs. Propositions 5, 6, and 9 are proved in
Subsection 2.1. Lemma 4 and Theorem 7 are proved in Subsection 2.2. Lemma 8, Theorem 10,
and Lemma 11 are proved in Subsection 2.3. In Subsection 2.4 we prove a more general version
of Theorem 12 that is then in Subsection 2.5 used to prove Theorems 12 and 13. The proofs
of Theorem 1 and Proposition 2 can be found in Appendix A.2.

2 Proofs

2.1 The dual space

In this section we prove Propositions 5, 6, and 9.

Proof of Proposition 5 We claim that for any A ⊂ SΛ,

(i) (A◦)◦ = A◦, (ii) (A↑)↑ = A↑, (iii) (A↑)◦ = A◦. (2.1)

Indeed, the first two properties are trivial while (iii) follows from (i) and the observations that
A◦ ⊂ (A↑)◦ ⊂ A. We next claim that for A ⊂ SΛ

A↑ = A, A open ⇒ A◦ ⊂ SΛ
fin and (A◦)↑ = A. (2.2)

To see this, we first note that trivially (A◦)↑ ⊂ A↑ = A. To prove the converse inclusion,
assume that x ∈ A. Then we can find xn ∈ SΛ

fin such that xn → x. Since A is open there exists
an n such that xn ∈ A. Since xn ∈ SΛ

fin we can find, in a finite number of steps, an x′ ≤ xn
such that x′ ∈ A◦. Since x′ ≤ xn ≤ x it follows that x ∈ (A◦)↑. The argument also shows that
for each x ∈ A there exists an x′ ∈ SΛ

fin such that x′ ≤ x and hence A◦ ⊂ SΛ
fin.

We are now ready to prove the statements of the proposition. Clearly 1Y ↑ is monotone for
each Y ⊂ SΛ

fin. If Y has finitely many elements, then 1Y ↑ depends on finitely many coordinates
and as a result is clearly continuous. For general Y ∈ H(Λ) we can find Yn ∈ Hfin(Λ) that
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increase to Y . Then 1
Y ↑
n
↑ 1Y ↑ so 1Y ↑ is the increasing limit of continuous functions and hence

lower semi-continuous. Since Y ̸= {0} implies 1Y ↑(0) = 0, this shows that the map Y 7→ 1Y ↑

maps H(Λ) into L+(S
Λ, {0, 1}).

Conversely, if ϕ ∈ L+(S
Λ, {0, 1}), then Oϕ is open and increasing so by (2.2) O◦

ϕ ⊂ SΛ
fin.

Setting Y := O◦
ϕ we have Y ◦ = Y by (2.1) (i) and Y ̸= {0} by the fact that ϕ(0) = 0. This

shows that the map ϕ 7→ O◦
ϕ maps L+(S

Λ, {0, 1}) into H(Λ). Using (2.1) (iii) and (2.2) we
see that the maps Y 7→ 1Y ↑ and ϕ 7→ O◦

ϕ are each other’s inverses.

Using the fact that a function f : SΛ → {0, 1} is continuous with respect to the product
topology if and only if it depends on finitely many coordinates [Swa22, Lemma 4.13], we see
that for Y ∈ H(Λ) one has 1Y ↑ ∈ C+(SΛ, {0, 1}) if and only if Y ∈ Hfin(Λ).

We next start to prepare for the proof of Proposition 6. For any metric space (X , d), we
let K+(X ) denote the space of all nonempty compact subsets of X . The Hausdorff metric dH
on K+(X ) is defined as

dH(K1,K2) := sup
x1∈K1

d(x1,K2) ∨ sup
x2∈K2

d(x2,K1), (2.3)

where d(x,A) := infy∈A d(x, y) denotes the distance between a point x ∈ X and a set A ⊂ X .
It follows from [SSS14, Lemma B.1] that the topology generated by dH only depends on the
topology on X and not on the choice of the metric d. We call this the Hausdorff topology.3

By [SSS14, Lemma B.3], if X is compact, then so is K+(X ).
In analogy with the definition of A↑ in (1.24), for any A ⊂ SΛ we set

A↓ :=
{
x ∈ SΛ : ∃y ∈ A s.t. y ≥ x

}
. (2.4)

Then a set A is decreasing precisely if A↓ = A. We let Ac := SΛ\A denote the complement of
a set A ⊂ SΛ. We let K+(S

Λ) denote the space of nonempty compact subsets of SΛ, equipped
with the Hausdorff topology, and set

K↓
+(S

Λ) :=
{
A ∈ K+(S

Λ) : A↓ = A
}
. (2.5)

We equip K↓
+(S

Λ) with the induced topology from K+(S
Λ). The proof of Proposition 6 is

based on the following three lemmas.

Lemma 14 (Closed subspace) The set K↓
+(S

Λ) is a closed subset of K+(S
Λ).

Lemma 15 (Bijection to compact decreasing sets) The map Y 7→ (Y ↑)c is a bijection

from H(Λ) to K↓
+(S

Λ).

Lemma 16 (Convergence criterion) For An, A ∈ K↓
+(S

Λ), the following statements are
equivalent:

(i) 1An(x) −→
n→∞

1A(x) ∀x ∈ SΛ
fin (ii) An −→

n→∞
A in K↓

+(S
Λ). (2.6)

We first show how these lemmas imply Proposition 6 and then prove the lemmas.

Proof of Proposition 6 Since SΛ is compact, by [SSS14, Lemma B.1] so is K+(S
Λ). Then

Lemma 14 implies that also K↓
+(S

Λ) is compact. We can then use the bijection from Lemma 15

to equip H(Λ) with a topology such that Yn → Y in H(Λ) if and only if (Y ↑
n )c → (Y ↑)c in

3Note the subtle difference between “the Hausdorff topology” (the topology generated by the Hausdorff
metric) and “a Hausdorff topology” (any topology satisfying Hausdorff’s separation axiom).
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K↓
+(S

Λ). Since K↓
+(S

Λ) is compact and metrisable, the same is then true for H(Λ). Finally,
Lemma 16 tells us that convergence in H(Λ) is equivalent to (1.30).

The proof of Lemma 14 needs a bit of preparation. It will be convenient to choose an
explicit metric generating the topology on SΛ. We choose a bijection γ : Λ → N and set

d(x, y) :=
∑
i∈Λ

3−γ(i)1{x(i)̸=y(i)} (x, y ∈ SΛ). (2.7)

Setting Λn := {i ∈ Λ : γ(i) ≤ n}, we observe that

d(x, y) < 3−n ⇒ x(i) = y(i) ∀i ∈ Λn ⇒ d(x, y) ≤ 1
23

−n. (2.8)

Indeed, if x(i) = y(i) for all i ∈ Λn, then d(x, y) ≤
∑∞

k=n+1 3
−k = 1

23
−n, while if x(i) ̸= y(i)

for some i ∈ Λn, then d(x, y) ≥ 3−n.

Lemma 17 (Convergence of upset and downset) Assume that An, A ∈ K+(S
Λ) satisfy

An → A. Then also A↑
n → A↑ and A↓

n → A↓.

Proof By symmetry, it suffices to prove the statement for the upsets. We will show that if
A,B ∈ K+(S

Λ) satisfy dH(A,B) < 3−n for some n ∈ N, then dH(A↑, B↑) < 3−n. It suffices to
show that d(x,B↑) < 3−n for each x ∈ A↑ and d(y,A↑) < 3−n for each y ∈ B↑. By symmetry,
it suffices to prove the latter claim. If y ∈ B↑, then we can find b ∈ B such that b ≤ y. Since
dH(A,B) < 3−n, by (2.8) there exists an a ∈ A such that a(i) = b(i) for all i ∈ Λn. Defining
x ∈ SΛ by x(i) := y(i) if i ∈ Λn and x(i) := a(i) if i ̸∈ Λn, we see that a ≤ x so x ∈ A↑. By
(2.8) moreover d(x, y) < 3−n so we conclude that d(y,A↑) < 3−n.

Proof of Lemma 14 Assume that An ∈ K↓
+(S

Λ) satisfy An → A for some A ∈ K+(S
Λ). We

need to show that A is decreasing. Lemma 35 in the appendix tells us that A↓ ∈ K+(S
Λ)

and Lemma 17 tells us that An = A↓
n → A↓. Since An → A and An → A↓ we conclude that

A = A↓ so A is decreasing.

Proof of Lemma 15 Let O↑
−(S

Λ) be the set of open increasing sets A ⊂ SΛ such that

A ̸= SΛ. Then A ∈ O↑
−(S

Λ) if and only if 1A ∈ L+(S
Λ, {0, 1}) so Proposition 5 tells us that

Y 7→ Y ↑ is a bijection from H(Λ) to O↑
−(S

Λ). The statement now follows from the observation

that A ∈ O↑
−(S

Λ) if and only if Ac ∈ K↓
+(S

Λ).

Proof of Lemma 16 It will be convenient to work with the explicit metric in (2.7). With Λn

as in (2.8), we set SΛ
n := {x ∈ SΛ : x(i) = 0 ∀i ∈ Λ\Λn}. We will prove that for A,B ∈ K↓

+(S
Λ)

dH(A,B) < 3−n ⇔ 1A(x) = 1B(x) ∀x ∈ SΛ
n . (2.9)

By symmetry, it suffices to prove that

sup
a∈A

d(a,B) < 3−n ⇔ 1A(x) ≤ 1B(x) ∀x ∈ SΛ
n . (2.10)

Assume that supa∈A d(a,B) < 3−n and 1A(x) = 1 for some x ∈ SΛ
n . Then there exists an

y ∈ B such that d(x, y) < 3−n and hence by (2.8) x(i) = y(i) for all i ∈ Λn, which implies that
x ≤ y and hence 1B(x) = 1, proving the implication ⇒. To prove the converse implication,
assume that 1A(x) ≤ 1B(x) for all x ∈ SΛ

n and fix a ∈ A. Define x ∈ SΛ
n by x(i) := a(i) if

i ∈ Λn and x(i) := 0 if i ̸∈ Λn. Then x ∈ A and hence also x ∈ B. By (2.8), this implies that
d(a,B) ≤ 1

23
−n. Since this holds for all a ∈ A, we conclude that supa∈A d(a,B) < 3−n.

We finally provide the proof of Proposition 9.

Proof of Proposition 9 By (1.33), Y,Z ∈ H(Λ) satisfy Y ≤ Z if and only if Y ↑ ⊂ Z↑ which
is equivalent to (Y ↑)c ⊃ (Z↑)c. Recalling the way the topology on H(Λ) is defined in the proof
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of Proposition 6, this means that to show that the set in (1.36) is closed we may equivalently
show that {

(A,B) ∈ K↓
+(S

Λ)2 : A ⊃ B
}

(2.11)

is a closed subset of K↓
+(S

Λ)2. We need to show that if An → A, Bn → B, and An ⊃ Bn for
each n, then A ⊃ B. This follows from the fact that by [SSS14, Lemma B.1], An → A implies
that

A =
{
x : ∃xn ∈ An s.t. xn → x

}
, (2.12)

and similarly for B. To complete the proof, we must show that ∅ ≤ Y ≤ Ytop for all Y ∈ H(Λ).

This follows from (1.33) and the observations that ∅↑ = ∅, Y ↑
top = SΛ\{0}, and 0 ̸∈ Y for all

Y ∈ H(Λ) by the definition of H(Λ) in (1.25). (Here we have used that if Y ∈ H(Λ) would
satisfy 0 ∈ Y , then by the fact that Y = Y ◦ we would have Y = {0} contradicting the
definition of H(Λ).)

We conclude this subsection with the following simple observation that will be of use later
on.

Lemma 18 (Continuity of the duality function) The function SΛ ∋ x 7→ ψmon(x, Y ) is
continuous for each Y ∈ Hfin(Λ) and the function H(Λ) ∋ Y 7→ ψmon(x, Y ) is continuous for
each x ∈ SΛ

fin.

Proof If Y ∈ Hfin(Λ), then x 7→ ψmon(x, Y ) depends on finitely many coordinates and hence
is continuous. If x ∈ SΛ

fin, then Y 7→ ψmon(x, Y ) is continuous by the definition of the topology
on H(Λ) in (1.30).

2.2 The dual process

In this subsection we prove Lemma 4, Theorem 7, and Lemma 8. The proof of Lemma 4 needs
two preparatory lemmas.

Lemma 19 (Properties of the forward flow) Assume (1.6) and (1.10). Then almost
surely, for each s ≤ t the map Xs,t is continuous and monotone with Xs,t(0) = 0.

Proof The maps Xs,t are continuous by Theorem 1. Using (1.6) (ii) and Proposition 40 in
the appendix, we see that moreover each map Xs,t is monotone with Xs,t(0) = 0.

Lemma 20 (Backward construction) Assume that m : SΛ → SΛ is continuous and mono-
tone and satisfies m(0) = 0. Then one has ϕ◦m ∈ L+(S

Λ, {0, 1}) for each ϕ ∈ L+(S
Λ, {0, 1})

and ϕ ◦m ∈ C+(SΛ, {0, 1}) for each ϕ ∈ C+(SΛ, {0, 1}).

Proof For any map ϕ : SΛ → {0, 1} such that ϕ(0) = 0 one clearly has ϕ◦m(0) = 0, and if ϕ is
monotone then so is ϕ◦m by the monotonicity of m. If ϕ is lower semicontinuous and xn → x,
then m(xn) → m(x) by the continuity of m and hence lim supn→∞ ϕ ◦ m(xn) ≤ ϕ ◦ m(x),
proving that ϕ ◦m is lower semicontinuous. If ϕ is continuous, then clearly so is ϕ ◦m.

Proof of Lemma 4 The fact that Ft,s, defined as in (1.17), maps the spaces L+(S
Λ, {0, 1})

and C+(SΛ, {0, 1}) into themselves follows from Lemmas 19 and 20. The backward stochastic
flow property (1.18) is immediate from the definitions.

We will now first prove Lemma 8 and then Theorem 7. Both proofs need some preparations.

Lemma 21 (Dual maps) For each continuous monotone map m : SΛ → SΛ that satisfies
m(0) = 0, there exists a unique map m̂ : H(Λ) → H(Λ) such that

ψmon

(
m(x), Y

)
= ψmon

(
x, m̂(Y )

) (
x ∈ SΛ, Y ∈ H(Λ)

)
. (2.13)

The map m̂ is monotone with respect to the partial order on H(Λ) and satisfies m̂(∅) = ∅.
Moreover, m̂ maps the space Hfin(Λ) into itself.

15



Proof Filling in the definition of ψmon, we see that (2.13) is equivalent to

1Y ↑ ◦m(x) = 1m̂(Y )↑(x)
(
x ∈ SΛ, Y ∈ H(Λ)

)
. (2.14)

Here 1Y ↑ ∈ L+(S
Λ, {0, 1}) by Proposition 5 and hence 1Y ↑ ◦m ∈ L+(S

Λ, {0, 1}) by Lemma 20.
Using again Proposition 5, we see that there exists a unique Z ∈ H(Λ) such that 1Y ↑◦m = 1Z↑ .
Setting m̂(Y ) := Z then defines a map m̂ : H(Λ) → H(Λ) such that (2.13) holds, and such a
map is clearly unique. If Y ∈ Hfin(Λ), then Proposition 5 tells us that 1Y ↑ ∈ C+(SΛ, {0, 1}),
Lemma 20 tells us that 1Y ↑ ◦m ∈ C+(SΛ, {0, 1}), and hence m̂(Y ) ∈ Hfin(Λ) by Proposition 5,
proving that m̂ maps the space Hfin(Λ) into itself.

To see that m̂ is monotone with respect to the partial order on H(Λ) defined in (1.33),
assume that Y,Z ∈ H(Λ) satisfy Y ↑ ⊂ Z↑. Then 1Y ↑ ◦m ≤ 1Z↑ ◦m and hence 1m̂(Y )↑ ≤ 1m̂(Z)↑

proving that m̂(Y )↑ ⊂ m̂(Z)↑. To see that m̂(∅) = ∅ it suffices to note that Y = ∅ implies
1Y ↑ = 0 and hence 1m̂(Y )↑ = 0 which implies m̂(Y ) = ∅.

The next lemma says that in order to check (2.13) it suffices to show that it holds for
x ∈ SΛ

fin.

Lemma 22 (Finite configurations) If Y,Z ∈ H(Λ) satisfy ψmon(x, Y ) = ψmon(x, Z) for
all x ∈ SΛ

fin, then Y = Z.

Proof If ψmon(x, Y ) = ψmon(x, Z) for all x ∈ SΛ
fin, then 1Y ↑(x) = 1Z↑(x) for all x ∈ SΛ

fin and
hence also 1(Y ↑)c(x) = 1(Z↑)c(x) for all x ∈ SΛ

fin. By (2.9) this implies that (Y ↑)c = (Z↑)c. In

view of Proposition 5, Y is uniquely determined by Y ↑, allowing us to conclude that Y = Z.

Note that Lemma 21 does not say anything about continuity of the dual map m̂. The next
lemma fill this gap.

Lemma 23 (Continuity of the dual map) Let m : SΛ → SΛ be continuous and monotone
with m(0) = 0. Assume that m maps SΛ

fin into itself. Then the dual map m̂ : H(Λ) → H(Λ) is
continuous with respect to the topology on H(Λ).

Proof We need to show that Yn → Y implies m̂(Yn) → m̂(Y ). By (1.30), this means that we
need to show that

1
Y ↑
n
(x) −→

n→∞
1Y ↑(x) ∀x ∈ SΛ

fin (2.15)

implies
1m̂(Yn)↑(x) −→

n→∞
1m̂(Y )↑(x) ∀x ∈ SΛ

fin. (2.16)

By (2.14), the latter is equivalent to

1
Y ↑
n
◦m(x) −→

n→∞
1Y ↑ ◦m(x) ∀x ∈ SΛ

fin. (2.17)

If m maps SΛ
fin into itself, then this is indeed implied by (2.15).

Proof of Lemma 8 Lemma 19 says that for each s ≤ t the map Xs,t is continuous and
monotone with Xs,t(0) = 0. Therefore, by the duality relation (1.28), in the notation of
Lemma 21, we have

Yt,s = X̂s,t (s ≤ t). (2.18)

In view of this, the monotonicity of Yt,s follows from Lemma 21.
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Proposition 24 (Backward evolution equation) Under the assumptions of Theorem 7,
almost surely, for each u ∈ R and Y ∈ H(Λ), there exists a unique cadlag function (−∞, u] ∋
t 7→ Yt ∈ H(Λ) such that

Yu = Y and Yt− =

{
m̂(Yt) if (m, t) ∈ ω,

Yt otherwise
(t ≤ u). (2.19)

This function is given by Yt = Yu,t(Y ) (t ≤ u), where (Yt,s)t≥s is the backward stochastic flow
defined in (1.26).

Proof Fix u ∈ R and Y ∈ H(Λ) and define (Yt)t≤u by Yt := Yu,t(Y ) (t ≤ u). Then Yu = Y
since (Yt,s)t≥s is a backward stochastic flow in the sense of (1.18). Fix x ∈ SΛ

fin and set

T :=
{
t ≤ u : ∃(m, t) ∈ ω s.t. m(x) ̸= x

}
. (2.20)

By (1.6) and (1.10) (i), the set T is locally finite, so we can write T = {tk : k ≥ 1} with
u ≥ t1 ≥ t2 ≥ · · · and tk → −∞ as k → ∞. We let mk denote the corresponding maps such
that (mk, tk) ∈ ω. We observe that

ψmon(x, Ys) = ψmon

(
x,Yt,s(Yt)

)
= ψmon

(
Xs,t(x), Yt

)
(s ≤ t ≤ u). (2.21)

This shows that ψmon(x, Ys) = ψmon(x, Yt) if Xs,t(x) = x, so the function (−∞, u] ∋ t 7→
ψmon(x, Yt) is constant on intervals of the form (tk+1, tk]. Since Xtk−ε,tk(x) = mk(x) for ε > 0
small enough, we have

ψmon(x, Ytk−) = ψ
(
mk(x), Ytk

)
= ψ

(
x, m̂k(Ytk)

)
(k ≥ 1). (2.22)

Since this holds for arbitrary x ∈ SΛ
fin, by Lemma 22 and the definition of the topology on

H(Λ) in (1.30), it follows that (Yt)t≤u is cadlag and satisfies (2.19).
To show uniqueness, assume that (Yt)t≤u is cadlag and satisfies (2.19). Fix s < u and

x ∈ SΛ
fin and define (Xt)t≥s by

Xt := Xs,t(x) (t ≥ s). (2.23)

We claim that the function
[s, u] ∋ t 7→ ψmon(Xt, Yt) (2.24)

is constant.
We start by showing that it is cadlag. By Lemma 3, the function (Xt)t≥s takes values

in SΛ
fin. Combining this with Theorem 1 we see that it must be piecewise constant and right

continuous. Let s < s1 < s2 < · · · be the times when it jumps, set s0 := s, and xk := Xsk

(k ≥ 0). Then on each interval of the form [sk−1, sk], the function t 7→ ψ(xk, Yt) must be
cadlag by the assumption that (Yt)t≤u is cadlag and the definition of the topology on H(Λ) in
(1.30). This implies that the function in (2.24) is cadlag. Moreover, its left and right limits
at a time t are given by ψmon(Xt−, Yt−) and ψmon(Xt, Yt), respectively.

We can now use the assumption that (Yt)t≤u solves (2.19) while (Xt)t≥s solves (1.11) to
check that

ψmon

(
Xt−, Yt−

)
= ψmon

(
Xt−, m̂(Yt)

)
= ψmon

(
m(Xt−), Yt

)
= ψmon(Xt, Yt) (2.25)

at times t when (m, t) ∈ ω, while more trivialy ψmon(Xt−, Yt−) = ψmon(Xt, Yt) at all other
times. This shows that the function in (2.24) is continuous. Since it takes values in the set
{0, 1}, this implies that it must in fact be constant.

The fact that the function in (2.24) is constant implies that

ψmon(x, Ys) = ψmon

(
Xs,u(x), Y

)
= ψmon

(
x,Yt,s(Y )

)
. (2.26)
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Since this holds for all x ∈ SΛ
fin and s < u, it follows that solutions to (2.19) are unique and

given by Yt = Yu,t(Y ) (t ≤ u).

Proof of Theorem 7 Using the fact that the backward stochastic flow (Ft,s)t≥s is stationary
with independent increments, it is straightforward to check that (1.31) defines a Markov
process (Yt)t≥0 with semigroup (Qt)t≥0 defined in (1.32). The fact that (Yt)t≥0 has caglad
sample paths follows from Proposition 24. (Note that because of time reversal, (Yt)t≥0 is caglad
while the function in (2.19) is cadlag.) It therefore remains to prove that (Qt)t≥0 is a Feller
semigroup. By a well-known characterisation of Feller semigroups [Swa22, Section 4.2], letting
M1(H(Λ)) denote the space of probability measures on H(Λ) equipped with the topology of
weak convergence, this means that we must show that the map

H(Λ)× [0,∞) ∋ (Y, t) 7→ Qt(Y, · ) ∈ M1

(
H(Λ)

)
(2.27)

is continuous. Since almost sure convergence implies weak convergence in law it suffices to
show that for deterministic (Yn, tn) and (Y, t),

(Yn, tn) −→
n→∞

(Y, t) implies Ytn,0(Yn) −→
n→∞

Yt,0(Y ) a.s. (2.28)

By the definition of the topology on H(Λ) in (1.30), we must show that

1Ytn,0(Yn)↑(x) −→
n→∞

1Yt,0(Y )↑(x) a.s. (x ∈ SΛ
fin). (2.29)

By duality (1.28), this is equivalent to

1
Y ↑
n

(
X0,tn(x)

)
−→
n→∞

1Y ↑
(
X0,t(x)

)
a.s. (x ∈ SΛ

fin). (2.30)

By Lemma 3, the process t 7→ X0,tn(x) is a continuous-time Markov chain with countable
state space SΛ

fin. Since t is deterministic, it is a.s. not a jump time of this continuous-time
Markov chain, so X0,tn(x) = X0,t(x) for all n large enough. Using the fact that X0,t(x) ∈ SΛ

fin,
the convergence in (2.30) then follows from the definition of the topology on H(Λ) in (1.30).

2.3 The upper invariant law

In this subsection we prove Theorem 10 and Lemma 11.

Proof of Theorem 10 Immediate from Lemma 8, Proposition 9, and Proposition 38 in the
appendix.

Proof of Lemma 11 To prove part (i), we observe using duality (1.28) that for each Y ∈
Hfin(Λ),

E
[
ψmon

(
X0,t(⊤), Y

)]
= E

[
ψmon

(
⊤,Yt,0(Y )

)]
= P

[
Y0,−t(Y ) ̸= ∅

]
−→
t→∞

P
[
Y0,−t(Y ) ̸= ∅ ∀t ≥ 0

]
,

(2.31)

so taking the limit, using (1.38) and Lemma 18, we see that∫
νX(dx)ψmon(x, Y ) = P

[
Y0,−t(Y ) ̸= ∅ ∀t ≥ 0

] (
Y ∈ Hfin(Λ)

)
. (2.32)

In particular

νX
(
{x ∈ SΛ : x ≥ y}

)
= P

[
Y0,−t({y}) ̸= ∅ ∀t ≥ 0

]
(y ∈ SΛ

fin\{0}). (2.33)

If (Yt)t≥0 dies out, then this is zero for all y ∈ SΛ
fin\{0}, proving that νX = δ0. Conversely, if

νX = δ0, then the left-hand side of (2.32) is zero for all Y ∈ Hfin(Λ) so (Yt)t≥0 dies out.
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The proof of part (ii) is similar. Using duality (1.28) we have, for each x ∈ SΛ
fin,

E
[
ψmon

(
x,Y0,−t(Ytop)

)]
= E

[
ψmon

(
X−t,0(x), Ytop

)]
= P

[
X0,t(x) ̸= 0

]
−→
t→∞

P
[
X0,t(x) ̸= 0 ∀t ≥ 0

]
,

(2.34)

so taking the limit, using (1.37) and Lemma 18, we see that∫
νY(dY )ψmon(x, Y ) = P

[
X0,t(x) ̸= 0 ∀t ≥ 0

]
(x ∈ SΛ

fin). (2.35)

Let Y be a random variable with law νY. If Y = ∅ a.s., then the quantity in (2.35) is clearly
zero for all x ∈ SΛ

fin. On the other hand, if Y ̸= ∅ with positive probability, then by the fact
that Y is a random subset of SΛ

fin there must exist an x ∈ SΛ
fin for which the quantity in (2.35)

is positive.

2.4 Homogeneous invariant laws

In this subsection we prepare for the proof of Theorem 12 by proving a more general statement
that, specialised to the cooperative contact process, will yield Theorem 12. We first need a
characterisation of the upper invariant law of the dual process (Yt)t≥0 in terms of the forward
process (Xt)t≥0. We work for the moment in the general set-up of Theorem 10.

Lemma 25 (Distribution determining functions) Let Y,Z be H(Λ)-valued random vari-
ables such that

E
[ n∏
k=1

ψmon(xk, Y )
]
= E

[ n∏
k=1

ψmon(xk, Z)
]

∀n ≥ 1, x1, . . . , xn ∈ SΛ
fin. (2.36)

Then Y and Z are equal in law.

Proof Let F be the class of functions f : H(Λ) → R of the form f(Y ) =
∏n

k=1ψmon(xk, Y )
with n ≥ 1 and x1, . . . , xn ∈ SΛ

fin. By [Swa22, Lemma 4.37] it suffices to show that each
f ∈ F is continuous, and that F is closed under products and separates points in the sense
that for each Y, Z ∈ H(Λ), there exists an f ∈ F such that f(Y ) ̸= f(Z). Functions f ∈ F
are continuous by Lemma 18, the class F is closed under products by construction, and F
separates points by Lemma 22.

Lemma 26 (Characterisation of the upper invariant law) Assume (1.6), and assume
that the rates (rm)m∈G satisfy (1.10) and (1.15). Then the upper invariant law νY of the dual
process, defined in (1.37) is uniquely characterised by the fact that∫

νY(dY )

n∏
k=1

ψmon(xk, Y ) = P
[
X0,t(xk) ̸= 0 ∀t ≥ 0, 1 ≤ k ≤ n

]
(x1, . . . , xn ∈ SΛ

fin).

(2.37)

Proof For n = 1 formula (2.37) has already been proved as formula (2.35). The proof for
general n ≥ 1 is completely the same. The fact that νY is uniquely characterised by (2.37)
follows from Lemma 25.

We now set out to prove a general result in the spirit of Theorem 12. We assume from
now on that the grid Λ is a (not necessarily abelian) group with product (i, j) 7→ ij. A bit
unusually, to stay closer to the notation for Zd, we will denote the unit element of Λ by 0. For
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each i ∈ Λ we define shift operators Si and Ti acting on configurations x ∈ SΛ and local maps
m : SΛ → SΛ, respectively, by

(Six)(j) := x(i−1j) (j ∈ Λ) and (Tim)(x)(j) := m(Si−1x)(i−1j) (j ∈ Λ). (2.38)

We say that a probability measure µ on SΛ is homogeneous if µ = µ ◦ S−1
i for all i ∈ Λ, and

we say that the rates (rm)m∈G are translation invariant if

Tim ∈ G and rTim = rm (i ∈ Λ, m ∈ G). (2.39)

As we will show, Theorem 12 is a simple consequence of the following more general theorem.
Recall from (1.20) that |x| :=

∑
i∈Λ 1{x(i) ̸=0}. The assumptions S = {0, . . . , n} and |D(m)| = 1

(m ∈ G) below are probably not needed but they significantly simplify the proof. The theorem
applies to the cooperative contact process and more generally to spin systems, which is more
than sufficient for our purposes.

Theorem 27 (Homogeneous initial laws) Assume (1.6) and that the grid Λ is a group.
Assume that S = {0, . . . , n} and |D(m)| = 1 for all m ∈ G. Assume that the rates (rm)m∈G
satisfy (1.10) and (1.15) and are translation invariant. Assume moreover that:

(i) ∀ε > 0 ∃N <∞ such that |x| ≤ N implies Px
[
∃t ≥ 0 s.t. Xt = 0

]
≥ ε.

(ii) Px
[
Xt ≥ y

]
> 0 for each x, y ∈ SΛ

fin\{0} and t > 0.

Then the monotone dual (Yt)t≥0 started in an initial law that is homogeneous with Y0 ̸= ∅ a.s.
satisfies

P
[
Yt ∈ ·

]
=⇒
t→∞

νY, (2.40)

where ⇒ denotes weak convergence of probability measures on H(Λ).

The basic idea behind the proof of Theorem 27 is very old and goes back to the work of
Vasil’ev [Vas69] and Harris [Har76]. The details differ, however, from model to model and
depend on the type of duality that is being used. We first prove two lemmas and then prove
the theorem.

Lemma 28 (Extinction versus unbounded growth) Assume (1.6), (1.10), (1.15) and
condition (i) of Theorem 27. Then

Px
[
0 < |Xt| < N

]
−→
t→∞

0 (x ∈ SΛ
fin, N <∞). (2.41)

Proof Condition (i) of Theorem 27 says that each time the process returns to a state x with
|x| ≤ N , there is a probability of at least ε that the process gets extinct. By a standard
argument, this implies that almost surely either Xt = 0 for some t ≥ 0 or |Xt| → ∞, see
[Swa22, Lemma 6.36].

The next lemma is the key step in the proof of Theorem 27.

Lemma 29 (Large is good) Assume (1.6) and that the grid Λ is a group. Assume that
the rates (rm)m∈G satisfy (1.10) and (1.15) and are translation invariant, and assume condi-
tion (ii) of Theorem 27. Let (Yt)t≥0 be the monotone dual process, started in a homogeneous
initial law with Y0 ̸= ∅ a.s. Then for each s, ε > 0, there exists an N < ∞ such that for any
x ∈ SΛ

fin

|x| ≥ N implies P
[
ψmon(x, Ys) = 0

]
≤ ε. (2.42)
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Proof We construct (Yt)t≥0 as Yt := Ys,s−t(Y0) (t ≥ 0) where Y0 is independent of the
graphical representation ω, and use the duality relation (1.28) to write

P
[
ψmon(x, Ys) = 0

]
= P

[
ψmon(X0,s(x), Y0) = 0

]
=

∫
P
[
Y0 ∈ dY

]
P
[
1Y ↑

(
X0,s(x)

)
= 0

]
.

(2.43)
Fix s, ε > 0, N < ∞, and x ∈ SΛ with |x| ≥ N . Let ∆k ⊂ Λ be finite sets such that 0 ∈ ∆k

and ∆k ↑ Λ as k → ∞. For i ∈ Λ write i∆k := {ij : j ∈ ∆k}. It is easy to see that there
exists a finite set Γk ⊂ Λ with |Γk| ≥ N/|∆k| such that

x(i) ̸= 0 ∀i ∈ Γk and the sets {i∆k : i ∈ Γk} are disjoint. (2.44)

For each i ∈ Λ, let ωi,k := {(m, t) ∈ ω : D(m) ⊂ i∆k} and let (Xi,k
s,t)s≤t be the stochastic flow

defined as in (1.11) but with ω replaced by ωi,k. Set

Xt := X0,t(x) and Xi,k
t := Xi,k

0,t(ei) (t ≥ 0, i ∈ Γk). (2.45)

Then Xi,k
t (j) = 0 for all j ̸∈ i∆k and t ≥ 0, and using the assumptions that S = {0, . . . , n}

and |D(m)| = 1 (m ∈ G) and Proposition 40 in the appendix it is easy to see that Xt ≥ Xi,k
t

for each t ≥ 0. Moreover, since the sets i∆k are disjoint, the processes (Xi,k
t )t≥0 with i ∈ Γk

are independent. We note that this is the only place in the proof of Theorem 27 where the
assumptions S = {0, . . . , n} and |D(m)| = 1 (m ∈ G) are used. We can estimate the right-hand
side of (2.43) as∫

P
[
Y0 ∈ dY

]
P
[
1Y ↑(Xs) = 0

]
≤

∫
P
[
Y0 ∈ dY

] ∏
i∈Γk

P
[
1Y ↑(Xi,k

s ) = 0
]

1
≤

∏
i∈Γk

(∫
P
[
Y0 ∈ dY

]
P
[
1Y ↑(Xi,k

s ) = 0
]|Γk|

)1/|Γk|

2
=

∏
i∈Γk

(∫
P
[
Y0 ∈ dY

]
P
[
1Y ↑(X0,k

s ) = 0
]|Γk|

)1/|Γk|

=

∫
P
[
Y0 ∈ dY

]
P
[
1Y ↑(X0,k

s ) = 0
]|Γk| ≤

∫
P
[
Y0 ∈ dY

]
P
[
1Y ↑(X0,k

s ) = 0
]N/|∆k|,

(2.46)

where the inequality
1
≤ follows from Hölder’s inequality and in the equality

2
= we have used

the homogeneity of the law of Y0. Set

Zk :=
{
y ∈ SΛ

fin : P
[
X0,k

s ≥ y
]
> 0

}
. (2.47)

Since ∆k ↑ Λ, it is not hard to see that X0,k
s increases to X0,s(e0) as k → ∞. As a consequence,

Zk ↑ Z :=
{
y ∈ SΛ

fin : P
[
X0,s(e0) ≥ y

]
> 0

}
= SΛ

fin (2.48)

where the final equality follows from condition (ii) of Theorem 27. Using this and the assump-
tion that Y0 ̸= ∅ a.s., we see that∫

P
[
Y0 ∈ dY

]
P
[
1Y ↑(X0,k

s ) = 0
]N/|∆k| −→

N→∞
P
[
Y0 ∩ Zk ̸= ∅

]
−→
k→∞

P
[
Y0 ̸= ∅

]
= 0. (2.49)

In particular, for each ε > 0 we can first choose k large enough and then N large enough so
that this expression is ≤ ε, which by our previous calculations proves the claim of the lemma.

Proof of Theorem 27 Since the space H(Λ) is compact, the laws (P[Yt ∈ · ])t≥0 are tight,
so it suffices to prove that νY is the only cluster point. By Lemma 26 (using also Lemma 18),
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it suffices to show that for each n ≥ 1 and x1, . . . , xn ∈ {0, 1}Zd

fin,

E
[ n∏
k=1

ψmon(xk, Yt)
]
−→
t→∞

P
[
X0,t(xk) ̸= 0 ∀t ≥ 0, 1 ≤ k ≤ n

]
=: ρ(x1, . . . , xn). (2.50)

We construct (Yt)t≥0 as Yt = Yt,0(Y0) (t ≥ 0) where Y0 is independent of the graphical
representation, fix s > 0, and use duality to rewrite the left-hand side of (2.50) as

E
[ n∏
k=1

ψmon

(
X0,t−s(xk),Yt,t−s(Y0)

)]
. (2.51)

Here Yt,t−s(Y0) is equally distributed with Ys. Since disjoint parts of the graphical represen-
tation are independent, it is independent of (X0,t−s(xk))1≤k≤n. If t tends to infinity then so
does t− s, so we see that to prove (2.50), it suffices to prove that

E
[ n∏
k=1

ψmon

(
X0,t(xk), Ys

)]
−→
t→∞

ρ(x1, . . . , xn), (2.52)

where Ys is independent of (X0,t(xk))1≤k≤n. We fix ε > 0, we choose N in dependence on s
and ε as in Lemma 29, and introduce the events

A :=
{
X0,t(xk) = 0 for some 1 ≤ k ≤ n

}
,

B :=
{
0 < |X0,t(xk)| < N for some 1 ≤ k ≤ n

}
,

C :=
{
|X0,t(xk)| ≥ N for all 1 ≤ k ≤ n

}
.

(2.53)

We rewrite the left-hand side of (2.52) as

E
[ n∏
k=1

ψmon

(
X0,t(xk), Ys

) ∣∣A] · P[A] + E
[ n∏
k=1

ψmon

(
X0,t(xk), Ys

) ∣∣B]
· P[B]

+E
[ n∏
k=1

ψmon

(
X0,t(xk), Ys

) ∣∣C] · P[C]. (2.54)

Here the first term is zero since ψmon(x, Y ) = 0 if x = 0 and the second tends to zero by
Lemma 28. By Lemma 29 and a simple union bound,

P
[
ψmon

(
X0,t(xk), Ys

)
= 0 for some 1 ≤ k ≤ n

∣∣C] ≤ nε, (2.55)

while by Lemma 28 the probability of the event C tends to ρ(x1, . . . , xn). It follows that

(1− nε)ρ(x1, . . . , xn)≤ lim inf
t→∞

E
[ n∏
k=1

ψmon

(
X0,t(xk), Ys

)]
≤ lim sup

t→∞
E
[ n∏
k=1

ψmon

(
X0,t(xk), Ys

)]
≤ ρ(x1, . . . , xn).

(2.56)

Since ε > 0 is arbitrary, this proves the theorem.

2.5 The cooperative contact process

In this subsection we prove Theorems 12 and 13. We will show that most statements actually
remain true if the grid Zd is replaced by a general Cayley graph. Throughout this subsection
we assume that Λ is a finitely generated group and that ∆ is a finite subset of Λ that does
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not contain 0, is symmetric in the sense that k ∈ ∆ implies k−1 ∈ ∆, and that generates Λ.
To avoid trivialities we also assume |∆| ≥ 2. We equip Λ with the structure of a locally finite
graph with set of edges

E :=
{
{j, jk} : j ∈ Λ, k ∈ ∆

}
. (2.57)

This says that (Λ, E) is the Cayley graph associated with Λ and ∆. Note that if {j, k} ∈ E
and i ∈ Λ, then {ij, ik} ∈ E, and as a result the cooperative contact process on the graph
(Λ, E) has translation invariant rates in the sense of (2.39). Setting Λ := Zd with the usual
additive group structure and ∆ := {k : |k| = 1} yields the nearest-neighbour process on Zd.

Proof of Theorem 12 Most of the statement remains true if Zd with nearest neighbour
edges is replaced by a general Cayley graph as described above. We first prove the statement
under the assumptions δ > 0 and α < 1. These assumptions imply that conditions (i) and (ii),
respectively, of Theorem 27 are satisfied, so in this case formula (1.54) follows from (2.40).

We next consider the case δ = 0 and α < 1. Since δ = 0, we have Px[Xt ̸= 0 ∀t ≥ 0] = 1
for all x ̸= 0, so by (2.50) to prove the claim it suffices to show that

E
[ n∏
k=1

ψmon(xk, Yt)
]
−→
t→∞

1 (2.58)

for all x1, . . . , xn ∈ {0, 1}Λfin\{0}. It suffices to show this for n = 1, so using the duality relation
(1.28), we need to show that

E
[
ψmon

(
X0,t(x), Y0

)]
−→
t→∞

1
(
x ∈ {0, 1}Λfin\{0}

)
. (2.59)

Filling in the definition of ψmon, this says that

P
[
∃y ∈ Y0 s.t. X0,t(x) ≥ y

]
−→
t→∞

1
(
x ∈ {0, 1}Λfin\{0}

)
. (2.60)

Since δ = 0 and α < 1 and since ∆ generates Λ, it is easy to see that as a consequence of
branching, X0,t(x) ↑ 1 a.s. as t → ∞. Therefore, using the assumption Y0 ̸= ∅ a.s., we see
that (2.60) holds.

We finally consider the case δ > 0 and α = 1. Only in this case we use the assumption
that the grid is Zd with nearest-neighbour edges. Together with α = 1, this has the effect that
the cooperative contact process, started in a finite interval, rectangle, or (hyper)cube cannot
escape from such a set and hence a.s. dies out. This means that the right-hand side of (2.50)

is zero for all x1, . . . , xn ∈ {0, 1}Zd

fin and (2.50) is trivially satisfied.

We next start to prepare for the proof of Theorem 13. We consider cooperative contact
processes on general Cayley graphs as explained at the beginning of this subsection.

Lemma 30 (Limits of invariant laws) Let IY(α, δ) denote the set of invariant laws of
the monotone dual of the cooperative contact process with parameters α and δ. Assume that
(αn, δn) ∈ [0, 1] × [0,∞) converge to a limit (α, δ) and that νn ∈ IY(αn, δn) converge weakly
on H(Λ) to a probility law ν on H(Λ). Then ν ∈ IY(α, δ).

Proof Let ωn, ω be graphical representations corresponding to the rates (αn, δn) and (α, δ),
respectively. For each n, let Y n

0 have law νn and be independent of ωn. Likewise, let Y0 have
law ν and be independent of ω. To show that ν is invariant, we will show that Yt,0(Y0) has law
ν for each t ≥ 0. Fix t ≥ 0. We will show that Yn

t,0(Y
n
0 ) converges weakly in law to Yt,0(Y0).

Since each νn is invariant and νn ⇒ ν this then implies that Yt,0(Y0) has law ν. It suffices to
show that for a suitable coupling Yn

t,0(Y
n
0 ) converges a.s. to Yt,0(Y0). By the definition of the

topology on H(Λ) in (1.30) this amounts to showing that

ψmon

(
x,Yn

t,0(Y
n
0 )

)
−→
n→∞

ψmon

(
x,Yt,0(Y0)

)
a.s. (x ∈ SΛ

fin). (2.61)
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By the duality relation (1.28) this is equivalent to

ψmon

(
Xn

0,t(x), Y
n
0

)
−→
n→∞

ψmon

(
Xn

0,t(x), Y0
)

a.s. (x ∈ SΛ
fin). (2.62)

By Lemma 41 in the appendix, we can couple the graphical representations ωn, ω in such a
way that for each x ∈ SΛ

fin there exists an N < ∞ such that Xn
0,t(x) = X0,t(x) for all n ≥ N .

By Skorohod’s representation theorem [EK86, Cor 3.1.6 and Thm 3.1.8], we can couple the
Y n
0 , Y0, which are independent of everything else, in such a way that Y n

0 → Y0 a.s. Then (2.62)
follows from Lemma 18.

We continue to consider cooperative contact processes on general Cayley graphs. We let
νX(α, δ) and νY(α, δ) denote the upper invariant laws of the process and its monotone dual,
in dependence on the parameters α and δ.

Lemma 31 (Monotone coupling) Assume that α ≤ α′ and δ ≤ δ′. Then θ(α, δ) ≥ θ(α′, δ′),
νX(α, δ) ≥ νX(α

′, δ′) in the stochastic order on SΛ, and νY(α, δ) ≥ νY(α
′, δ′) in the stochastic

order on H(Λ).

Proof Let R1 := |Ni| and R2 := |N (2)
i | which by translation invariance do not depend on

i ∈ Λ. Let
Gdth :=

{
dthj : j ∈ Λ

}
, Gbra :=

{
braij : j ∈ Λ, i ∈ Nj

}
,

Gcoop :=
{
coopii′j : j ∈ Λ, (i, i′) ∈ N (2)

j

}
.

(2.63)

Let ωdth and ω′
dth be Poisson point sets on Gdth ×R with intensities δ and δ′ − δ, let ωbra be a

Poisson point set on Gbra × R with intensity (1− α′)/R1, and let ωcoop and ω′
coop be Poisson

point sets on Gcoop ×R with intensities α/R2 and (α′ −α)/R2. Assume that all these Poisson
point sets are independent. Define

ω′
bra :=

{
(braij , t) : (coopii′j , t) ∈ ω′

coop

}
. (2.64)

Then setting

ω := ωdth ∪ ωbra ∪ ω′
bra ∪ ωcoop and ω′ := ωdth ∪ ω′

dth ∪ ωbra ∪ ωcoop ∪ ω′
coop (2.65)

defines two graphical representations for two cooperative contact processes, the first one with
parameters α and δ and the second one with parameters α′ and δ′. Note that in the latter
compared to the former, the death map is applied more frequently while some applications of
a branching map braij have been replaced by an application of a cooperative branching map
coopii′j (with the same i and j).

Let (Xs,t)s≤t and (X′
s,t)s≤t be the stochastic flows constructed from ω and ω′. Using

Proposition 40 in the appendix, it is straightforward to check that

x ≥ x′ implies Xs,t(x) ≥ X′
s,t(x

′)
(
s ≤ t, x, x′ ∈ {0, 1}Λ

)
. (2.66)

Applying this with x = x′ = e0 shows that θ(α, δ) ≥ θ(α′, δ′) while setting x = x′ := 1,
using (1.38) we see that νX(α, δ) ≥ νX(α

′, δ′) in the stochastic order on SΛ. To show that
νY(α, δ) ≥ νY(α

′, δ′) in the stochastic order on H(Λ), by (1.37) it suffices to show that

Yt,s(Ytop) ≥ Y′
t,s(Ytop) (t ≥ s) (2.67)

in the stochastic order on H(Λ). By (1.33) this is equivalent to

1Yt,s(Ytop)↑(x) ≥ 1Yt,s(Y ′
top)

↑(x) (t ≥ s, x ∈ {0, 1}Λ). (2.68)

Here, by the duality relation (1.28),

1Yt,s(Ytop)↑(x) = ψmon

(
x,Yt,s(Ytop)

)
= ψmon

(
Xs,t(x), Ytop

)
= 1{Xs,t(x)̸=0} (2.69)
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and likewise for the stochastic flow defined by ω′, so we need to show, for each t ≥ s and
x ∈ {0, 1}Λ, that X′

s,t(x) ̸= 0 implies Xs,t(x) ̸= 0. This follows from (2.66), so the proof is
complete.

Lemma 32 (Increasing limit) Assume that αn, α ∈ [0, 1] and δn, δ ∈ [0,∞) satisfy αn ↑ α
and δn ↑ δ. Then

νY(αn, δn) =⇒
n→∞

νY(α, δ) (2.70)

where ⇒ denotes weak convergence of probability measures on H(Λ).

Proof Since H(Λ) is compact the measures νY(αn, δn) are tight so it suffices to show that
νY(α, δ) is their only cluster point. By Lemma 30 each cluster point ν is an invariant law
and hence ν ≤ νY(α, δ). If this is not an equality then there exists a continuous monotone
function f such that ∫

f dνY(αn, δn) <

∫
f dνY(α, δ) (2.71)

for n large enough, contradicting Lemma 31, so we conclude that ν = νY(α, δ).

Lemma 33 (Decreasing limit) Let A be the set defined in (1.55). Assume that (αn, δn) ∈ A
satisfy αn ↓ α and δn ↓ δ for some (α, δ) ∈ A. Then

νY(αn, δn) =⇒
n→∞

νY(α, δ). (2.72)

Proof As in the proof of Lemma 32 it suffices to prove νY(α, δ) is the only cluster point.
By Lemma 30 each cluster point ν is an invariant law. It is also clearly homogeneous. By
Lemma 31 ν ≥ νY(αn, δn) for each n. Combining this with the assumption (αn, δn) ∈ A we
see that ν({∅}) ≤ νY(αn, δn)({∅}) = 0. We can now apply Theorem 12 to conclude that
ν = νY(α, δ).

Proposition 34 (General limits) Let A be the set defined in (1.55). Assume that (αn, δn) ∈
A satisfy αn → α and δn → δ for some (α, δ) ∈ A. Then

νY(αn, δn) =⇒
n→∞

νY(α, δ). (2.73)

Proof As in the proof of Lemma 32 it suffices to prove νY(α, δ) is the only cluster point. By
going to a subsequence, we can assume that we are in one of the following four cases: I. αn ↑ α
and δn ↑ δ, II. αn ↑ α and δn ↓ δ, III. αn ↓ α and δn ↑ δ, IV. αn ↓ α and δn ↓ δ. Cases I and
IV have been treated in Lemmas 32 and 33, respectively. In case II we use Lemma 31 which
says that in the stochastic order on H(Λ),

νY(α, δn) ≤ νY(αn, δn) ≤ νY(αn, δ). (2.74)

The left-hand side converges by Lemma 33 and the right-hand side by Lemma 32. By
Lemma 36 in the appendix, which is applicable by Propositions 6 and 9, the set of mono-
tone continuous functions on H(Λ) is distribution determining, which allows us to conclude
that in (2.74) also the expression in the middle converges. Case III is similar.

Proof of Theorem 13 We claim that that the function

[0, 1]× [0,∞) ∋ (α, δ) 7→ θt(α, δ) := P[Xt ̸= 0] (2.75)

is continuous for each t ≥ 0. Indeed, if (αn, δn) → (α, δ), then by Lemma 41 in the appendix,
we can couple graphical representations ωn, ω with these rates in such a way that for the
associated stochastic flows, for each x ∈ SΛ

fin there exists anN <∞ such thatXn
0,t(x) = X0,t(x)

for all n ≥ N , which implies (2.75). Since θ is the decreasing limit of the functions θt as t→ ∞,
it must be upper semi-continuous.

Continuity of θ on the set A from (1.55) follows from Proposition 34 using (2.35) and
Lemma 18.
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A Appendix

A.1 The stochastic order

In this appendix we collect some general facts about the stochastic order. Throughout this
appendix X is a compact metrisable space that is equipped with a partial order ≤ that is
compatible with the topology in the sense that{

(x, y) ∈ X 2 : x ≤ y
}
is a closed subset of X 2, (A.1)

where X 2 is equipped with the product topology.

Lemma 35 (Closedness of upset and downset) Let X be a compact metrisable space that
is equipped with a partial order ≤ that is compatible with the topology. Assume that A ⊂ X is
closed. Then A↑ and A↓ are also closed.

Proof Since A is closed and the partial order is compatible with the topology, the set B :=
{(x, y) ∈ A × X : x ≤ y} is closed, and hence by the compactness of X also compact. Using
the fact that the continuous image of a compact set is compact, and that A↑ is the image of B
under the map (x, y) 7→ y, we see that A↑ is compact and hence closed. The same argument
works for A↓.

We let B(X ) denote the space of bounded Borel measurable functions f : X → R. We let
B+(X ) denote the set of f ∈ B(X ) that are monotone in the sense that f(x) ≤ f(y) for all
x ≤ y. We let C(X ) denote the space of continuous functions f : X → R (which are bounded
since X is compact) and write C+(X ) := C(X ) ∩ B+(X ). We let M1(X ) denote the space of
probability measures on X . We will need the follwing fact.

Lemma 36 (Distribution determining property) If µ, ν ∈ M1(X ) satisfy
∫
µ(dx)f(x) =∫

ν(dx)f(x) for all f ∈ C+(X ), then µ = ν.

Proof Let F := {f ∈ C+(X ) : f ≥ 0}. By [Swa22, Lemma 4.37] it suffices to show that F
is closed under products in the sense that f, g ∈ F imply fg ∈ F , and separates points in
the sense that for each x, y ∈ X with x ̸= y, there exists an f ∈ F such that f(x) ̸= f(y).
Closedness under products is trivial. To see that F separates points we observe that x ̸= y
implies that either {x}↓ ∩ {y}↑ = ∅ or {x}↑ ∩ {y}↓ = ∅. By symmetry we may assume hat we
are in the first case. By Lemma 35 {x}↓ and {y}↑ are closed. By Theorem I.2.1 in [Nac65], X is
a “normal ordered topological space” which allows us to apply the corollary to Theorem I.3.4
in [Nac65] which tells us that there exists a monotone continuous function f : X → [0, 1] such
that f(x) = 0 and f(y) = 1.

Proposition 37 (Stochastic order) For µ, ν ∈ M1(X ) the following conditions are equiv-
alent:

(i) It is possible to couple random variables X,Y with laws µ, ν such that X ≤ Y a.s.

(ii)

∫
µ(dx)f(x) ≤

∫
ν(dx)f(x) for all f ∈ B+(X ).

(iii)

∫
µ(dx)f(x) ≤

∫
ν(dx)f(x) for all f ∈ C+(X ).

Proof The implications (i)⇒(ii)⇒(iii) are trivial and the difficult implication (iii)⇒(i) is
proved in [Lig85, Theorem II.2.4].

For ν, µ ∈ M1(X ) we write µ ≤ ν if (i)–(iii) hold. By Lemma 36 this defines a partial
order on M1(X ). We call this the stochastic order.

A Feller process (Xt)t≥0 with transition kernels (Pt)t≥0 is called monotone if Ptf ∈ C+(X )
for all f ∈ C+(X ). Equivalently, this says that Px[Xt ∈ · ] ≤ Py[Xt ∈ · ] for each x ≤ y.
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Proposition 38 (Upper invariant law) Assume that X possesses a greatest element ⊤.
Let (Pt)t≥0 be the semigroup of a monotone Feller process (Xt)t≥0 with state space X . Then
there exists an invariant law ν of (Xt)t≥0 that is uniquely characterized by the property that
ν ≤ ν for each invariant law ν of (Xt)t≥0. Moreover, one has

Pt(⊤, · ) =⇒
t→∞

ν, (A.2)

where ⇒ denotes weak convergence of probability measures on X .

Proof This is stated for X = {0, 1}Λ in [Lig85, Theorem III.2.3] and [Swa22, Theorem 5.4],
but the proof carries over to the more general setting without a change.

A.2 Graphical representations

In this appendix we collect some general facts about interacting particle systems and their
construction from graphical representations. In particular, we provide proofs for Theorem 1
and Proposition 2. Our main reference is [Swa22].

Proof of Theorem 1 Condition (1.10) implies condition (4.15) of [Swa22]. In view of
this, [Swa22, Thm 4.19] implies existence and uniqueness of solutions to (1.11), and [Swa22,
Thm 4.20] implies that the process in (1.13) is a Feller process. By [Swa22, Thm 4.30], the
generator of this Feller process is the closure of the operator G from (1.2), which is initially
defined for functions depending on finitely many coordinates only.

We let P(Λ) denote the set of subsets of Λ and write Pfin(Λ) := {A ∈ P(Λ) : |A| <∞}. We
equip Pfin(Λ), which is countable, with the discrete topology. The following lemma prepares
for the proof of Proposition 2.

Lemma 39 (Evolving set process) Assume (1.10) (i) and (1.15). Then almost surely, for
each s ∈ R and A ∈ Pfin(Λ), there exists a unique cadlag function ξs,A : [s,∞) → Pfin(Λ) such
that ξs,As = A and

ξs,At =

{ {
j ∈ Λ : ∃i ∈ ξs,At− s.t. (i, j) ∈ R(m)

}
if (m, t) ∈ ω,

ξs,At− otherwise
(t > s). (A.3)

Proof If s and A are deterministic, then (ξs,As+t)t≥0 is a continuous-time Markov chain with
countable state space Pfin(Λ). Using (1.10) (i), one can show that this process is well-defined
in the sense that all its jump rates are finite, and using moreover (1.15) one can show that
this process is nonexplosive. This is extremely similar to [Swa22, Lemma 4.21], except that
the process (ζu−t(A))t≥0 considered there “runs backwards in time” and (1.15) is replaced by
(1.10) (ii). Since the proof is essentially the same, we omit the details. Using an argument as
in [Swa22, Lemma 4.22], one can remove the assumption that s and A are deterministic, i.e.,
one can show that the statement holds a.s. for all s ∈ R and A ∈ Pfin(Λ) simultaneously.

Proof of Proposition 2 Fix s ∈ R and x, y ∈ SΛ such that A := {i ∈ Λ : x(i) ̸= x(j)}
is finite, and set Xs,x

t := Xs,t(x) (t ≥ 0). Conditions (1.10) (i) and (1.15) allow us to apply

Lemma 39 which says that (A.3) has a unique solution (ξs,At )t≥0. Let

ω′ :=
{
(m, t) ∈ ω : t > s, D(m) ∩ ξs,At− ̸= ∅

}
∪
{
(m, t) ∈ ω : t > s, ∃(i, j) ∈ R(m) s.t. i ∈ ξs,At− , j ∈ D(m)

}
.

(A.4)

It follows from (1.10) (i), (1.15), and the finiteness of (ξs,At )t≥0 that we can order the elements
of ω′ as

ω′ =
{
(mk, tk) : k ≥ 1

}
with t1 < t2 < · · · . (A.5)
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We now define (Xs,y
t )t≥s by first setting

Xs,y
t (i) := Xs,x

t (i) (t ≥ s, i ̸∈ ξs,At ), (A.6)

and then setting

Xs,y
t (i) := y(i) (t ∈ [s, t1), i ∈ A),

Xs,y
t (i) :=mk(X

s,y
tk−)(i) (t ∈ [tk, tk+1), i ∈ ξs,Atk

, k ≥ 1).
(A.7)

It is then straightforward to check that (Xs,y
t )t≥s solves (1.11) with initial condition Xs,y

s = y.
Using also condition (1.10) (ii) (which has not been used up to this point) we can apply
Theorem 1 to conclude that (1.11) has a unique solution and Xs,y

t = Xs,t(y). Then{
i ∈ Λ : Xs,t(x)(i) ̸= Xs,t(y)(i)

}
⊂ ξs,At (t ≥ s), (A.8)

so the sets in (1.16) are finite for all t ≥ s.

We need some approximation results that allow us to conclude that particle systems can
be approximated by finite systems, or by systems whose rates converge in an appropriate way.
In the setting of Theorem 1, if ω′ is a finite subset of G × R such that no two elements of ω′

have the same time coordinate, then we can define a stochastic flow (Xω′
s,t)s≤t by setting, for

each s ≤ u,

Xω′
s,u := mn ◦ · · · ◦m1 where{

(m, t) ∈ ω′ : s < t ≤ u
}
=

{
(m1, t1), . . . , (mn, tn)

}
with t1 < · · · < tn.

(A.9)

We cite the following result from [Swa22, Lemma 4.24].

Proposition 40 (Finite approximation) Under the assumptions of Theorem 1, almost
surely for all s ≤ u and for each sequence ωn of finite subsets of ω such that ωn ↑ ω, one has

Xωn
s,t (x) −→

n→∞
Xs,t(x) (x ∈ SΛ), (A.10)

where → denotes convergence in the product topology.

Let Λ be countable, let S be finite, and let G be a countable collection of local maps
m : SΛ → SΛ. Assume (1.6). Let R be the set of all collections r = (rm)m∈G of nonnegative
rates that satisfy (1.10) and (1.15). By Lemma 3, for each r ∈ R, we can construct a stochastic
flow (Xs,t)s≤t that maps the space SΛ

fin into itself. We need a result that says that if a sequence
of rates rn converges in an appropriate sense, then the associated stochastic flows converge.

Lemma 41 (Convergence of finite systems) For each i ∈ Λ, set

Gi :=
{
m ∈ G : i ∈ D(m)

}
∪
{
m ∈ G : ∃j ∈ D(m) s.t. (i, j) ∈ R(m)

}
. (A.11)

Assume that rn, r ∈ R satisfy ∑
m∈Gi

|rnm − rm| −→
n→∞

0 ∀i ∈ Λ. (A.12)

Then it is possible to couple the graphical representations ωn, ω with rates rn, r in such a way
that the associated stochastic flows satisfy

Xn
s,u(x) −→

n→∞
Xs,u(x) a.s. ∀s ≤ u, x ∈ SΛ

fin, (A.13)

where the convergence is with respect to the discrete topology on SΛ
fin.
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Proof Let π be a Poisson point set on G × R× [0,∞) with intensity measure

µ
(
{m} × [s, t]× [0, r]

)
:= r(t− s) (m ∈ G, s ≤ t, r ≥ 0). (A.14)

Then for each collection of rates r = (rm)m∈G we can define a graphical representation with
these rates by setting

ω :=
{
(m, t) : (m, t, r) ∈ π, r ≤ rm

}
. (A.15)

Let ωn and ω be constructed in this way for the rates rn and r. Fix s ≤ u and x ∈ SΛ
fin, set

ξt := {i ∈ Λ : Xs,t(x)(i) ̸= 0} (t ≥ s), and consider the set (compare (A.4))

ω̃ :=
{
(m, t) ∈ ω : s < t ≤ u, D(m) ∩ ξt− ̸= ∅

}
∪
{
(m, t) ∈ ω : s < t ≤ u, ∃(i, j) ∈ R(m) s.t. i ∈ ξt−, j ∈ D(m)

}
.

(A.16)

Define ω̃n similarly, with ω in (A.16) replaced by ωn (but still using the same process (ξt)t≥0

which is defined in terms of ω). The condition (A.12) guarantees that almost surely ω̃n = ωn

for all n large enough, and hence also Xn
s,u(x) = Xs,u(x) for all n large enough.
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[Gri79] D. Griffeath. Additive and Cancellative Interacting Particle Systems. Lecture Notes
in Math. 724, Springer, Berlin, 1979.

[Har76] T.E. Harris. On a class of set-valued Markov processes. Ann. Probab. 4(2) (1976),
175–194.

[Har78] T.E. Harris. Additive set-valued Markov processes and graphical methods. Ann.
Probab. 6(3) (1978), 355–378.

[Lig85] T.M. Liggett. Interacting Particle Systems. Springer, New York, 1985.

[Lig99] T.M. Liggett. Stochastic Interacting Systems: Contact, Voter and Exclusion pro-
cesses. Springer-Verlag, Berlin, 1999.

[Nac65] L. Nachbin. Topology and Order. Princeton, New Jersey, 1965.

29



[Sie76] D. Siegmund. The equivalence of absorbing and reflecting barrier problems for stochas-
tically monotone Markov processes. Ann. Probab. 4 (1976), 914–924.

[SS18] A. Sturm and J.M. Swart. Pathwise duals of monotone and additive Markov processes.
J. Theor. Probab. 31(2) (2018), 932–983.

[SSS14] E. Schertzer, R. Sun, J.M. Swart. Stochastic flows in the Brownian web and net.
Mem. Am. Math. Soc. Vol. 227 (2014), Nr. 1065.

[Swa22] J.M. Swart. A Course in Interacting Particle Systems. Lecture notes (2022),
arXiv:1703.10007v4.

[Vas69] N.B. Vasil’ev. Limit behavior of one random medium. (In Russian.) Probl. Peredachi
Inf. 5(4) (1969) 68–74.

30


	Introduction and main results
	Monotone particle systems
	Graphical representations
	Duality
	The dual process
	Survival and stability
	Ergodicity of the dual process
	Discussion and open problems

	Proofs
	The dual space
	The dual process
	The upper invariant law
	Homogeneous invariant laws
	The cooperative contact process

	Appendix
	The stochastic order
	Graphical representations


