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Abstract

We give tightness criteria for random variables taking values in the space of all compact
sets of cadlag real-valued paths, in terms of both the Skorohod J1 and M1 topologies. This
extends earlier work motivated by the study of the Brownian web that was concerned only
with continuous paths. In the M1 case, we give a natural extension of our tightness criteria
which ensures that non-crossing systems of paths have weak limit points that are also non-
crossing. This last result is exemplified through a rescaling of heavy tailed Poisson trees and
a more general application to weaves.
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1 Main results

1.1 Introduction

A central theme in probability theory is the weak convergence in law of stochastic processes,
the canonical example of which is the rescaling of random walks to Brownian motion and, more
generally, to α-stable processes. The modern perspective is to treat a stochastic process as a
single random variable, a random path, and to consider convergence in terms of probability
laws on the space of all possible paths of the process. Paths are usually assumed to be cadlag
i.e. right-continuous with left limits, with time domain [0,∞) and values in some Polish space
M . The space D[0,∞)(M) of such paths is often equipped with Skorohod’s J1 topology, which
is commonly known as ‘the’ Skorohod topology. For real valued processes, the slightly weaker
Skorohod M1 topology is sometimes required instead e.g. [Whi02, DGM24]. Proofs of weak
convergence typically involve establishing that (1) a sequence of probability laws on the space of
all paths is tight and (2) has a unique weak cluster point; the classical works [EK86] and [Bil99]
are standard references for this approach. For this reason, tightness criteria are of central
importance.

The introduction of the Brownian web [FINR04] started interest in random variables that
are not a single random path, but rather a random compact set of paths. The framework for
doing so established by [FINR04] for the Brownian web (often known as ‘the Brownian web
topology’) treats continuous paths. More recently random compact sets whose elements are
paths with jumps have been considered [MRV19, FS24], along with surprising tightness failures
for continuous paths that are related to the appearance of a small fraction of jumps in the limit
[BMRV06, SSY21]. This naturally asks for tightness criteria for random sets of cadlag paths,
which is the focus of the present article.

We consider systems in which different paths are typically defined on different time domains.
The Brownian web, for example, covers space-time R × R with continuous paths π for which
the time domains are of the form [s,∞), and s ∈ R is called the starting time of π. This
necessitates an underlying topology (on individual paths) that allows for the convergence of
a sequence of paths that may all have different time domains. In the work of [FINR04], for
continuous paths, such convergence can roughly be described as locally uniform convergence
of functions plus convergence of the starting times. In [FS23] we generalised this principle by
introducing a space of cadlag paths for which the time domains are arbitrary closed subsets of
the real line. Although our focus is on random sets of paths, we note that this generalization is
natural in even the most basic examples e.g. we may then express the rescaling of discrete time
random walks to continuous time processes without involving (linear or otherwise) interpolation
in between discrete times of the walk.

In [FS23] we showed that the space introduced therein of cadlag paths (with arbitrary closed
subsets as time domains) was Polish, for both the J1 and M1 cases. Our present paper builds
on this work by deriving tightness criteria for random compact subsets of this space, in the
case where paths are real valued. The main result is Theorem 1.2 below. It provides a robust
criterion that involves checking a single property, based on how frequently paths cross small
intervals of R.

When working with cadlag paths on varying time domains, one complication is that the
property of two paths not crossing each other is not automatically preserved by taking limits.
This complication arises from jumps that may form at the starting times of limiting paths;
we remark that our state space permits this possibility, because it is necessarily a feature of
treating random sets of cadlag paths as compact sets. The theory that has developed around
the Brownian web has shown that systems of non-crossing paths are substantially easier to work
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with than systems with crossing paths. With this in mind, in Theorem 1.3 we note a natural
analogue of our main result which implies not only tightness, but also that all weak limit points
are non-crossing.

We give the proofs in Section 2 followed by two applications of our results in Section 3.
Sections 2 and 3 may be read independently of one another. In Section 3.1 we give tightness
criteria for weaves – a weave, introduced in [FS24], is a random compact subset A ⊆ Π↑ that
is non-crossing and for which, with probability one, for all z ∈ R2 there exists π ∈ A such that
z ∈ π i.e. the paths cover space-time. We show that, for weaves, tightness essentially comes
down to tightness of the motion of a single particle. In Section 3.2 we exemplify this result on
a sequence of rescaled Poisson trees in which the limiting motion of a single path is an α-stable
process.

1.2 Path space

We begin by recalling the necessary definitions and related background from [FS23]. Let R :=
[−∞,∞]. There exists a unique metrisable topology on

R2
c := (R× R) ∪

{
(∗,−∞), (∗,+∞)

}
(1.1)

such that R2
c is compact and a sequence (xn, tn) ∈ R2

c converges to a limit (x, t) if and only if

(i) tn → t in the topology on R,

(ii) if t ∈ R, then xn → x in the topology on R.

The space R2
c has earlier been introduced in [FINR04]. We can think of R2

c as being obtained

from the space R2
after squeezing the sets R × {±∞} into the single points (∗,±∞). For this

reason, we call R2
c the squeezed space. We let dsqz denote any metric generating the topology on

R2
c .
Let I be a closed subset of R, let

I− :=
{
t ∈ I : (t− ε, t) ∩ I ̸= ∅ ∀ε > 0

}
and I+ :=

{
t ∈ I : (t, t+ ε) ∩ I ̸= ∅ ∀ε > 0

}
(1.2)

denote the sets of points in I that can be approximated from the right or left, respectively, and
let I ∋ t 7→ π(t±) ∈ R be right- and left-continuous functions such that

π(t−) = lim
s↑t

π(s+) (t ∈ I−) and π(t+) = lim
s↓t

π(s−) (t ∈ I+). (1.3)

We call the triple consisting of I and the functions t 7→ π(t−) and t 7→ π(t+) a path and we say
that I is the domain of the path. We let Π denote the set of all paths. For x, z ∈ R we write
[x, z] := {y ∈ R : x ∧ z ≤ y ≤ x ∨ z}, and we set

π :=
{
(x, t) : t ∈ I, x ∈ {π(t−), π(t+)}

}
,

π :=
{
(x, t) : t ∈ I, x ∈ [π(t−), π(t+)]

}
.

(1.4)

We call π the closed graph and π the filled graph of π. We equip these sets with a total order
⪯ such that two elements (x, s), (y, t) ∈ π, π are strictly ordered (x, s) ≺ (y, t) if and only if
either s < t, or s = t and x lies closer to π(t−) than y. Note that the set I as well as the right-
and left-continuous functions t 7→ π(t+) and t 7→ π(t−) can be read off from the closed or filled
graph together with the total order ⪯. For this reason, we often identify a path with its closed
graph and denote a path simply as π and its domain by Iπ := I. We set

π∗ := π ∪
{
(∗,−∞), (∗,+∞)

}
and π∗ := π ∪

{
(∗,−∞), (∗,+∞)

}
. (1.5)
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By [FS23, Lemma 3.1] π∗ and π∗ are compact subsets of the squeezed space R2
c . We extend the

total order ⪯ to π∗ and π∗ in such a way that (−∞, ∗) is the minimal element and (∞, ∗) the
maximal element.

A correspondence between two sets A,B is a set C ⊂ A×B such that

∀a ∈ A ∃b ∈ B s.t. (a, b) ∈ C and ∀b ∈ B ∃a ∈ A s.t. (a, b) ∈ C. (1.6)

We let Corr(A,B) denote the set of all correspondences between A and B. If X is a metrisable
topological space, then we let K+(X ) denote the space of nonempty compact subsets of X . If d
is a metric generating the topology on X , then the corresponding Hausdorff metric on K+(X )
is defined as

dH(K1,K2) := inf
z1∈K1

d(z1,K2) ∨ inf
z2∈K2

d(z2,K1) = inf
C∈Corr(K1,K2)

sup
(z1,z2)∈C

d(z1, z2), (1.7)

where as usual d(z,K) := infz′∈K d(z, z′) denotes the distance of a point to a set. It follows
from [SSS14, Lemma B.1] that the topology on K+(X ) only depends on the topology on X and
not on the choice of the metric. We call this the Hausdorff topology on K+(X ). We note that
[SSS14, Lemmas B.2 and B3] show that K+(X ) is Polish if X is Polish, and compact if X is
compact.

For paths π1, π2 ∈ Π, we let Corr+(π
∗
1, π

∗
2) denote the set of correspondences C between π∗

1

and π∗
2 that are monotone in the sense that

there are no (z1, z2), (z
′
1, z

′
2) ∈ C such that z1 ≺1 z

′
1 and z′2 ≺2 z2. (1.8)

If dsqz is a metric generating the topology on the squeezed space R2
c , then we define a corre-

sponding metric dJ1 on the path space Π by

dJ1(π1, π2) := inf
C∈Corr+(π∗

1 ,π
∗
2)

sup
(z1,z2)∈C

dsqz(z1, z2)
(
π1, π2 ∈ Π

)
. (1.9)

We define dM1(π1, π2) in the same way, but with Corr+(π
∗
1, π

∗
2) replaced by Corr+(π

∗
1, π

∗
2), the

set of monotone correspondences between the compactified filled graphs π∗
1 and π∗

2. It follows
from [FS23, Thm 2.10] that the topologies generated by these metrics do not depend on the
choice of the metric dsqz on R2

c . By [FS23, Prop 3.3], the space Π, equipped with either topology,
is Polish.1 As explained in [FS23, Subsection 3.4], the topology generated by dJ1 corresponds
to Skorohod’s J1-topology while dM1 generates Skorohod’s M1-topology. Or rather, these are
generalisations of these two classical topologies that allow for convergence of sequences of paths
that need not all have the same domain.

We let Πc and Π| denote the subspaces of Π consisting of continuous and connected paths,
respectively, defined as

Πc :=
{
π ∈ Π : π(t−) = π(t+) ∀t ∈ Iπ

}
,

Π| :=
{
π ∈ Π : I is an interval

}
,

(1.10)

and we naturally write Π
|
c := Πc ∩Π|. We also write Π↑ and Π↓ for the subsets of Π| consisting

of paths whose domain is an interval that is unbounded from above and below, respectively, and
we let Π↕ := Π↑ ∩ Π↓ denote the set of bi-infinite paths. Then Π↑

c is the classical path space of
the Brownian web [FINR04]. For paths π ∈ Πc we write π(t) := π(t−) = π(t+) (t ∈ Iπ). As a

1When we say that Π is Polish we mean that Π is separable and there exists a complete metric d generating
the topology on Π. This does not imply that the metrics dJ1 and dM1 are complete, which, indeed, they are not.
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result of [FS23, Prop 3.4], the metrics dJ1 and dM1 generate the same topology on Πc. It follows

from [FS23, Lemma 3.5] that Π
|
c is closed as a subset of Π in the J1-topology. We note that

paths in Π↑ can make a jump at their starting time. This is different from the usual conventions
for the space of cadlag functions defined on [0,∞) but will be crucial for Theorem 1.2 below as
well as in future applications we have in mind.

1.3 Tightness for random compact sets of paths

Let Π be the path space introduced in the previous subsection, equipped with either the J1 or
M1 topology, and let K+(Π) be the space of nonempty compact subsets of Π, equipped with
the Hausdorff topology. We note that since Π is Polish under both the J1 and M1 topologies,
by [FS23, Lemma 2.7] the resulting topology on K+(Π) is also Polish in either case. We will be
interested in weak convergence of probability measures on K+(Π) with respect to both the J1
and M1 topologies on Π. General topology tells us2 that a sequence of probability measures µn

on K+(Π) converges weakly to a limit if and only if the set {µn : n ∈ N} is precompact and
µ is its only cluster point. Since K+(Π) is Polish, Prohorov’s theorem tells us that a family
{µγ : γ ∈ Γ} of probability measures on K+(Π) is precompact if and only if it is tight, i.e., for
all ε > 0, there exists a compact C ⊂ Π such that

sup
γ∈Γ

µγ

(
Π\C

)
≤ ε. (1.11)

We are therefore naturally interested in tightness criteria for families of probability measures on
K+(Π), with respect to the J1 and M1 topologies on Π. As a warm-up, we discuss tightness on
K+(Πc), where Πc, defined in (1.10), is the space of continuous paths. As already mentioned,
the metrics dJ1 and dM1 generate the same topology on Πc.

For each π ∈ Π and real T, δ > 0, we set

∆2
T,δ(π) :=

{
(x, y) : ∃ − T ≤ s ≤ t ≤ T s.t. t− s ≤ δ

and (x, s), (y, t) ∈ π, (x, s) ⪯ (y, t)
}
.

(1.12)

For each T, δ, ε > 0 and r ∈ R, we define sets of paths by

S+
T,δ,ε,r :=

{
π ∈ Π : ∃(x, y) ∈ ∆2

T,δ(π) s.t. x ≤ r, r + ε ≤ y
}
,

S−
T,δ,ε,r :=

{
π ∈ Π : ∃(x, y) ∈ ∆2

T,δ(π) s.t. y ≤ r, r + ε ≤ x
}
,

(1.13)

and we set S2
T,δ,ε,r := S+

T,δ,ε,r ∪ S−
T,δ,ε,r. The set S+

T,δ,ε,r comprises paths that cross [r, r+ ε] from
left to right within time [−T, T ], with the condition that once the crossing has begun it takes
time less than δ to complete. The set S−

T,δ,ε,r corresponds to crossings from right to left. Our
first result is an extension of earlier work [FINR04, Prop B1] which therein is restricted to the

space Π↑
c .

Theorem 1.1 (Tightness criterion for sets of continuous paths) Let (Aγ)γ∈Γ be a fam-
ily of random variables with values in K+(Πc). Then the laws (µγ)γ∈Γ with µγ := P[Aγ ∈ · ] are
tight with respect to the topology on Πc if and only if

lim
δ→0

sup
γ∈Γ

P
[
S2
T,δ,ε,r ∩ Aγ ̸= ∅

]
= 0 ∀T, ε > 0, r ∈ R. (1.14)

2In any metrisable space, a sequence xn converges to a limit x if and only if the set {xn : n ∈ N} is precompact
(i.e., its closure is compact) and x is its only cluster point (i.e., subsequential limit point).
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We now turn our attention to paths with jumps. For each π ∈ Π and real T, δ > 0, we set

∆3
T,δ(π) :=

{
(x, y, z) : ∃ − T ≤ s ≤ t ≤ u ≤ T s.t. u− s ≤ δ

and (x, s), (y, t), (z, u) ∈ π, (x, s) ⪯ (y, t) ⪯ (z, u)
}
.

(1.15)

For each T, δ, ε > 0 and r ∈ R, we define sets of paths by

S+−
T,δ,ε,r :=

{
π ∈ Π : ∃(x, y, z) ∈ ∆3

T,δ(π) s.t. x, z ≤ r, r + ε ≤ y
}
,

S−+
T,δ,ε,r :=

{
π ∈ Π : ∃(x, y, z) ∈ ∆3

T,δ(π) s.t. y ≤ r, r + ε ≤ x, z
}
,

S++
T,δ,ε,r :=

{
π ∈ Π : ∃(x, y, z) ∈ ∆3

T,δ(π) s.t. x ≤ r, r + ε ≤ y ≤ r + 2ε, r + 3ε ≤ z
}
,

S−−
T,δ,ε,r :=

{
π ∈ Π : ∃(x, y, z) ∈ ∆3

T,δ(π) s.t. z ≤ r, r + ε ≤ y ≤ r + 2ε, r + 3ε ≤ x
}
,

(1.16)

and we set
SJ
T,δ,ε,r := S++

T,δ,ε,r ∪ S−−
T,δ,ε,r and SM

T,δ,ε,r := S+−
T,δ,ε,r ∪ S−+

T,δ,ε,r. (1.17)

The set S+−
T,δ,ε,r comprises paths that cross [r, r+ ε] from left to right, and then back again from

right to left, during time [−T, T ] with the whole exercise taking time less that δ; whilst S−+
T,δ,ε,r

corresponds to similar movement from right to left. The set S++
T,δ,ε,r comprises paths that cross

[r, r + ε] from left to right, then take a value in [r + ε, r + 2ε], then cross [r + 2ε, r + 3ε] from
left to right, during time [−T, T ] with the whole exercise taking time less that δ; whilst S−−

T,δ,ε,r

corresponds to similar movement in opposite directions.
Our main result is the following theorem. Roughly, this says that the laws of (Aγ)γ∈Γ are

tight with respect to the J1 topology on Π if the sets Aγ do not contain paths that make two
jumps in an arbitrarily brief time after each other. For the M1 topology, it suffices to look only
at two jumps in opposite directions.

Theorem 1.2 (Tightness criteria for sets of cadlag paths) Let (Aγ)γ∈Γ be a family of
random variables with values in K+(Π). Then the laws (µγ)γ∈Γ with µγ := P[Aγ ∈ · ] are tight
with respect to the J1 topology on Π if and only if

(i) lim
δ→0

sup
γ∈Γ

P
[
SM
T,δ,ε,r ∩ Aγ ̸= ∅

]
= 0 ∀T, ε > 0, r ∈ R,

(ii) lim
δ→0

sup
γ∈Γ

P
[
SJ
T,δ,ε,r ∩ Aγ ̸= ∅

]
= 0 ∀T, ε > 0, r ∈ R. (1.18)

The laws (µγ)γ∈Γ with µγ := P[Aγ ∈ · ] are tight with respect to the M1 topology on Π if and
only if (1.18) (i) holds.

Note that if the laws of the Aγ ’s are invariant under translations then it suffices to check
(1.18) (i) and (ii) for r = 0. If the laws are invariant under reflection then we can replace SM

T,δ,ε,r

by S+−
T,δ,ε,r and SJ

T,δ,ε,r by S++
T,δ,ε,r.

1.4 Noncrossing sets of paths

Recall from (1.10) that Π| is the space of “connected” paths, whose domain is an interval, and
Π↕ is the space of bi-infinite paths. Note that π ∈ Π| if and only if its filled graph π as defined
in (1.4) is connected in the topological sense. We say that a path π′ extends a path π if π ⊂ π′.
Following [FS23], for π1, π2 ∈ Π|, we write π1 ◁ π2 if π1 and π2 can be extended to bi-infinite
paths π′

1, π
′
2 ∈ Π↕ such that π′

1(t±) ≤ π′
2(t±) for all t ∈ R. We note that in spite of the suggestive

notation, this relation is not transitive, i.e., π1 ◁ π2 ◁ π3 does not imply π1 ◁ π3. We say that
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a set A ⊂ Π| is noncrossing if each π1, π2 ∈ A satisfy π1 ◁ π2 or π2 ◁ π1 (or both). Throughout
the present subsection, we equip Π| with the M1 topology and we equip

Knc(Π
|) :=

{
A ∈ K+(Π

|) : A is noncrossing
}

(1.19)

with the corresponding Hausdorff topology. We will prove a tightness criterion for random
variables with values in Knc(Π

|). We note that when we say that a collection of probability
measures is tight on Knc(Π

|), we mean that the compact subsets that occur in the definition of
tightness (see (1.11)) are subsets of Knc(Π

|) (and not of some larger space). In particular, this
implies that each weak cluster point is concentrated on Knc(Π

|), which would not follow from
the tightness criterion with respect to the M1 topology of Theorem 1.2.

Nevertheless, the tightness criterion for noncrossing sets of paths turns out to be very similar
to condition (1.18) (i) (though a bit stronger). To formulate it, for each π1, π2 ∈ Π and real
T, δ > 0, we set

∆2
T,δ(π1, π2) :=

{
(x1, y1, x2, y2) : ∃ − T ≤ si ≤ ti ≤ T s.t. (xi, si), (yi, ti) ∈ πi,

(xi, si) ⪯ (yi, ti) (i = 1, 2) and (t1 ∨ t2)− (s1 ∧ s2) ≤ δ
}
,

(1.20)

and we define

CM
T,δ,ε,r :=

{
(π1, π2) ∈ Π2 : ∃(x1, y1, x2, y2) ∈ ∆2

T,δ(π1, π2) s.t. x1, y2 ≤ r, r+ ε ≤ y1, x2
}
. (1.21)

Theorem 1.3 (Tightness criterion for noncrossing sets of paths) Equip Π| with the M1
topology and Knc(Π

|) with the corresponding Hausdorff topology. Let (Aγ)γ∈Γ be a family of
random variables with values in Knc(Π

|). Then the laws (µγ)γ∈Γ with µγ := P[Aγ ∈ · ] are tight
on Knc(Π

|) if and only if

lim
δ→0

sup
γ∈Γ

P
[
CM
T,δ,ε,r ∩ (Aγ ×Aγ) ̸= ∅

]
= 0 ∀T, ε > 0, r ∈ R. (1.22)

In words, the event CM
T,δ,ε,r∩ (Aγ×Aγ) ̸= 0 occurs when Aγ contains a path that crosses [r, r+ε]

in one direction, and another (perhaps different) path that crosses [r, r + ε] in the opposite
direction, with both events taking place within a single time window of length δ between times
−T and T . As already discussed at the end of Section 1.1, in Section 3 we give some applications
of Theorem 1.3.

It is easy to see that (1.22) implies (1.18) (i) (see Lemma 2.18 below), but the converse impli-
cation does not hold in general. For sets of bi-infinite paths, the two conditions are equivalent.
This is a consequence of Theorems 1.2 and 1.3 and the following lemma.

Lemma 1.4 (Sets of bi-infinite paths) Let Π be equipped with the M1 topology and K+(Π)
with the corresponding Hausdorff topology. Then Knc(Π

↕) is a closed subset of K+(Π).

2 Proofs

2.1 Convergence criteria

Let X be a metrisable space, let d be any metric generating the topology, and let K+(X ) be the
space of nonempty compact subsets of X , equipped with the Hausdorff topology. We recall that
by [SSS14, Lemma B.3], if X is compact, then so is K+(X ). We cite the following lemma from
[SSS14, Lemma B.1].
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Lemma 2.1 (Convergence in the Hausdorff topology) Let Kn,K ∈ K+(X ). Then Kn →
K in the Hausdorff topology if and only if there exists a C ∈ K+(X ) such that Kn ⊂ C for all
n and

K ⊂
{
x ∈ X : ∃xn ∈ Kn s.t. xn → x

}
⊂
{
x ∈ X : ∃xn ∈ Kn s.t. x is a cluster point of (xn)n∈N

}
⊂ K.

(2.1)

Assume that X is separable and locally compact. Let X∞ := X ∪ {∞} denote its one-point
compactification. It is well-known that X∞ is metrisable. We observe that C := {A ∈ K+(X∞) :
∞ ∈ A} is a closed subset of K+(X∞) and hence compact. The map A 7→ A∞ := A ∪ {∞} is
a bijection from the space Cl(X ) of closed subsets of X to C. We use this to equip Cl(X ) with
the metric dc defined as

dc(A,B) := dH
(
A∞, B∞

) (
A,B ∈ Cl(X )

)
, (2.2)

where dH is the Hausdorff metric associated with the metric d on X . By our previous observation,(
Cl(X ), dc

)
is compact. We call the topology generated by dc the local Hausdorff topology. The

following lemma shows that this topology does not depend on the choice of the metric d on X .

Lemma 2.2 (The local Hausdorff topology) Let An, A ∈ Cl(X ). Then An → A in the
local Hausdorff topology if and only if

A⊂
{
x ∈ X : ∃xn ∈ An,∞ s.t. xn → x

}
⊂
{
x ∈ X : ∃xn ∈ An,∞ s.t. x is a cluster point of (xn)n∈N

}
⊂ A.

(2.3)

Proof If (2.3) holds, then

A∞⊂
{
x ∈ X∞ : ∃xn ∈ An,∞ s.t. xn → x

}
⊂
{
x ∈ X∞ : ∃xn ∈ An,∞ s.t. x is a cluster point of (xn)n∈N

}
⊂ A∞

(2.4)

and conversely (2.4) implies (2.3), so the claim follows from Lemma 2.1 and the definition of dc.
Note that in (2.3) we cannot replace An,∞ by An since some of the sets An may be empty.

Let
S := R× R. (2.5)

If π ∈ Π is a path with closed graph also denoted by π and filled graph π, then we set

π⟨2⟩ :=
{
(z, z′) ∈ π × π : z ⪯ z′

}
and π⟨2⟩ :=

{
(z, z′) ∈ π × π : z ⪯ z′

}
, (2.6)

where ⪯ denotes the total order on π or π, respectively. It is not hard to see that π⟨2⟩ and π⟨2⟩

are closed subsets of S2 = S× S, equipped with the product topology.

Lemma 2.3 (Convergence in the J1 and M1 topologies) Let πn, π ∈ Π. Then one has

πn → π in the J1 topology if and only if π
⟨2⟩
n → π⟨2⟩ in the local Hausdorff topology on Cl(S2).

Similarly, πn → π in the M1 topology if and only if π
⟨2⟩
n → π⟨2⟩ in the local Hausdorff topology.

Proof Define π∗ and π∗ as in (1.5) and define π∗⟨2⟩ and π∗⟨2⟩ as in (2.6) with π × π replaced
by π∗ × π∗ and π × π replaced by π∗ × π∗. Then [FS23, Lemma 3.1] says that π∗⟨2⟩ and π∗⟨2⟩

are compact subsets of R2
c × R2

c , and [FS23, Thm 2.10] implies that πn → π in the J1 topology
if and only if π∗

n
⟨2⟩ → π∗⟨2⟩ in the Hausdorff topology on K+(R2

c ×R2
c). Similarly, πn → π in the

M1 topology if and only if π∗
n
⟨2⟩ → π∗⟨2⟩ in the Hausdorff topology on K+(R2

c × R2
c).
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We only prove the statement for the J1 topology. The same proof works for the M1 topology,
with closed graphs replaced by filled graphs. For notational simplicity, we will assume that the

closed graphs πn are nonempty. If this is not the case, then in (2.7) below π
⟨2⟩
n must be replaced

by π
⟨2⟩
n ∪ {∞} where ∞ is a point not included in S2. By Lemmas 2.1 and 2.2, we must show

that

π⟨2⟩⊂
{
(z, z′) ∈ S2 : ∃(zn, z′n) ∈ π⟨2⟩

n s.t. (zn, z
′
n) → (z, z′)

}
⊂
{
(z, z′) ∈ S2 : ∃(zn, z′n) ∈ π⟨2⟩

n s.t. (z, z′) is a cluster point of (zn, z
′
n)n∈N

}
⊂ π⟨2⟩

(2.7)

is equivalent to the same condition with π⟨2⟩ and π
⟨2⟩
n replaced by π∗⟨2⟩ and π∗

n
⟨2⟩, and S replaced

by R2
c . Let us set z± := (∗,±∞). Then

π∗⟨2⟩ = π⟨2⟩ ∪
{
(z, z+) : z ∈ π

}
∪
{
(z−, z) : z ∈ π

}
∪ {(z−, z−), (z−, z+), (z+, z+)

}
. (2.8)

We observe that (2.7) implies that

π⊂
{
z ∈ S : ∃zn ∈ πn s.t. zn → z

}
⊂
{
z ∈ S : ∃zn ∈ πn s.t. z is a cluster point of (zn)n∈N

}
⊂ π.

(2.9)

Indeed, if z ∈ π, then (z, z) ∈ π⟨2⟩ and hence by (2.7) there exist (zn, z
′
n) ∈ π

⟨2⟩
n such that

(zn, z
′
n) → (z, z), so in particular there exist zn ∈ πn such that zn → z. Also, if zn ∈ πn and

a subsequence of (zn)n∈N converges to z, then (zn, zn) ∈ π
⟨2⟩
n and a subsequence of (zn, zn)n∈N

converges to (z, z), so (z, z) ∈ π⟨2⟩ by (2.7) and hence z ∈ π. Using (2.8) and (2.9), we see that

(2.7) is equivalent to the same condition with π⟨2⟩ and π
⟨2⟩
n replaced by π∗⟨2⟩ and π∗

n
⟨2⟩, and S

replaced by R2
c .

As a corollary to the proof of Lemma 2.3 we obtain the following useful fact.

Lemma 2.4 (Convergence of graphs) Let πn, π ∈ Π. If πn → π in the J1 topology, then the
closed graphs πn converge to π in the local Hausdorff topology on Cl(S). Similarly, if πn → π in
the J1 topology, then the filled graphs πn converge to π in the local Hausdorff topology on Cl(S).

Proof For the J1 topology this follows from the fact that (2.7) implies (2.9). The proof for the
M1 topology is the same.

2.2 Compactness criteria

Let dR be any metric generating the topology on the extended real line R. Let dR(x,A) :=
infy∈A d(x, y) denote the distance of a point x to a subset A ⊂ R. For any path π ∈ Π, we define
moduli of continuity by

mT,δ(π) := sup
{
dR(x, y) : (x, y) ∈ ∆2

T,δ(π)
}
,

mJ
T,δ(π) := sup

{
dR(y, {x, z}) : (x, y, z) ∈ ∆3

T,δ(π)
}
,

mM
T,δ(π) := sup

{
dR(y, [x, z]) : (x, y, z) ∈ ∆3

T,δ(π)
}
.

(2.10)

Then [FS23, Thms 3.6 and 3.7] tell us the following.

Theorem 2.5 (Compactness criteria) A set A ⊂ Πc is precompact if and only if

lim
δ→0

sup
π∈A

mT,δ(π) = 0 ∀T > 0. (2.11)
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A set A ⊂ Π is precompact with respect to the J1 topology if and only if

lim
δ→0

sup
π∈A

mJ
T,δ(π) = 0 ∀T > 0. (2.12)

A set A ⊂ Π is precompact with respect to the M1 topology if and only if

lim
δ→0

sup
π∈A

mM
T,δ(π) = 0 ∀T > 0. (2.13)

We moreover mention [FS23, Lemma 2.8] which says the following.

Lemma 2.6 (Compactness in the Hausdorff topology) Let X be a metrisable topological
space and let K+(X ) be the space of nonempty compact subsets of X , equipped with the Hausdorff
topology. Then a set A ⊂ K+(X ) is precompact if and only if there exists a C ∈ K+(X ) such
that K ⊂ C for all K ∈ A.

Theorem 2.5 and Lemma 2.6 allow us to characterise the precompact subsets of K+(Πc),
respectively of K+(Π), with respect to the J1 and M1 topologies. We can use this to prove
tightness criteria for the laws of random compact sets of paths. We start with continuous paths.

Theorem 2.7 (Tightness criterion for sets of continuous paths) Let (Aγ)γ∈Γ be a fam-
ily of random variables with values in K+(Πc). Then the laws (µγ)γ∈Γ with µγ := P[Aγ ∈ · ] are
tight with respect to the topology on Πc if and only if

lim
δ→0

sup
γ∈Γ

P
[
sup
π∈Aγ

mT,δ(π) > ε
]
= 0 ∀T, ε > 0. (2.14)

Proof Assume that the laws (µγ)γ∈Γ are tight. Then for each η > 0, there exists a compact
Cη ⊂ K+(Πc) such that

sup
γ∈Γ

P
[
Aγ ∈ Cη

]
≥ 1− η. (2.15)

By Lemma 2.6, there exists a compact Cη ⊂ Πc such that A ∈ Cη implies A ⊂ Cη. Thus, for
each η > 0, there exists a compact Cη ⊂ Πc such that

P
[
Aγ ⊂ Cη

]
≥ P

[
Aγ ∈ Cη

]
≥ 1− η (γ ∈ Γ). (2.16)

By (2.11) of Theorem 2.5,

lim
δ→0

wT,η(δ) = 0 (T > 0, γ ∈ Γ) with wT,η(δ) := sup
π∈Cη

mT,δ(π) (T, δ > 0, γ ∈ Γ). (2.17)

Fix T, ε > 0. It follows that for each η > 0, there exists a δ > 0 such that wT,η(δ) ≤ ε and
hence, by (2.16) and the definition of wT,η(δ),

sup
γ∈Γ

P
[
sup
π∈Aγ

mT,δ(π) > ε
]
≤ sup

γ∈Γ
P
[
Aγ ̸⊂ Cη

]
≤ η, (2.18)

proving (2.14).
Assume, conversely, that (2.14) holds. Formula (2.14) implies that for each η > 0 and

integers T, n ≥ 1, there exists a δn(T, η) > 0 such that

sup
γ∈Γ

P
[
sup
π∈Aγ

mT,δn(T,η)(π) > n−1
]
≤ η2−T−n. (2.19)
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Summing over T and n, it follows that

P
[
∃T, n ≥ 1 s.t. sup

π∈Aγ

mT,δn(T,η)(π) > n−1
]
≤ η (γ ∈ Γ). (2.20)

Setting
Cη :=

{
π ∈ Πc : mT,δn(T,η)(π) ≤ n−1 ∀T, n ≥ 1

}
, (2.21)

our previous formula says that

P
[
Aγ ⊂ Cη

]
≥ 1− η (γ ∈ Γ). (2.22)

We observe that δ ≤ δn(T, η) implies mT,δ(π) ≤ mT,δn(T,η)(π) and hence by the definition of Cη

sup
π∈Cη

mT,δ(π) ≤ n−1 ∀T ≥ 1, δ ≤ δn(T, η). (2.23)

It follows that
lim sup

δ→0
sup
π∈Cη

mT,δ(π) ≤ n−1 ∀T, n ≥ 1, (2.24)

which by (2.11) of Theorem 2.5 implies that Cη is precompact. Letting Cη denote its closure, we
have for each η > 0 found a compact set Cη ⊂ Πc such that

sup
γ∈Γ

P
[
Aγ ⊂ Cη

]
≥ 1− η. (2.25)

By Lemma 2.6, this implies that the laws (µγ)γ∈Γ are tight.

In analogy with Theorem 2.7 we obtain the following tightness criteria for compact sets of
cadlag paths.

Theorem 2.8 (Tightness criteria for sets of cadlag paths) Let (Aγ)γ∈Γ be a family of
random variables with values in K+(Π). Then the laws (µγ)γ∈Γ with µγ := P[Aγ ∈ · ] are tight
with respect to the J1 topology on Π if and only if

lim
δ→0

sup
γ∈Γ

P
[
sup
π∈Aγ

mJ
T,δ(π) ≥ ε

]
= 0 ∀T, ε > 0. (2.26)

An analogue statement holds for the M1 topology, with mJ
T,δ replaced by mM

T,δ.

Proof The proof is completely the same as the proof of Theorem 2.7, using (2.12) and (2.13)
of Theorem 2.5 instead of (2.11).

2.3 Tightness criteria

In this subsection we derive Theorems 1.1 and 1.2 from Theorems 2.7 and 2.8. Fix T, δ > 0.
Recall the definitions of the sets ∆2

T,δ(π) and ∆3
T,δ(π) in (1.12) and (1.15). For each π ∈ Π, we

set
∆+

T,δ(π) :=
{
(x, y) ∈ ∆2

T,δ(π) : x < y
}
,

∆+
T,δ(π) :=

{
(x, y) ∈ ∆2

T,δ(π) : x > y
}
,

∆++
T,δ (π) :=

{
(x, y, z) ∈ ∆3

T,δ(π) : x < y < z
}
,

∆+−
T,δ (π) :=

{
(x, y, z) ∈ ∆3

T,δ(π) : x < y > z
}
,

∆−+
T,δ (π) :=

{
(x, y, z) ∈ ∆3

T,δ(π) : x > y < z
}
,

∆−−
T,δ (π) :=

{
(x, y, z) ∈ ∆3

T,δ(π) : x > y > z
}
.

(2.27)
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For each η > 0 and ⋆ ∈ {2,+,−}, we define

T ⋆
T,δ,η :=

{
π ∈ Π : ∃(x, y) ∈ ∆⋆

T,δ s.t. dR(x, y) > η
}
, (2.28)

and for ⋆ ∈ {3,++,+−,−+,−−}, we define

T ⋆
T,δ,η :=

{
π ∈ Π : ∃(x, y, z) ∈ ∆⋆

T,δ s.t. dR(x, y), dR(y, z) > η
}
. (2.29)

Finally, we set
T J
T,δ,η := T ++

T,δ,η ∪ T −−
T,δ,η and T M

T,δ,η := T +−
T,δ,η ∪ T −+

T,δ,η. (2.30)

Lemma 2.9 (Alternative tightness criteria) Condition (2.14) is equivalent to

lim
δ→0

sup
γ∈Γ

P
[
Aγ ∩ T 2

T,δ,η ̸= ∅
]
= 0 ∀T, η > 0. (2.31)

Condition (2.26) is equivalent to

lim
δ→0

sup
γ∈Γ

P
[
Aγ ∩ (T J

T,δ,η ∪ T M
T,δ,η) ̸= ∅

]
= 0 ∀T, η > 0. (2.32)

Condition (2.26) with mJ
T,δ replaced by mM

T,δ is equivalent to

lim
δ→0

sup
γ∈Γ

P
[
Aγ ∩ T M

T,δ,η ̸= ∅
]
= 0 ∀T, η > 0. (2.33)

Proof We have supπ∈Aγ
mT,δ(π) > η if and only if there exist π ∈ Aγ and (x, y) ∈ ∆2

T,δ(π) such
that dR(x, y) > η, so (2.14) is clearly equivalent to (2.31).

We have supπ∈Aγ
mJ

T,δ(π) > η if and only if there exist π ∈ Aγ and (x, y, z) ∈ ∆3
T,δ(π) such

that dR(x, y) ∧ dR(y, z) > η, so (2.26) is clearly equivalent to (2.32).
We have supπ∈Aγ

mM
T,δ(π) > η if and only if there exist π ∈ Aγ and (x, y, z) ∈ ∆3

T,δ(π) such
that dR(y, [x, z]) > η. Here dR(y, [x, z]) > η is equivalent to

dR(x, y) ∧ dR(y, z) > η and either x, z < y or x, z > y, (2.34)

so (2.26) with mJ
T,δ replaced by mM

T,δ is equivalent to (2.33).

In what follows, it will be convenient to make a concrete choice for the metric dR on R. We
choose

dR(x, y) :=
∣∣ϕ(x)− ϕ(x)

∣∣ (x, y ∈ R) with ϕ(x) :=
x√

1 + x2
(x ∈ R), (2.35)

and ϕ(±∞) := ±1. We observe that

dR(x, y) =

∫ y

x
(1 + z2)−3/2 dz < y − x (x, y ∈ R, x < y). (2.36)

For ε > 0, we choose k±(ε) ∈ Z with k−(ε) < 0 < k+(ε) such that

dR
(
±∞, k±(ε)ε

)
< ε. (2.37)

We need the following simple lemma.
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Lemma 2.10 (Jumping over intervals) For each ε > 0 and x, y ∈ R such that x < y and
dR(x, y) > 2ε, there exists a k ∈ Z with k−(ε) ≤ k ≤ k+(ε)−1 such that x ≤ kε and y ≥ (k+1)ε.
For each ε > 0 and x, y, z ∈ R such that x < y < z and dR(x, y), dR(y, z) > 2ε, there exists a
k ∈ Z with k−(ε) ≤ k ≤ k+(ε)− 3 such that x ≤ kε, (k + 1)ε ≤ y ≤ (k + 2)ε, and (k + 3)ε ≤ z.

Proof Fix ε > 0. If x, y ∈ R satisfy x < y and dR(x, y) > 2ε, then by (2.36) y − x > 2ε and
hence the set

K :=
{
k ∈ Z : x ≤ kε and y ≥ (k + 1)ε

}
(2.38)

is nonempty. We claim that if k ∈ K satisfies k < k−(ε), then also k−(ε) ∈ K. Indeed k ∈ K
and k < k−(ε) imply x ≤ kε < k−(ε)ε while the observation that

dR(−∞, y) ≥ dR(x, y) > 2ε > dR
(
−∞, k−(ε)ε

)
+ ε > dR

(
−∞, (k−(ε) + 1)ε

)
(2.39)

implies y ≥ (k−(ε)+1)ε, completing the proof that k−(ε) ∈ K. By the same argument, if k ∈ K
satisfies k > k+(ε)− 1, then also k+(ε)− 1 ∈ K and the first claim of the lemma follows.

The proof of the second claim goes a bit differently. Assume that x, y ∈ R satisfy x < y
and dR(x, y) > 2ε. Choose k ∈ Z such that (k + 1)ε ≤ y ≤ (k + 2)ε. Since dR(x, y) > 2ε,
(2.36) tells us that y − x > 2ε and hence x ≤ kε. The same argument gives (k + 3)ε ≤ z. Since
y − (k + 1)ε ≤ ε (2.36) tells us that dR((k + 1)ε, y) < ε. Combining this with the inequality
dR(−∞, y) ≥ dR(x, y) > 2ε we see that dR(−∞, (k + 1)ε) > ε and hence k−(ε) < k + 1. The
same argument gives k + 2 < k+(ε).

We next compare sets of the form T x
T,δ,η with the sets Sx

T,δ,η,r defined in Subsection 1.3.

Lemma 2.11 (Comparison of sets of paths) For ⋆ ∈ {+,−,+−,−+} one has

S⋆
T,δ,ε,r ⊂ T ⋆

T,δ,η with η := dR(r, r + ε) (T, δ, ε > 0, r ∈ R) (2.40)

and

T ⋆
T,δ,2ε ⊂

k+(ε)−1⋃
k=k−(ε)

S⋆
T,δ,ε,kε (T, δ, ε > 0). (2.41)

For ⋆ ∈ {++,−−} one has

S⋆
T,δ,ε,r ⊂ T ⋆

T,δ,η with η := dR(r, r + ε) ∧ dR(r + 2ε, r + 3ε) (T, δ, ε > 0, r ∈ R) (2.42)

and

T ⋆
T,δ,2ε ⊂

k+(ε)−3⋃
k=k−(ε)

S⋆
T,δ,ε,kε (T, δ, ε > 0). (2.43)

Proof We first prove (2.40). If π ∈ S+
T,δ,ε,r, then there exist (x, y) ∈ ∆2

T,δ(π) with x < y, x ≤ r,

and r + ε ≤ y. Then dR(x, y) ≥ dR(r, r + ε) and hence π ∈ T +
T,δ,η with η := dR(r, r + ε). This

proves (2.40) for ⋆ = +. The same argument with the roles of x and y reversed yields (2.40) for
⋆ = −. The arguments for ⋆ = +− and ⋆ = −+ are also very similar, except that there are now
three points x, y, z of which x, z lie on one side of the interval [r, r+ ε] while y lies on the other
side.

The proof of (2.42) is also similar. If π ∈ S+
T,δ,ε,r, then there exist (x, y, z) ∈ ∆3

T,δ(π) with
x < y < z, x ≤ r, r + ε ≤ y ≤ r + 2ε, and r + 3ε ≤ z. Defining η as in (2.42) we then have
dR(x, y) ≥ dR(r, r + ε) ≥ η and dR(y, z) ≥ dR(r + 2ε, r + 3ε) ≥ η which implies that T ⋆

T,δ,η. This
proves (2.42) for ⋆ = ++. The proof for ⋆ = −− is the same with the roles of x and z reversed.
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We next prove (2.41). If π ∈ T +
T,δ,2ε then there exist (x, y) ∈ ∆2

T,δ(π) with x < y and
dR(x, y) > 2ε. By Lemma 2.10 there then exists a k ∈ Z with k−(ε) ≤ k < k+(ε) such that
x ≤ kε and y ≥ (k + 1)ε. Then π ∈ S+

T,δ,ε,kε. This proves (2.41) for ⋆ = +. The same argument
with the roles of x and y reversed yields (2.41) for ⋆ = −. For ⋆ = +− we argue as follows.
If π ∈ T +−

T,δ,2ε then there exist (x, y, z) ∈ ∆3
T,δ(π) with x, z < y and dR(x, y), dR(z, y) > 2ε.

Then x ∨ z < y and dR(x ∨ z, y) > 2ε, so by Lemma 2.10 there then exists a k ∈ Z with
k−(ε) ≤ k < k+(ε) such that x ∨ z ≤ kε and y ≥ (k + 1)ε, proving that π ∈ S+−

T,δ,ε,kε. The proof
of (2.41) for ⋆ = −+ is the same, using x ∧ z instead of x ∨ z.

It remains to prove (2.43). If π ∈ T ++
T,δ,2ε then there exist (x, y, z) ∈ ∆3

T,δ(π) with x < y < z
and dR(x, y), dR(z, y) > 2ε. By Lemma 2.10 there then exists a k ∈ Z with k−(ε) ≤ k ≤ k+(ε)−3
such that x ≤ kε, (k + 1)ε ≤ y ≤ (k + 2)ε, and (k + 3)ε ≤ z. Then π ∈ S++

T,δ,ε,kε. This proves
(2.43) for ⋆ = ++. The argument for ⋆ = −− is the same with the roles of x and z reversed.

Proof of Theorem 1.1 By Theorem 2.7 and Lemma 2.9 it suffices to prove that (1.14) is
equivalent to (2.31). By formula (2.40) of Lemma 2.11, for all T, δ, ε > 0 and r ∈ R,

P
[
S2
T,δ,ε,r∩Aγ ̸= ∅

]
≤ P

[
T 2
T,δ,η∩Aγ ̸= ∅

]
with η := dR(r, r+ε) (T, δ, ε > 0, r ∈ R), (2.44)

from which we see that (2.31) implies (1.14). By formula (2.41) of Lemma 2.11, for all T, δ, ε > 0,

P
[
T 2
T,δ,2ε ∩ Aγ ̸= ∅

]
≤

k+(ε)−1∑
k=k−(ε)

P
[
S2
T,δ,ε,kε ∩ Aγ ̸= ∅

]
, (2.45)

from which we see that (1.14) implies (2.31).

Proof of Theorem 1.2 By Theorem 2.8 and Lemma 2.9 it suffices to prove that (1.18) (i) is
equivalent to

lim
δ→0

sup
γ∈Γ

P
[
Aγ ∩ T M

T,δ,η ̸= ∅
]
= 0 ∀T, η > 0 (2.46)

and (1.18) (ii) is equivalent to

lim
δ→0

sup
γ∈Γ

P
[
Aγ ∩ T J

T,δ,η ̸= ∅
]
= 0 ∀T, η > 0. (2.47)

By formulas (2.40) and (2.42) of Lemma 2.11, for each T, δ, ε > 0 and r ∈ R, there exists η, η′ > 0
such that

P
[
SM
T,δ,ε,r ∩ Aγ ̸= ∅

]
≤ P

[
T M
T,δ,η ∩ Aγ ̸= ∅

]
and P

[
SJ
T,δ,ε,r ∩ Aγ ̸= ∅

]
≤ P

[
T J
T,δ,η′ ∩ Aγ ̸= ∅

]
,

(2.48)
from which we see that (2.46) implies (1.18) (i) and (2.47) implies (1.18) (ii). The converse
implications follow from formulas (2.41) and (2.43) of Lemma 2.11 which tell us that

P
[
T M
T,δ,η ∩ Aγ ̸= ∅

]
≤

k+(ε)−1∑
k=k−(ε)

P
[
SM
T,δ,ε,kε ∩ Aγ ̸= ∅

]
,

P
[
T J
T,δ,η ∩ Aγ ̸= ∅

]
≤

k+(ε)−3∑
k=k−(ε)

P
[
SJ
T,δ,ε,kε ∩ Aγ ̸= ∅

]
.

(2.49)
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2.4 Noncrossing paths

In this subsection we prepare for the proof of Theorem 1.3. For π1, π2 ∈ Π|, we say that π1
crosses π2 if π1 ̸◁ π2 and π2 ̸◁ π1, i.e., if the set {π1, π2} is not noncrossing in the sense
defined in Subsection 1.4. We say that π1 collides with π2 at time t if t ∈ Iπ1 ∩ Iπ2 and
π1(t±), π2(t∓) < π1(t∓), π2(t±), where the sign ± can be either + or − and ∓ is the opposite
sign. In words, this says that at time t the paths π1 and π2 jump over some interval in opposite
directions. It is not hard to see that if π1 collides with π2 at some time t, then π1 crosses π2.
We let I◦ denote the interior of a closed real interval and let ∂I := I\I◦ denote the set of its
finite boundary points. We will prove the following result. Note that this shows in particular
that for bi-infinite paths, the noncrossing property is preserved under limits.

Proposition 2.12 (Crossing in the limit) Assume that πn
1 , π

n
2 ∈ Π| satisfy πn

i → πi as n →
∞ (i = 1, 2) in the M1 topology for some π1, π2 ∈ Π|, and that πn

1 does not cross πn
2 for any n.

Then precisely one of the following statements must hold:

(i) π1 does not cross π2,

(ii) π1 collides with π2 at some time t ∈ ∂Iπ1 ∪ ∂Iπ2.

Proposition 2.12 extends [FS24, Lemma 3.4.9]. It is not hard to guess the statement of
Proposition 2.12 after scribbling a few figures on a piece of paper, but giving a precise proof is a
bit more work. Our proof follows a clear strategy but is nevertheless quite long, so we challenge
the reader to find a shorter one.

To prepare for the proof of Proposition 2.12, we start by giving a more direct characterisation
of the relation π1 ◁ π2. The split real line is the set Rs consisting of all words of the form t⋆
with t ∈ R and ⋆ ∈ {−,+}. For each π ∈ Π|, we define Isπ ⊂ Rs by

Isπ :=
{
t⋆ : t ∈ Iπ, ⋆ ∈ {−,+}, t⋆ ̸= s−, u+

}
, (2.50)

and letting s := inf Iπ and u := sup Iπ denote the starting time and final time of π, which may
be ±∞, we define

I lπ := Isπ ∪
{
s− : s ∈ R, π(s+) < π(s−)

}
∪
{
u+ : u ∈ R, π(u−) < π(u+)

}
,

Irπ := Isπ ∪
{
s− : s ∈ R, π(s−) < π(s+)

}
∪
{
u+ : u ∈ R, π(u+) < π(u−)

}
,

(2.51)

i.e., we include s− in I lπ only if s ∈ R and π(s+) < π(s−), and so on. Finally, we set

L(π) :=
{
(x, t±) ∈ R× I lπ : x < π(t±)

}
,

R(π) :=
{
(x, t±) ∈ R× Irπ : π(t±) < x

}
.

(2.52)

Note that these definitions simplify a lot for bi-infinite paths. The following lemma gives a more
direct characterisation of the relation π1 ◁ π2.

Lemma 2.13 (Ordering of paths) Two paths π1, π2 ∈ Π| satisfy π1 ◁ π2 if and only if
L(π1) ∩R(π2) = ∅.

Proof This is only a slight extension of [FS23, Lemma 3.3.2] but for completeness we give the
proof. For bi-infinite paths π1, π2 ∈ Π↕ the statement is trivial. It is also straightforward to
check that if π′ extends π, then L(π) ⊂ L(π′) and R(π) ⊂ R(π′). In view of this, the condition
L(π1) ∩ R(π2) = ∅ is clearly necessary for π1 ◁ π2. To prove sufficiency, we will prove the
following statement:
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(!) Assume that π1, π2 ∈ Π| satisfy L(π1) ∩ R(π2) = ∅. Then there exist extensions π′
i of πi

(i = 1, 2) such that π′
1 ∈ Π↑ and L(π′

1) ∩R(π′
2) = ∅.

By symmetry, it then follows that we can also exted π2 to +∞ and similarly both paths to
−∞ while preserving the property that L(π1) ∩ R(π2) = ∅, which for bi-infinite paths trivially
implies π1 ◁ π2. It therefore remains to prove (!). Let si := inf Iπi and ui := sup Iπi . The
cases u1 = ±∞ are trivial so without loss of generality we assume that u1 ∈ R. The cases
u1 < s2 and u1 > u2 are trivial so without loss of generality we can assume that s2 ≤ u1 ≤ u2. If
π1(u1+) ≤ π1(u1−), then we can simply extend π1 to the path that jumps to −∞ at time u1 and
stays there, so we are done. If π1(u1−) < π1(u1+), then u1+ ∈ I lπ and hence (x, u1+) ∈ L(π) for
all x < π1(u1+). We now distinguish two cases: I. u1 < u2, and II. u1 = u2 =: u. In case I, the
condition L(π1) ∩ R(π2) = ∅ implies π1(u1+) ≤ π2(u1+), so we can extend π1 to the path that
jumps to π2(u1+) at time u1 and from then on stays equal to π2. Case II is a bit more tricky. If
π1(u+) ≤ π2(u+) we can proceed as in case I but it may also happen that π2(u+) < π1(u+). If
this happens, however, then the condition L(π1) ∩R(π2) = ∅ forces π2(u−) ≤ π2(u+) so in this
case we can first extend π2 to a path π′

2 satisfying π1(u+) ≤ π2(u+) and then again proceed as
in case I.

We can now also give a more direct characterisation of when two paths cross each other.

Lemma 2.14 (Crossing of paths) Let π1, π2 ∈ Π|. Then π1 crosses π2 if and only if L(π1)∩
R(π2) ̸= ∅ and L(π2) ∩R(π1) ̸= ∅.

Proof Immediate from Lemma 2.13.

We next start to investigate how crossing behaves under limits. For any π ∈ Π|, we let π◦

denote the path whose domain is the closure of I◦π and that is equal to π on I◦π and does not
jump at its finite boundary points. In other words, if Iπ is an interval of positive length, then
π◦ is obtained from π by removing jumps at finite boundary points, and if Iπ consists of a single
point or is empty, then π◦ is the trivial path with Iπ◦ = ∅. Recall from (2.5) that S := R × R.
For any π ∈ Π| we write

L◦(π) :=
{
(x, t) ∈ S : t ∈ I◦π, x < π(t−) ∧ π(t+)

}
, Lc(π) := S\L◦(π),

L(π) :=
{
(x, t) ∈ S : t ∈ Iπ, x ≤ π(t−) ∨ π(t+)

}
.

(2.53)

We define R◦(π), Rc(π), and R(π) analogously, with x < π(t−) ∧ π(t+) replaced by π(t−) ∨
π(t+) < x etc. These sets look a lot like the sets L(π) and R(π) from (2.52), but they are better
behaved under limits. Note that L◦(π) is open while Lc(π) and L(π) are closed. Note also that
L◦(π) = L◦(π◦) and L(π◦) is the closure of L◦(π).

Lemma 2.15 (Areas left of a path) Assume that πn ∈ Π| satisfy πn → π as n → ∞ in the
M1 topology for some π ∈ Π|. Then L(πn) → L(π) and Lc(πn) → Lc(π) in the local Hausdorff
topology on Cl(S).

Proof Assume that πn → π in the M1 topology and the filled graphs πn are not empty. Then
by Lemma 2.4 πn → π in the local Hausdorff topology on Cl(S), which by Lemma 2.2 means
that:

(i) for each z ∈ π there exist zn ∈ πn such that zn → z,

(ii) if zn ∈ πn have a cluster point z, then z ∈ π.
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It is not hard to see that moreover Iπn → Iπ in the local Hausdorff topology on Cl(R).
We will only prove that Lc(πn) → Lc(π). The proof that L(πn) → L(π) is similar, but easier.

We assume without loss of generality that πn ̸= ∅ for all n. We note that

Lc(π) =
{
(x, t) ∈ S : t ̸∈ I◦π

}
∪
{
(x, t) ∈ S : t ∈ I◦π and π(t−) ∧ π(t+) ≤ x

}
. (2.54)

By Lemma 2.2, we have to show that:

(i)’ for each z ∈ Lc(π) there exist zn ∈ Lc(πn) such that zn → z,

(ii)’ if zn ∈ Lc(πn) have a cluster point z, then z ∈ Lc(π).

To prove (i)’, assume that (x, t) ∈ Lc(π). Then either 1. t ̸∈ I◦π or 2. t ∈ I◦π and π(t−)∧π(t+) ≤ x.
In case 1, we can use that Iπn → Iπ to choose tn ̸∈ I◦πn

such that tn → t. Now (x, tn) ∈ Lc(πn)
satisfy (x, tn) → (x, t). In case 2, we set y := π(t−) ∧ π(t+). Then (y, t) ∈ π and hence by
(i) there exist (yn, tn) ∈ πn such that (yn, tn) → (y, t). Since y ≤ x it follows that Lc(π) ∋
(yn ∨ x, tn) → (x, t).

To prove (ii)’, assume that (xn, tn) ∈ Lc(πn) have a cluster point (x, t). By going to a
subsequence, we may assume that (xn, tn) → (x, t) and either 1. tn ̸∈ I◦πn

for all n or 2. tn ∈ I◦πn

and πn(tn−) ∧ πn(tn+) ≤ xn for all n. In case 1 by the fact that Iπn → Iπ we have t =
limn→∞ tn ̸∈ I◦π so (x, t) ∈ Lc(π) and we are done. Case 2 is trivial if t ̸∈ I◦π so without loss of
generality we assume t ∈ I◦π. Then tn ∈ I◦π for n large enough so by going to a further subsequence
if necessary, we can assume that tn ∈ I◦π for all n and yn := πn(tn−) ∧ πn(tn+) converge to a
limit y ∈ R. Then πn ∋ (yn, tn) → (y, t) so by (i) (y, t) ∈ π and hence π(t−) ∧ π(t+) ≤ y. Since
yn ≤ xn we have y ≤ x so we conclude that (x, t) ∈ Lc(π) and we are done.

We next need a lemma that characterises π1 ◁ π2 in terms of the sets L◦, L,R◦, and R.
Below, for any real interval I with s := inf I and u := sup I, we set

∂−I := {s} ∩ R and ∂+I := {u} ∩ R, (2.55)

i.e., ∂−I and ∂+I are the sets of finite lower and upper boundary points of I.

Lemma 2.16 (Ordering of non-colliding paths) Assume that π1, π2 ∈ Π|. Then one has
π1 ◁ π2 if and only if the following conditions are satisfied:

(i) L◦(π1) ∩R(π2) = ∅,

(ii) L(π1) ∩R◦(π2) = ∅,

(iii) there does not exist a t ∈ ∂±Iπ1 ∪ ∂∓Iπ2 with t ∈ Iπ1 ∩ Iπ2 such that π1(t±), π2(t∓) <
π1(t∓), π2(t±).

Proof Recall that π◦ is the path π with jumps at finite boundary points of the domain removed.
We start by proving that the following conditions are equivalent:

(a) π◦
1 ̸◁ π◦

2, (b) L◦(π1) ∩R◦(π2) ̸= ∅ (c) L◦(π1) ∩R(π◦
2) ̸= ∅. (2.56)

By Lemma 2.13 and the definitions of π◦, L(π), L◦(π), L(π) etcetera, we see that (a)–(c) are
equivalent to, respectively,

(a)’ π2(t⋆) < π1(t⋆) for some t⋆ ∈ Isπ1
∩ Isπ2

,

(b)’ π2(t−) ∧ π2(t+) < π1(t−) ∨ π1(t+) for some t ∈ I◦π1
∩ I◦π2

,
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(c)’ π2(t−) ∧ π2(t+) < π1(t−) ∧ π1(t+) for some t ∈ I◦π1
∩ I◦π2

.

The implication (c)’⇒(a)’ is trivial and the implication (a)’⇒(b)’ follows from the observation
that each t− ∈ Isπ1

∩ Isπ2
can be approximated from below by tn ∈ I◦π1

∩ I◦π2
and likewise each

t+ ∈ Isπ1
∩ Isπ2

can be approximated from above. The implication (b)⇒(c), finally, follows from
the fact that R(π◦

2) is the closure of R◦(π2), so all three conditions are equivalent.
For any π ∈ Π| with initial and final time s := inf Iπ and u := sup Iπ, let us set (compare

(2.51))
L−(π) :=

{
(x, s−) : s ∈ R, π(s+) < π(s−)

}
,

L+(π) :=
{
(x, u+) : s ∈ R, π(u−) < π(u+)

}
,

R−(π) :=
{
(x, s−) : s ∈ R, π(s−) < π(s+)

}
,

R+(π) :=
{
(x, u+) : s ∈ R, π(u+) < π(u−)

}
.

(2.57)

Then, by Lemma 2.13, π1 ̸◁ π2 is equivalent to(
L−(π) ∪ L(π◦) ∪ L+(π)

)
∩
(
R−(π) ∪R(π◦) ∪R+(π)

)
̸= ∅. (2.58)

We observe that (2.58) holds precisely if one of the following conditions is satisfied:

I. L(π◦
1) ∩R(π◦

2) ̸= ∅,

II. L(π◦
1) ∩R⋆(π2) ̸= ∅ for some ⋆ ∈ {−,+},

III. L⋆(π1) ∩R(π◦
2) ̸= ∅ for some ⋆ ∈ {−,+},

IV. L⋆(π1) ∩R∗(π2) ̸= ∅ for some ⋆, ∗ ∈ {−,+}.

For any π ∈ Π| and t ∈ R, let πt denote the path with domain Iπt := Iπ ∩ {t} defined by
πt(t±) := π(t±) if t ∈ Iπ. We claim that the conditions I–IV are equivalent, respectively, to:

I’. L◦(π1) ∩R◦(π2) ̸= ∅,

II’. ∃t ∈ I◦π1
∩ ∂∓Iπ2 s.t. L◦(π1) ∩R(πt

2) ̸= ∅ or π1(t±), π2(t∓) < π1(t∓), π2(t±),

III’. ∃t ∈ ∂±Iπ1 ∩ I◦π2
s.t. L(πt

1) ∩R◦(π2) ̸= ∅ or π1(t±), π2(t∓) < π1(t∓), π2(t±),

IV’. ∃t ∈ ∂±Iπ1 ∩ ∂∓Iπ2 s.t. π1(t±), π2(t∓) < π1(t∓), π2(t±).

The equivalence of I and I’ has already been proved. Let us set si := inf Iπi and ui := sup Iπi

(i = 1, 2). We observe that L(π◦
1) ∩ R−(π2) ̸= ∅ if and only if s2 ∈ I◦π1

, π2(s2−) < π2(s2+),
and π2(s2−) < π1(s2−). There are now two possibilities: if π2(s2−) < π1(s2+), then L◦(π1) ∩
R(πs2

2 ) ̸= ∅, and if π1(s2+) ≤ π2(s2−), then π1(s2+), π2(s2−) < π1(s2−), π2(s2+). The argu-
ment is the same if L(π◦

1) ∩ R−(π2) ̸= ∅, except that now all signs are reversed so we arrive at
the condition that L◦(π1) ∩ R(πu2

2 ) ̸= ∅ or π1(u2−), π2(u2+) < π1(u2+), π2(u2−). This proves
the equivalence of II and II’. The equivalence of III and III’ follows from the same argument,
again with all signs reversed, and the proof of the equivalence of IV and IV’ is similar.

To complete the proof, it now suffices to observe that L◦(π1) ∩ R(π2) ̸= ∅ if and only if
L◦(π1) ∩ R◦(π2) ̸= ∅ or there exists a t ∈ I◦π1

∩ ∂Iπ2 such that L◦(π1) ∩ R(πt
2) ̸= ∅, and the

condition L◦(π1) ∩R(π2) ̸= ∅ can be rewritten similarly.

The final ingredient in the proof of Proposition 2.12 is the following lemma.

Lemma 2.17 (Limits of ordered paths) Assume that πn
1 , π

n
2 ∈ Π| satisfy πn

1 ◁ πn
2 for all

n and that πn
i → πi as n → ∞ (i = 1, 2) in the M1 topology for some π1, π2 ∈ Π|. Then

L◦(π1) ∩R(π2) = ∅ and L(π1) ∩R◦(π2) = ∅.
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Proof By symmetry, it suffices to prove that L◦(π1)∩R(π2) = ∅ or equivalently R(π2) ⊂ Lc(π1).
Since πn

1 ◁ πn
2 for all n, Lemma 2.16 tells us that R(πn

2 ) ⊂ Lc(πn
1 ) for all n, so the claim follows

from Lemma 2.15, using Lemma 2.2.

Proof of Proposition 2.12 Assume that πn
1 , π

n
2 ∈ Π| satisfy πn

i → πi as n → ∞ (i = 1, 2) in
the M1 topology for some π1, π2 ∈ Π|, and that πn

1 does not cross πn
2 for any n. It is clear from

Lemma 2.14 that (i) and (ii) cannot hold simultaneously, so it suffices to prove that if π1 does
not collide with π2 at any time t ∈ ∂Iπ1 ∪ ∂Iπ2 , then π1 does not cross π2.

Since πn
1 does not cross πn

2 for any n, by going to a subsequence, we can assume that either
πn
1 ◁ πn

2 for all n or πn
2 ◁ πn

1 for all n. By symmetry, we can without loss of generality
assume that we are in the first case. Then Lemma 2.17 tells us that L◦(π1) ∩ R(π2) = ∅ and
L(π1) ∩ R◦(π2) = ∅. By Lemma 2.16 and the fact that π1 does not collide with π2 at any time
t ∈ ∂Iπ1 ∪ ∂Iπ2 , it follows that π1 ◁ π2, so π1 does not cross π2.

2.5 Tightness of noncrossing sets

In this subsection we prove Theorem 1.3 and Lemma 1.4. We start by showing that (1.18) (i)
implies (1.22).

Lemma 2.18 (Jumps in opposite directions) Let A be a compact subset of Π|, let T, δ, ε >
0 and r ∈ R. Then

SM
T,δ,ε,r ∩ Aγ ̸= ∅ implies CM

T,δ,ε,r ∩ (Aγ ×Aγ) ̸= ∅. (2.59)

Proof One has S+−
T,δ,ε,r ∩ Aγ ̸= ∅ if and only if:

(S) There exists a π ∈ A and (x, s), (y, t), (z, u) ∈ π with (x, s) ⪯ (y, t) ⪯ (z, u), −T ≤ s ≤
t ≤ u ≤ T , and u− s ≤ δ, such that x, z ≤ r and r + ε ≤ y.

Similarly, one has CM
T,δ,ε,r ∩ (Aγ ×Aγ) ̸= ∅ if and only if:

(C) For i = 1, 2 there exists πi ∈ A and (xi, si), (yi, ti) ∈ πi with (xi, si) ⪯ (yi, ti), −T ≤ si ≤
ti ≤ T , and (t1 ∨ t2)− (s1 ∧ s2) ≤ δ, such that x1, y2 ≤ r and r + ε ≤ y1, x2.

If (S) holds, then setting π1 = π2 := π, (x1, s1) := (x, s), (y1, t1) = (x2, s2) := (y, t), and
(y2, t2) := (z, u), we see that (C) holds. The same argument with the roles of π1 and π2
interchanged shows that S−+

T,δ,ε,r ∩ Aγ ̸= ∅ implies (C).

Lemma 2.19 (Crossing in the limit) Let Π| be equipped with the M1 topology and let An be
noncrossing compact subsets of Π|. Assume that An → A in the Hausdorff topology on K+(Π).
Then A ⊂ Π|. If A is noncrossing, then

∀T, ε > 0, r ∈ R ∃δ > 0, m ∈ N s.t. CM
T,δ,ε,r ∩ (An ×An) = ∅ ∀n ≥ m. (2.60)

On the other hand, if A is not noncrossing, then

∃T, ε > 0, r ∈ R s.t. ∀δ > 0 ∃m ∈ N s.t. CM
T,δ,ε,r ∩ (An ×An) ̸= ∅ ∀n ≥ m. (2.61)

Proof It is easy to see that Π| is a closed subset of Π. As a result, by grace of Lemma 2.1,
K+(Π

|) is a closed subset of K+(Π). This proves that A ⊂ Π|.
Let us say that A contains colliding paths if there exist π1, π2 ∈ A and t ∈ R such that π1

collides with π2 at time t. We will prove the following statements:
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I. A is noncrossing if and only if A does not contain colliding paths.

II. If A does not contain colliding paths, then (2.60) holds.

III. If A contains colliding paths, then (2.61) holds.

We start by proving I. It is clear that if A contains colliding paths, then A is not noncrossing.
To prove the converse, assume that A does not contain colliding paths and let π1, π2 ∈ A. By
Lemma 2.1, there exist πn

1 , π
n
2 ∈ An such that πn

i → πi (i = 1, 2). Since An is noncrossing, for
each n, the path πn

1 does not cross πn
2 . By Proposition 2.12, it follows that either π1 collides

with π2 or π1 does not cross π2. The first option is excluded by our assumption that A does not
contain colliding paths, so we conclude that A is noncrossing.

We next prove II. We will show that if (2.60) does not hold, then A contains colliding paths.
If (2.60) does not hold, then there exist T, ε > 0 and r ∈ R such that

∀δ > 0, m ∈ N ∃n ≥ m s.t. CM
T,δ,ε,r ∩ (An ×An) ̸= ∅. (2.62)

Fix δk > 0 such that δk → 0. Then we can choose n(k) → ∞ such that CM
T,δn,ε,r

∩(An(k)×An(k)) ̸=
∅ for each k. This implies that for i = 1, 2 there exists πk

i ∈ An(k) and (xki , s
k
i ), (y

k
i , t

k
i ) ∈ πk

i

with (xki , s
k
i ) ⪯ (yki , t

k
i ), −T ≤ ski ≤ tki ≤ T , and (tk1 ∨ tk2)− (sk1 ∧ sk2) ≤ δk, such that xk1, y

k
2 ≤ r

and r + ε ≤ yk1 , x
k
2. By Lemma 2.1 and the fact that An(k) → A, there exists a compact C ⊂ Π

such that An(k) ⊂ C for all k. In view of this, using also the compactness of R and [−T, T ], by
going to a subsequence if necessary, we can assume that as k → ∞

πk
i → πi, (xki , s

k
i ) → (xi, si), (yki , t

k
i ) → (yi, ti) (i = 1, 2). (2.63)

By Lemma 2.1 we have π1, π2 ∈ A. Combining Lemma 2.1 with Lemma 2.3 we see that
(xi, si), (yi, ti) ∈ πi with (xi, si) ⪯ (yi, ti). Taking the limit in xk1, y

k
2 ≤ r and r + ε ≤ yk1 , x

k
2 we

obtain that x1, y2 ≤ r and r + ε ≤ y1, x2. Finally, since (tk1 ∨ tk2)− (sk1 ∧ sk2) ≤ δk, we must have
s1 = s2 = t1 = t2 =: t for some t ∈ [−T, T ]. We have to be a bit careful since as a result of
using the M1 topology we only know that (xi, si), (yi, ti) are elements of the filled graph πi, and
not necessarily of the closed graph πi. Nevertless, the properties we have proved are enough to
conclude that π1 collides with π2 at time t.

It remains to prove III. Assume that π1, π2 ∈ A collide at time t. Then t ∈ [−T/2, T/2] for
T large enough and (possibly after interchanging the roles of π1 and π2) there exist xi, yi with
(xi, t), (yi, t) ∈ πi and (xi, t) ⪯ (yi, t) (i = 1, 2) such that x1, y2 ≤ r − ε and r + 2ε ≤ y1, x2 for
some ε > 0 and r ∈ R. By Lemma 2.1 there exist πn

1 , π
n
2 ∈ An such that πn

i → πi (i = 1, 2),
so by Lemmas 2.1 and 2.3 there exist (xni , s

n
i ), (y

n
i , t

n
i ) ∈ πn

i with (xni , s
n
i ) ⪯ (yni , t

n
i ) such that

xni → xi and yni → yi (i = 1, 2). Then for each δ > 0 one has (tn1 ∨ tn2 ) − (sn1 ∧ sn2 ) ≤ δ for k
large enough. Moreover, for all k large enough sni , t

n
i ∈ [−T, T ], xn1 , y

n
2 ≤ r, and r + ε ≤ yn1 , x

n
2 .

By making xn1 , y
n
2 smaller if necessary and yn1 , x

n
2 larger if necessary, we can make sure that

(xni , s
n
i ), (y

n
i , t

n
i ) are elements of the closed graph πn

i and not just of the filled graph πn
i , while

preserving all other properties mentioned above. Then

∀δ > 0 ∃m ∈ N s.t. CM
T,δ,ε,r ∩ (An ×An) ̸= ∅ ∀n ≥ m, (2.64)

which shows that (2.61) holds.

Proof of Theorem 1.3 Set M := {µγ : γ ∈ Γ}. Let M1(K+(Π)) denote the space of proba-
bility measures on K+(Π), equipped with the topology of weak convergence. We naturally view
M1(Knc(Π

|)) as a subset of M1(K+(Π)). Then M is precompact as a subset of M1(Knc(Π
|))
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if and only if M is precompact as a subset of M1(K+(Π)) and the closure of M is contained in
M1(Knc(Π

|)). Thus, by Prohorov’s theorem, M is tight on Knc(Π
|) if and only if M is tight on

K+(Π) and the closure of M is concentrated on Knc(Π
|). Therefore, by Theorem 1.2, it suffices

to prove the following statements:

I. If (1.22) holds, then (1.18) (i) holds and the closure of M is concentrated on Knc(Π
|).

II. If (1.18) (i) holds and the closure of M is concentrated on Knc(Π
|), then (1.22) holds.

We first prove I. Assume that (1.22) holds. Then by Lemma 2.18 condition (1.18) (i) is satisfied,
so it remains to show that the closure of M is concentrated on Knc(Π

|). Assume that µn ∈ M
converge weakly to a probability law µ on K+(Π). By Skorohod’s representation theorem [EK86,
Cor 3.1.6 and Thm 3.1.8], we can couple random variables An,A with laws µn, µ such that
An → A a.s. We need to show that A ∈ Knc(Π

|) a.s. By Lemma 2.19 we have A ⊂ Π| a.s.
Therefore, by condition (2.61) of Lemma 2.19, to prove that A ∈ Knc(Π

|) a.s., it suffices to show
that

P
[
∃T, ε > 0, r ∈ R s.t. ∀δ > 0, ∃m ∈ N s.t. CM

T,δ,ε,r ∩ (An ×An) ̸= ∅ ∀n ≥ m
]
= 0. (2.65)

It suffices to check the condition (2.61) for countably many values of T, ε, and r only: in
particular, we can take T = N , ε = 1/n, and r = k/(3n) with N,n positive integers and k ∈ Z.
In view of this, it suffices to show that

P
[
∀δ > 0, ∃m ∈ N s.t. CM

T,δ,ε,r ∩ (An ×An) ̸= ∅ ∀n ≥ m
]
= 0 ∀T, ε > 0, r ∈ R. (2.66)

Since δ′ ≤ δ implies CM
T,δ′,ε,r ⊂ CM

T,δ,ε,r, we can rewrite our previous formula as

lim
δ→0

P
[
∃m ∈ N s.t. CM

T,δ,ε,r ∩ (An ×An) ̸= ∅ ∀n ≥ m
]
= 0 ∀T, ε > 0, r ∈ R. (2.67)

To see that (1.22) implies (2.67), we estimate

P
[
∃m ∈ N s.t. CM

T,δ,ε,r ∩ (An ×An) ̸= ∅ ∀n ≥ m
]
= lim

m→∞
P
[
CM
T,δ,ε,r ∩ (An ×An) ̸= ∅ ∀n ≥ m

]
≤ lim sup

m→∞
P
[
CM
T,δ,ε,r ∩ (Am ×Am) ̸= ∅

]
≤ sup

m∈N
P
[
CM
T,δ,ε,r ∩ (Am ×Am) ̸= ∅

]
.

(2.68)
Inserting this into the left-hand side of (2.67) and using (1.22) we see that the right-hand side
of (2.67) is zero, completing the proof of I.

It remains to prove II. We will prove that if (1.18) (i) holds and (1.22) fails, then there exist
µ in the closure of M that are not concentrated on Knc(Π

|). Fix δn > 0 such that δn → 0. Since
(1.22) does not hold, there exist T, ε, η > 0 and r ∈ R such that for each n ≥ 1 we can find a
random variable An with law µn ∈ M such that

P
[
CM
T,δn,ε,r ∩ (An ×An) ̸= ∅

]
≥ η. (2.69)

Since (1.18) (i) holds, by Theorem 1.2, by going to a subsequence if necessary, we can assume that
µn ⇒ µ for some probability law µ on K+(Π). Let A have law µ. By Skorohod’s representation
theorem, we can couple An,A in such a way that An → A a.s. Then (2.69) implies that

P
[
∀m ∈ N ∃n ≥ m s.t. CM

T,δn,ε,r ∩ (An ×An) ̸= ∅
]
≥ η, (2.70)

and hence

P
[
∃T, ε > 0, r ∈ R s.t. ∀δ > 0, m ∈ N ∃n ≥ m s.t. CM

T,δ,ε,r ∩ (An ×An) ̸= ∅
]
≥ η. (2.71)
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By condition (2.60) of Lemma 2.19, this shows that

P
[
A is noncrossing] ≤ 1− η, (2.72)

so µ is not concentrated on Knc(Π
|).

Proof of Lemma 1.4 Assume that An ∈ Knc(Π
↕) and that An → A for some A ∈ K+(Π).

Then by Lemma 2.1, for each π ∈ A, there exist πn ∈ An such that πn → π. It is easy to see that
Π↕ is a closed subset of Π, so π ∈ Π↕ for all π ∈ A. It remains to show that A is noncrossing.
Let π1, π2 ∈ A. By Lemma 2.1, there exist πn

1 , π
n
2 ∈ An such that πn

i → πi (i = 1, 2). Since An

is noncrossing, for each n, the path πn
1 does not cross πn

2 . By Proposition 2.12, it follows that
π1 does not cross π2, proving that A is noncrossing.

3 Applications

Throughout Section 3 we will use a piece of notation that is in common usage for the Brownian
web, and related objects, but that we have not so far introduced. For π ∈ Π↑ we write σπ for
the initial time of π i.e. if π has time domain [t,∞) then σπ = t.

3.1 Weaves

In this section we prove a result that specialises Theorem 1.3. A weave, introduced and studied in
[FS24], is a random compact subset A ⊆ Π↑ that is non-crossing and for which, with probability
one, for all z ∈ R2 there exists π ∈ A such that z ∈ π i.e. the paths cover space-time. We
consider weaves with a law that is invariant under deterministic translations of space-time. In
this setting, we show that tightness of the motion of a single particle in the sense of the classical
Skorohod space D[0,∞)(R) (as defined in e.g. [EK86, Bil99, Whi02]) essentially controls tightness

of the whole system in K(Π↑). We show also that translation invariance can be replaced by a
more technical condition that is uniform in space and time.

Before stating the result we must note a subtle technical point. Let (Xn) be a sequence of
D[0,∞)(R) valued random variables. Although D[0,∞)(R) is a subspace of Π↑, tightness of (Xn) in

Π↑ (in the sense of Theorem 1.2) does not imply tightness of (Xn) in D[0,∞)(R) (in the classical
sense). The distinction arises because for π ∈ D[0,∞)(R) we must have π(0−) = π(0+) whereas
Π permits jumps at time 0, more precisely

D[0,∞)(R) =
{
π ∈ Π↑ : σπ = 0, π(0−) = π(0+)

}
. (3.1)

Tightness conditions for D[0,∞)(R) (as found in [EK86, Bil99, Whi02] and suchlike) must there-
fore enforce that limit points do not jump at time 0, whereas tightness conditions (such as
Theorems 1.2 and 1.3) for the larger space Π↑ need not do so. For single paths the precise
connection, which is a straightforward consequence of [FS23, Thm 3.10], is as follows.

Lemma 3.1 (Tightness on D[0,∞)(R)) Let (Xn) be a sequence of random variables with val-
ues in D[0,∞)(R). Then their laws are tight on D[0,∞)(R) under J1 (resp. M1) if and only
if these laws are tight on Π under J1 (resp. M1) and additionally, for all ε > 0 we have
limδ→0 supn∈N P

[
supt∈[0,δ] |Xn(t)| ≥ ε

]
= 0.

We now recount some important facts from [FS24, Section 2.4] concerning weaves. Let A be
a weave. Then, except for z within a (deterministic) null set RA ⊆ R2, for each z ∈ R2 there
exists an almost surely unique path πz ∈ Π↑ that begins at z and does not cross A. We say that
πz is the one-particle motion of A from z.

22



We say that a weave A is homogeneous if the law of A is invariant under deterministic
translations of space and time. In this case the set RA is empty: for each z ∈ R2 there exists
an almost surely unique random path πz ∈ Π↑ that begins at z and does not cross A. Moreover
the law of the path

t 7→ π(x,s)(s+ t)− x for t ∈ [0,∞) (3.2)

does not depend on z = (x, s). The law of this process might include a jump at time t = 0, but
if it does not do so then (3.2) is a D[0,∞)(R) valued random variable. We refer to this law as the
one-particle motion of A.

For a weave A, let Ft be the σ-field generated by {π(s) ; π ∈ A, σπ ≤ s ≤ t}. We say that
(Ft)t∈R is the generated filtration of A.

Theorem 3.2 (Tightness criteria for homogeneous weaves) Let (An)n∈N be a sequence
of weaves, with generated filtrations (Fn

t ). Assume the following:

(i) For each n ∈ N, An is homogeneous.

(ii) For each n ∈ N, let Xn be the one-particle motion of An from the origin. Suppose that Xn

takes values in D[0,∞)(R) and is strongly Markov with respect to the filtration (Fn
t )t∈[0,∞).

(iii) The laws of (Xn) are tight on D[0,∞)(R), under J1 or M1.

Then the laws of (An) are tight on K(Π↑) under M1 and all weak limit points are non-crossing.

As a corollary to the proof of Theorem 3.2 we will obtain the following more general, but
more technical result.

Corollary 3.3 (Tightness criteria for inhomogeneous weaves) In the setting of Theorem
3.2, the same conclusion can be drawn if instead of conditions (i)-(iii) we have that for each
n ∈ N and z ∈ R2 there exists a random path πn

z ∈ Π↑, which does not cross An, such that:

(iv) πn
z is strongly Markov with respect to (Fn

t ).

(v) For all ε > 0, x ∈ R and T ∈ (0,∞),

lim
δ→0

sup
n∈N

sup
z∈{x}×[−T,T ]

P

[
sup

s∈[0,δ]
|πn

z (s
n
z + s)− πn

z (s
n
z )| ≥ ε

]
= 0. (3.3)

Proof The proof of Theorem 3.2 and Corollary 3.3, which we give together, will take up the
remainder of Section 3.1. Let us first handle the connection between the two results, namely we
show that (i)-(iii) implies both (iv) and (v). To see this take πn

z to be the one-particle motion
of An from z, which by (i) and our general comments above is well defined for all z ∈ R2, with
a distribution that does not depend on z. Condition (iv) then follows from (ii) and translation
invariance. Condition (v) follows from (iii) and Lemma 3.1. It therefore suffices to establish the
conclusion of Theorem 3.2 under conditions (iv) and (v), which we assume hereon.

Let T, δ ∈ (0,∞) and r ∈ R. For each n ∈ N we define a sequence of paths πn
m and stopping

times τnm. Set τn0 = −T and then for m ≥ 1,

πn
m = πn

(r+ε,τm−1)
, τnm = inf{t ≥ τnm−1 ; π

n
m ≤ r or πn

m ≥ r + 2ε}.

In words, the path πn
m begins at time τnm−1 at spatial location r + ε. The time τnm occurs when

πn
m exits the region [r, r + 2ε], upon which πn

m+1 is born at space-time location (r + ε, τnm). If
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Figure 3.1: In both images, time runs upwards and space is on the horizontal axis.
On the left: A depiction of the sequences (τnm)m∈N and (πn

m)m∈N, with the superscript n dropped. Note
that if a path π is to cross [r, r+2ε] then it must pass through at least one of the grey dotted sections at
time τnm. Moreover, any such crossing must be from left to right if the corresponding πn

m exits [r, r + 2ε]
via the right boundary, or must be from from right to left if the corresponding πn

m exits [r, r+2ε] via the
left boundary. The event En

δ ensures that the dotted sections are separated from one another in time by
at least δ, which prevents the event CM

T,δ,2ε,0 ∩ (An ×An) ̸= ∅ from occurring.
On the right: Part of a Poisson tree, with one path beginning at each black dot and a square border
encasing the space-time window displayed. Events (x, t, r) ∈ Pn are shown as dotted sections of the form
[x− r, x+ r]×{t}. The realization of the underlying Poisson process Pn has been chosen to make a clear
picture, rather than to demonstrate heavy tailed behaviour.

τnm is infinite, then the inductive definition terminates and the sequences defined are taken to
be finite.

Define also the events

En
δ,m =

{
τnm > τnm−1 + δ

}
, En

δ =

Mn⋂
m=1

En
δ,m

where Mn = inf{m ∈ N ; τm ≥ T}. We claim that, in the notation of (1.22),{
CM
T,δ,2ε,r ∩ (An ×An) ̸= ∅

}
⊆ Ω \ En

δ . (3.4)

The reasoning behind equation (3.4) is explained in Figure 3.1, which depicts the sequences (τnm)
and (πn

m). In order to check (1.22) we must therefore check that the event En
δ occurs with high

probability, in a sense matching the limits appearing in (1.22).
By (3.3) there exists δ0 > 0 such that

inf
n

inf
z∈{r+ε}×[−T,T ]

P

[
sup

s∈[0,δ0]

∣∣πn
z (σπn

z
+ s)− πn

z (σπn
z
)
∣∣ < ε

]
≥ 1

2
,

which implies that, for all m ∈ N, infn P
[
τnm − τnm−1 ≥ δ0

]
≥ 1

2 . The strong Markov property
from condition (iv) gives that, for fixed n, the variables (τnm−τnm−1)m∈N are independent. Noting
that τnm − τn0 =

∑m
i=1 τ

n
m − τnm−1, it follows that τnm is, for all n, stochastically bounded below

by −T +
∑m

1 Ti where P[Ti ≥ δ0] ≥ 1
2 . Hence Mn is bounded above by a negative binomial
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distribution with parameters N = ⌈2T/δ0⌉ (the number of ‘successes’) and p = 1
2 . Noting that

these parameters are independent of n, it follows that

for all κ > 0 there exists K ∈ N such that sup
n∈N

P[Mn ≥ K] ≤ κ. (3.5)

Let κ > 0 and take K ∈ N as in (3.5), then

P[Ω \ En
δ ] ≤ P

[
Mn⋃
m=1

Ω \ En
δ,m and Mn < K

]
+ P[Mn ≥ K]

≤
K∑

m=1

P[Ω \ En
δ,m] + κ

≤
K∑

m=1

P

[
sup

s∈[0,δ]

∣∣πn
z (σπn

z
+ s)− πn

z (σπn
z
)
∣∣ ≥ ε

]
+ κ. (3.6)

The first line of the above follows by elementary set algebra and conditioning. The second line
follows from (3.5) and the third from the definition of En

δ,m. Applying (v) to let δ → 0, we
obtain that lim supδ→0 supn∈N P[Ω \ En

δ ] ≤ κ, and using that κ > 0 was arbitrary we obtain
limδ→0 supn∈N P[Ω \ En

δ ] = 0. In view of (3.4) and Theorem 1.3, this completes the proof.

3.2 Heavy tailed Poisson trees

In this section we use Theorem 3.2 to show tightness of a specific particle system, under its
natural rescaling. We treat a heavy tailed version of the Poisson trees considered by [FFW05,
EFS17] and others, in which the motion of a single particle is within the natural domain of
attraction of an α-stable process, where α ∈ (0, 2). For brevity we show only tightness. We do
not attempt to characterize the limit, which will be a system of highly correlated non-crossing
α-stable processes. In the case α = 2, after a diffusive rescaling the particles become coalescing
Brownian motions that are independent before coalescence; under suitable conditions the limit
in this case is known to be the Brownian web. However in the α-stable case one should expect
that particles in the limit are dependent even before coalescence.

Fix α ∈ (0, 2) and let µ be a finite measure on (0,∞) such that

lim
R→∞

Rα

∫ ∞

R
r µ(dr) ∈ (0,∞), (3.7)

for example µ(dr) = (1 ∧ r−α−2) dr. For each n ∈ N let Pn denote a Poisson point process in
R× R× (0,∞) with intensity measure

n1/α dx⊗ ndt⊗ µn(dr) (3.8)

where µn(A) = µ
(
n1/αA

)
.

Given a point z = (x, t) ∈ R2 we define a cadlag path πn
z with time domain [t,∞) and initial

point (x, t), by specifying that πn
z remains constant except at values of t for which πn

z (t−) ∈
[x− r, x+ r] for some (x, t, r) ∈ Pn; at such times the path jumps and πn

z (t+) = x. We will show
below that πn

z is a compound Poisson process, which by symmetry has zero mean.
We define

Wn = {πn
z ; z ∈ R2}

and let Wn be the closure of Wn in Π↑. See Figure 3.1 for a graphical depiction of Wn and Pn.
Equation (3.8) corresponds to a space-time rescaling in which, at stage n, we speed up time by
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a factor n and compress space by a factor n1/α. In particular, for fixed but arbitrary z ∈ R2

and n ∈ N, for s ∈ (0,∞) the processes

s 7→ πn
z (s) and s 7→ n−1/απ1

z(ns) have the same law. (3.9)

The remainder of the present section will apply Theorem 3.2 to the sequence (Wn). We
must first show that Wn is a weave. Then we must check conditions (i)-(iii) of Theorem 3.2;
conditions (i) and (ii) are essentially immediate and condition (iii) will come from showing that
the limiting one-particle motion is α-stable.

Remark 3.4 For arbitrary Zn ⊆ R2 we have that An = {πn
z ; z ∈ Zn} ⊆ Wn ⊆ Wn. Setting

An to be the closure of An, tightness of the sequence (An) follows immediately from that of
(Wn). For example, we might use paths begun on rescalings of the square lattice Z2

n = {(x, t) ∈
R2 ; n1/αx ∈ Z, nt ∈ Z} as depicted in Figure 3.1.

We begin with the one-particle motion. More precisely, we will show that the processXn(s) =

π
(n)
(0,0)(s) is a compound Poisson process. In view of (3.9) it suffices to consider n = 1. Let us

note at the outset that condition (3.7) combined with the requirement that µ be a finite measure
implies that

∫∞
0 r µ(dr) < ∞.

We refer to each (x, t, r) ∈ Pn as an event and to the space-time region [x− r, x+ r]×{t} as
being affected by the event. We similarly say that when Xn(t−) ∈ [x− r, x+ r], the path Xn is

affected by the event (x, t, r). Taking n = 1, if the current location of X1 = π
(1)
(0,0) is y ∈ R then

it is affected by events at rate∫ ∞

0

∫
R
1{y∈[x−r,x+r]} dxµ(dr) = 2

∫ ∞

0
r µ(dr) (3.10)

which is finite. Upon being affected by an event, the resulting jump changes the spatial location
of Xn by (addition of) a random variable J for which

P[J ≥ R] =
1

K

∫ ∞

0

∫
R
1{y∈[x−r,x−R]} dxµ(dr)

=
1

K

∫ ∞

0
(r −R) ∨ 0 µ(dr)

=
1

K

∫ ∞

R
r µ(dr), (3.11)

where R ∈ (0,∞) and K = 2
∫∞
0 r µ(dr). Note that by symmetry for R ≥ 0 we have P[J ≥ R] =

P[J ≤ −R], so (3.11) characterizes the distribution of J .

Proposition 3.5 (Tightness of heavy tailed Poisson trees) The laws of (Wn) are tight on
K(Π↑) under M1 and all weak limit points are non-crossing.

Proof We first justify that Wn is a weave, for each n ∈ N. With n ∈ N fixed, it is clear that
Wn is a subset of Π↑ and that each z ∈ R2 satisfies z ∈ π for some π ∈ Wn. To see that Wn is
a weave, it remains only to show that Wn is almost surely compact and non-crossing, for each
n ∈ N.

A similar calculation to (3.10) shows that for each L, T ∈ (0,∞) there exists, almost surely,
a random δ > 0 (depending on L, T and n) such that the regions [x − r, x + r] × [t − δ, t + δ]
are disjoint for all (x, t, r) ∈ Pn with (x, t) ∈ [−L,L] × [−T, T ]. Note that paths in Wn remain
constant (in space) outside of such regions. With this in hand it is easily seen via Theorem 2.5
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that Wn = Wn is almost surely compact, under both J1 and M1. Moreover, noting that Wn is
non-crossing, Proposition 2.12 gives that if two paths π, π′ ∈ Wn were to cross, then they must
collide at time σπ ∨ σπ′ . However, this eventuality cannot occur due to δ > 0. Hence Wn is
almost surely non-crossing.

To complete the proof we will apply Theorem 3.2 to the sequence (Wn)n∈N, for which we
must check conditions (i)-(iii) of that theorem. Conditions (i) and (ii) follow immediately from
standard independence properties and translation-invariance of Poisson point processes, so it
remains only to check condition (iii).

We have seen above that the one-particle motion ofWn from the origin is a compound Poisson
process with jump rate (3.10) and jump distribution J characterized by (3.11). Theorem 4.5.2
of [Whi02] gives that a discrete time random walk with i.i.d. increments having distribution J
is within the normal domain of attraction of an α-stable process, with time rescaled by a factor
n and space rescaled by n−1/α. Theorem 4.5.3 of [Whi02] gives that such a walk converges in
law, as a cadlag process under the J1 (and hence also M1) topology, to an α-stable process. For
brevity we do not calculate the scale parameter of the limiting α-stable process here but it may
be found via formulae therein; by symmetry the skewness and shift parameters are both zero.
Noting (3.10), we are in fact concerned with a random walk in continuous time i.e. a compound
Poisson process. The two cases differ only by a strictly increasing piecewise linear time change,
a time change which in the limit converges almost surely, in the locally uniform sense, to a
linear time change. Thus, by Theorem 13.2.2 of [Whi02], the same results apply to the sequence
n 7→ Xn(·). This establishes condition (iii) of Theorem 3.2, which completes the proof.
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