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The even sublattice

Z2
even := {(x , t) ∈ Z2 : x + t is even}.
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Arrow configurations

With probability 1
2 we draw an arrow to the left. . .
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Arrow configurations

and with probability 1
2 we draw it to the right.
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Arrow configurations

Independently for each space-time point
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Scaling limit

ε
ε2

We rescale diffusively, multiplying all spatial distances with ε and
all temporal distances with ε2.
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Scaling limit

Our aim is to describe the limit as ε → 0.
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Our aim is to describe the limit as ε → 0.
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Paths

Each space-time point is the starting point of a random walk path.
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Paths

The diffusive scaling limit of a single random walk
is a Brownian motion.
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Paths

Random walk paths started at different space-time points coalesce
as soon as they meet.
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Paths

In the limit, we obtain coalescing Brownian motions.
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Brownova śı̌t

We want to give a rigorous construction of an object with the
following informal description:

Coalescing Brownian motions,
started in each space-time point.

Moreover, we want to show that diffusively rescaled
arrow configurations converge to such an object.

To this aim, we must first introduce the right topology.
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Topological matters

(0, 0)

(∞, 2)

(−∞,−1)

(−1,∞)

(∞,−∞)

We compactify both space and time by adding points at ±∞.
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Topological matters

R2
c

(0, 0)

(∗,∞)

(∗,−∞)

(−∞,−1)

(2,∞)

. . . and then contract [−∞,∞]× {−∞}
and [−∞,∞]× {∞} to single points.
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Topological matters

A path is a continuous function π : [σπ,∞) → [−∞,∞],
where σπ ∈ R is the starting time.
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Topological matters

We identify a path with its graph{
(π(t), t) : t ∈ [σπ,∞)

}
∪ {(∗,∞)} ⊂ R2

c .
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Topological matters

dH(π1,π2)

We equip the space Π of all paths with the Hausdorff metric

dH(π1, π2) := sup
z1∈π1

inf
z2∈π2

d(z1, z2) ∨ sup
z2∈π2

inf
z1∈π1

d(z1, z2),

where d is a the metric on space-time R2
c .
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Topological matters

The set U consisting of all paths in an arrow configuration
plus the trivial paths that are constantly −∞ or +∞

is a compact subset of the space of all paths Π.
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Topological matters

We equip the space K(Π) of compact subsets of the path space Π
with the Hausdorff metric:

dHH(U1,U2) := sup
π1∈U1

inf
π2∈U2

dH(π1, π2) ∨ sup
π2∈U2

inf
π1∈U1

dH(π1, π2).

Here dH is the metric on Π.

We let θε : R2
c → R2

c denote the diffusive scaling map

θε(x , t) := (εx , ε2t),

and set

θε(π) :=
{
θε(x , t) : (x , t) ∈ π

}
θε(U) :=

{
θε(π) : π ∈ U

}
.
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Convergence to the Brownian web

Theorem [Fontes, Isopi, Newman, Ravishankar (2003)] The
set U of paths in an arrow configuration (plus trivial paths) satisfies

P[θε(U) ∈ · ] =⇒
ε→0

P[W ∈ · ],

where ⇒ denotes weak convergence of probability laws on K(Π)
and W is a random compact set of paths called the Brownian web.
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The Brownian web

The Brownian web is a the unique (in law) random compact subset
of paths such that:

▶ In each deterministic point z ∈ R2 there almost surely starts
precisely one path pz ∈ W.

▶ The paths pz1 , . . . , pzk starting in a finite collection
z1, . . . , zk ∈ R2 of deterministic points are distributed as
coalescing Brownian motions.

▶ For each deterministic countable dense set D ⊂ Rd , the
Brownian web W is the closure of the set
W(D) := {pz : z ∈ D} of paths starting in D.
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The Brownian web

Artist’s impression of the Brownian web.
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The Brownian web

Paths starting at time zero.
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The Brownian web

Even though at deterministic points z there a.s. starts
a single path πz , there exist random points that

are the starting point of two paths.
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Special points

(0, 1)

(1, 1) (2, 1) (1, 2)l

(0, 2) (0, 3)
(1, 2)r

We can distinguish points in the plane according to the number of
distinct paths entering and leaving a point.

In total, there are 7 types of points.
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Dual arrows

Each arrow configuration defines a dual arrow configuration.
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Dual Brownian web

In the diffusive scaling limit, the dual arrow configuration
converges to a dual Brownian web.
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Dual Brownian web

Associated to each Brownian web W, there is a dual Brownian web
Ŵ that is a.s. uniquely determined by W and equally distributed
with W after a rotation over 180◦.

Dual paths reflect off forward paths with Skorohod reflection.
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Dual Brownian web

Forward paths (black) and dual paths (white)
starting at two fixed times.
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Special points revisited

The structure of the dual Brownian web at special points.
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The voter model

Let [0, 1]Z be the space of functions x : Z → [0, 1].

The infinite-type one-dimensional voter model is a
Markov process (Xt)t≥0 with state space [0, 1]Z.

We call Xt(i) ∈ [0, 1] the type if site i ∈ Z at time t ≥ 0.

Initially, (X0(i))i∈Z are i.i.d. uniformly distributed.

At times of a Poission point process with intensity one, the site i
selects one of its neighbours at random and copies its type.
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The voter model

h

time Xt

X0

0 1 1 1 1 1 0 0 0 1

0 1 1 0 0 0 0 0 0 1

A one-dimensional voter model.
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The voter model

?
time

space

To find out the type of site i at time t,
we follow the arrows backwards.
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The voter model

? ?
time

space

Ancestral lines started from different points
coalesce when they meet.
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The voter model

In the diffusive scaling limit, the ancestral lines converge to a dual
Brownian web. Arratia (1979) initiated the study of the Brownian
web with the aim of describing the scaling limit of the voter model.
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The heat equation with Wright-Fisher noise

In 1988, T. Shiga studied the heat equation with Wright-Fisher
noise

∂
∂t u(x , t) =

1
2

∂2

∂x2
u(x , t) + γ

√
u(x , t)

(
1− u(x , t)

)
∂W (x , t),

where W (x , t) is space-time white noise. He showed that solutions
to this PDE can via duality be expressed in terms of systems of
Brownian motions that coalesce with rate γ times their intersection
local time.

The continuum voter model with type space {0, 1} corresponds to
the γ → ∞ limit of this PDE.
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The true self-repelling motion

In 1998, Bálint Tóth and Wendelin Werner used the Brownian web
to describe the scaling limit of the true self-repelling motion.
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In 1998, Bálint Tóth and Wendelin Werner used the Brownian web
to describe the scaling limit of the true self-repelling motion.

Jan M. Swart The Brownian web and net



The true self-repelling motion
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In 1998, Bálint Tóth and Wendelin Werner used the Brownian web
to describe the scaling limit of the true self-repelling motion.

Jan M. Swart The Brownian web and net



The true self-repelling motion
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In 1998, Bálint Tóth and Wendelin Werner used the Brownian web
to describe the scaling limit of the true self-repelling motion.

Jan M. Swart The Brownian web and net



The true self-repelling motion
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The directed spanning forest

In the Euclidean directed spanning forest1 we place points in the
plane according to a Poisson point process with intensity one, and
we add one extra point at the origin.

We then connect each point to the nearest point that is closer to
the origin.

1Thanks to Katěrina Pawlasová for the pictures.
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The directed spanning forest
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The directed spanning forest
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The directed spanning forest
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The directed spanning forest

In 2021, D. Coupier, K. Saha, A. Sarkar, and V.C. Tran showed
that a directed version of this model scales to the Brownian web.
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The 0-ballistic deposition model

In 2021, G. Cannizzaro and M. Hairer studied
the 0-ballistic deposition model that describes
the growth of a random interface Ht : Z → N.

Each site i ∈ Z is updated with Poisson rate one, in such a way
that:

Ht(i) 7→


Ht(i − 1) with probability 1/3,
Ht(i) + 1 with probability 1/3,
Ht(i + 1) with probability 1/3.
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The 0-ballistic deposition model

After subtracting the mean, we are interested in the
diffusive scaling limit of the interface.
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The 0-ballistic deposition model

ht(x3)

ht(x1)

ht(x2)

ht(x1)

ht(x2)

ht(x3)

To determine the heights ht(xi ) in points x1, . . . , xn, we first
construct downward coalescing Brownian motions from (xi , t).
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The 0-ballistic deposition model

ht(x3)

ht(x1)

ht(x2)

ht(x1)

ht(x2)

ht(x3)

The heights are then determined by upward Brownian motions that
branch with the tree structure of the downward Brownian motions.
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Branching and coalescence

We can change an arrow configuration by drawing with
probability ε two arrows, one to the left and one to the right.
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Branching and coalescence

ε
ε2

We again rescale space by ε and time by ε2.
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Branching and coalescence

In each space-time point, there now start many different paths.
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Left and right paths

At each point, there start a unique left-most and right-most path.
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Left and right paths

After diffusive rescling, these converge
to drifted Brownian motions.
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Left and right paths

The joint law of left and right paths is described by the stochastic
differential equation:

dLt =1{Lt ̸=Rt}dB
l
t + 1{Lt=Rt}dB

s
t − dt,

dRt =1{Lt ̸=Rt}dB
r
t + 1{Lt=Rt}dB

s
t + dt,

where B l
t ,B

r
t ,B

s
t are independent Brownian motions, and Lt and

Rt satisfy Lt ≤ Rt for all t ≥ τ := inf{u ≥ 0 : Lu = Ru}.
The set {t : Lt = Rs} is nowhere dense
and has positive Lebesgue measure.
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Left Brownian web

All left-most paths form a left Brownian web. . .
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Right Brownian web

. . . and the right-most paths form a right Brownian web.
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Convergence to the Brownian net

Theorem [Sun, S. (2008)] Let Uε be the collection of paths in
an arrow configuration with branching probability ε. Then

P[θε(Uε) ∈ · ] =⇒
ε→0

P[N ∈ · ],

where ⇒ denotes weak convergence on the space K(Π) of compact
sets of paths, and the limiting object N is called the Brownian net.
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Brownian net

Artist’s impression of the Brownian net.
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Brownian net

The collection of paths starting at time zero.
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The branching-coalescing point set

For each closed set A ⊂ R,

ξt :=
{
πt : ∃π ∈ N s.t. σπ = 0, π0 ∈ A

}
(t ≥ 0)

defines a Markov process (ξt)t≥0 with values in the space of closed
subsets of R.
(i) Invariant law: the law of a Poisson point process with

intensity 1.

(ii) For deterministic t > 0, the set ξt is a.s. a locally finite subset
of R.

(iii) There exists a dense set of random times at which ξt has no
isolated points.
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Pott’s model

A one-dimensional Potts model with Glauber dynamics is a Markov
process (Xt)t≥0 taking values in the space {1, . . . , q}Z of functions
x : Z → {1, . . . , q}.
For x ∈ {1, . . . , q}Z, let

Nx
i (σ) :=

∑
j∈{i−1,i+1}

1{x(j)=σ}

denote the number of neighbours of i ∈ Z that have the value
σ ∈ {1, . . . , q}.
Each site i is updated with Poisson rate one and chooses a new
value according to the law

µx
i (σ) :=

1

Z x
i

eβN
x
i (σ)

(
σ ∈ {1, . . . , q}

)
,

where Z x
i is a normalisation constant.

We are interested in the low temperature limit β → ∞.
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Pott’s model

A low temperature one-dimensional Potts model
with Glauber dynamics.
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Voter model perturbations

C.M. Newman, K. Ravishankar, and E. Schertzer (2015) studied
coalescing random walks that branch with probability ε and die
with probability ε2.

The diffusive scaling limit is called the Brownian net with killing.

In 2017, they used the Brownian net with killing to describe the
scaling limit of low temperature one-dimensional Potts models with
Glauber dynamics.

More generally, their method applies to a wide class of voter model
perturbations.
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Random space-time environment

0.6

01

0.450.750.250.470.53100.90.1

0.36 0.64 0.67 0.33 0.45 0.55 0.5 0.5

0.7 0.57 0.43 0.72 0.28 0.23

0.7 0.2 0.8 0.24 0.76 0.9 0.1 0.65 0.35

0.22
0.7

0.3

0.3 0.010.99

(x, t)

0.410.59
1− ω(x,t) ω(x,t)

Fix a probability law µ on [0, 1].
Let (ωz)z∈Z2

even
be i.i.d. [0, 1]-valued r.v.’s with law µ.
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A measure-valued process

Fix some probability measure ρ0 on Zeven, and define inductively,
for (x , t) ∈ Z2

even:

ρt(x) := ω(x−1,t−1)ρt−1(x − 1) + (1− ω(x+1,t−1))ρt−1(x + 1).

Interpretation: in the time step from t to t + 1, a ω(x ,t) fraction of
the mass at x is sent to x + 1 and the rest is sent to x − 1.

Then (ρt)t≥0 is a Markov chain taking values alternatively in the
probability measures on Zeven and Zodd.
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Howitt-Warren processes

Theorem [Le Jan & Raimond ’04, Howitt & Warren ’06]

Let εn → 0 and let ρ
(n)
t (x) be Markov chains defined by splitting

laws µn satisfying:

(i) ε−1
n

∫
2(q − 1

2)µn(dq) −→
n→∞

β,

(ii) ε−1
n q(1− q)µn(dq) =⇒

n→∞
ν(dq),

with β ∈ R and ν a finite measure on [0, 1].

Rescale diffusively: ρ̃
(n)
ε2nt

(εnx) := ρ
(n)
t (x). Then ρ̃(n) ⇒ ρ, where

(ρt)t≥0 is a Markov process taking values in the probability
measures on R, with dynamics characterized by β and ν.
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Howitt-Warren flows

The equal splitting flow: β = 0 and ν = δ1/2.
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Howitt-Warren flows

The process with β = 0 and ν(dq) = 6q(1− q)dq.
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Howitt-Warren flows

Le Jan-Raimond flow: β = 0 and ν(dq) = dq (reversible!).
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Howitt-Warren flows

The erosion flow: β = 0 and ν = 1
2δ0 +

1
2δ1.
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Howitt-Warren flows

One-sided erosion flow: β = 0 and ν = δ1.
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Howitt-Warren flows

In 2010, E. Schertzer, R. Sun & J.S. showed that Howitt-Warren
flows can be constructed with the help of the Brownian web.

If the speeds

β+ :=β + 2

∫
q−1ν(dq),

β− :=β − 2

∫
(1− q)−1ν(dq),

are finite, then they are supported on a Brownian let with left
speed β− and right speed β+.

Jan M. Swart The Brownian web and net


