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A discrete net

Z2 o = {(x,t) € Z? : x + t is even}.

even
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A discrete net

With probability 3(1 — ¢) we draw an arrow to the left.
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A discrete net

With probability 3(1 — ) we draw an arrow to the right.
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A discrete net
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With probability € we draw both arrows.

Jan M. Swart The Brownian net and its meshes



AN
FANEAN
N NS

NS
PN

AVAVE
VAN
NN
NS

AN

Independently for each poin

)
(D)
c
[

e
(0]
—
O

R

e

<



)
(D)
c
[

e
(0]
—
O

R

e

<

Q
xWW VaVaVs \&. A A\
YYRYR xN

VAN
N
./> NN

In each point there start many paths.
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A discrete net
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But in each point there starts a unique left
and right path.




The left-right Brownian web
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After scaling space by € and time by €2, left and right paths
converge to Brownian motions with drift £1.
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The left-right Brownian web

The left paths converge to a left Brownian web
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The left-right Brownian web

and the right paths converge to a right Brownian web.
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The left-right Brownian web

The interaction between left and right paths is described by the
SDE
dLe=1{1,2r1dBt + 1{1,—rydB; —dt,

dRy; = 1{Lt7éRt}dB£ + 1{Lt:Rt}dB; +dt,

where B!, B!, B are independent Brownian motions, and L; and
R; satisfy the constraint L; < R; for each
t>7:=inf{lu>0:L,=R,}.

The set {t: L; = Rs} is nowhere dense.
and has positive Lebesgue measure.
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The Brownian web

Let M" be the set of upward paths, equipped with the Brownian
web topology. There exists a random compact set W C K(MT)
whose distribution is uniquely determined by:

1. For each z € R?, almost surely there exists a
unique 7, € M' such that W(z) = {r,}.

2. For each z1,...,z, € R?, the paths (7,...,7,) are
distributed as coalescing Brownian motions
starting from zy,..., z,.

3. For each countable dense set D C R?,

almost surely W = W(D).
Here W(D) := {m € W : 7 starts in D}.
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The Brownian web
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The Brownian web

Associated to each Brownian web W, there is a dual Brownian web
W that is a.s. uniquely determined by VW and equally distributed
with W after a rotation over 180°.

Dual paths reflect off forward paths with Skorohod reflection.
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The Brownian web

Forward paths (black) and dual paths (white)

starting at two fixed times.
o (w1 =
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The Brownian net

In case of a left-right Brownian web (W! W), the dual webs
(Wl,Wr) are equally distributed with the forward webs after a
rotation over 180°.

The paper The Brownian net gives three ways to construct a
Brownian net \/ from a left-right Brownian web and its dual
WL W WD)

1. The hopping construction.

2. The wedge construction.

3. The mesh construction.
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The hopping construction

N = Hpop WV, VD).
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The hopping construction

N = Hpop WV, VD).
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The wedge construction
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A wedge is the open area between a dual
left and right path above their first meeting point.

Jan M. Swart The Brownian net and its meshes



The wedge construction
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N = {r € N": 7 does not enter wedges of (W', W")}.
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The mesh construction

A mesh M is the open area enclosed by
a left and right path starting from the same point,
that are initially ordered the “wrong” way.

N = {7 € N : 7 does not enter meshes of (W', WW")}.
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The connected components
of the complement of all paths are meshes.
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Paths in the Brownian net and the dual Brownian net
started from fixed times.
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Meshes

Dual net paths exit forward meshes via their bottom points.
These are the relevant separation points
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Relevant separation points

A relevant separation point.
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Convergence

The original proof that arrow configurations with a small branching
rate converge to the Brownian net is based on the hopping and
wedge constructions:

» Tightness of rescaled discrete nets follows from tightness of
the left and right webs.

» Each cluster point N satisfies MVyop C N C Nyedge-

Open Problem: Prove convergence based on meshes rather than
wedges.
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Mesh-paths

Once a left and right path separate,
they try to get away from each other.




Mesh-paths

Instead, one can look at pairs of paths that once they separate,
try to get back together as soon as possible.
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Mesh-paths
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The open areas enclosed by such a mesh-pair
are meshes.
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Mesh-paths

Open problem: Characterise the joint law of
the scaling limit of several mesh-pairs.
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The branching-coalescing point set

Let Clos(R) be the space of closed subsets of R.
For any A € Clos(R), setting

€l = {n(t) :m < N (A {0}))

defines a Markov process (££);>0 with values in Clos(R), the
branching-coalescing point set.

> &/ is a.s. locally finite for deterministic ¢t > 0.

» Poisson point set with intensity 2 is reversible.

» There are random times when &7 has no isolated points.
» Feller process with compact state space Clos(R).

Open problem: Generator characterisation of (££)>0.
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The branching-coalescing point set




The branching-coalescing point set

0\

For a separation point z, let ¢(z) be the first meeting point of the
left-most and right-most paths starting at z.
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The branching-coalescing point set
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For a meeting point z, define ¢(z) analogously by turning the
picture upside down.
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The branching-coalescing point set

Call a point of type L.n if z +— ¢(z) > ¢?(x) > - -
reaches (*,400) after n steps.
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The branching-coalescing point set
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Call a point of type ILnif z+— ¢(z) — ¢?(x
reaches a point z’ with ¢?(z') = Z’ after n steps.
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The branching-coalescing point set

0\

Bubble hypothesis: All separation and meeting points
are of type I.n or II.n for some finite n.
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The branching-coalescing point set

0\

Bubble complexity hypothesis: Points of types I1.0 and II.1 are
dense on the backbone and all others are locally finite.

Jan M. Swart The Brownian net and its meshes



The branching-coalescing point set

Open problem: Relation to Feynman diagrams? Only two
diagrams need to be renormalised?

Open problem: Relation to a quantum field theory?
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