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A discrete net

Z2
even := {(x , t) ∈ Z2 : x + t is even}.
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A discrete net

With probability 1
2(1− ε) we draw an arrow to the left.
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A discrete net

With probability 1
2(1− ε) we draw an arrow to the right.

Jan M. Swart The Brownian net and its meshes



A discrete net

With probability ε we draw both arrows.
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A discrete net

Independently for each point.

Jan M. Swart The Brownian net and its meshes



A discrete net

In each point there start many paths.
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A discrete net

But in each point there starts a unique left
and right path.
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The left-right Brownian web

After scaling space by ε and time by ε2, left and right paths
converge to Brownian motions with drift ±1.
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The left-right Brownian web

The left paths converge to a left Brownian web
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The left-right Brownian web

and the right paths converge to a right Brownian web.
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The left-right Brownian web

The interaction between left and right paths is described by the
SDE

dLt =1{Lt ̸=Rt}dB
l
t + 1{Lt=Rt}dB

s
t − dt,

dRt =1{Lt ̸=Rt}dB
r
t + 1{Lt=Rt}dB

s
t + dt,

where B l
t ,B

r
t ,B

s
t are independent Brownian motions, and Lt and

Rt satisfy the constraint Lt ≤ Rt for each
t ≥ τ := inf{u ≥ 0 : Lu = Ru}.

The set {t : Lt = Rs} is nowhere dense.
and has positive Lebesgue measure.
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The Brownian web

Let Π↑ be the set of upward paths, equipped with the Brownian
web topology. There exists a random compact set W ⊂ K(Π↑)
whose distribution is uniquely determined by:

1. For each z ∈ R2, almost surely there exists a
unique πz ∈ Π↑ such that W(z) = {πz}.

2. For each z1, . . . , zn ∈ R2, the paths (πz1 , . . . , πzn) are
distributed as coalescing Brownian motions
starting from z1, . . . , zn.

3. For each countable dense set D ⊂ R2,
almost surely W = W(D).

Here W(D) := {π ∈ W : π starts in D}.
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The Brownian web

Each arrow configuration defines a dual arrow configuration.
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The Brownian web

Associated to each Brownian web W, there is a dual Brownian web
Ŵ that is a.s. uniquely determined by W and equally distributed
with W after a rotation over 180◦.

Dual paths reflect off forward paths with Skorohod reflection.
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The Brownian web

Forward paths (black) and dual paths (white)
starting at two fixed times.
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The Brownian net

In case of a left-right Brownian web (W l,Wr), the dual webs
(Ŵ l, Ŵr) are equally distributed with the forward webs after a
rotation over 180◦.

The paper The Brownian net gives three ways to construct a
Brownian net N from a left-right Brownian web and its dual
(W l,Wr, Ŵ l, Ŵr):

1. The hopping construction.

2. The wedge construction.

3. The mesh construction.
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The hopping construction

N = Hhop(W l,Wr).
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The hopping construction

N = Hhop(W l,Wr).
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The wedge construction

A wedge is the open area between a dual
left and right path above their first meeting point.
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The wedge construction

N =
{
π ∈ Π↑ : π does not enter wedges of (W l,Wr)

}
.
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The mesh construction

M

rl

A mesh M is the open area enclosed by
a left and right path starting from the same point,

that are initially ordered the “wrong” way.

N = {π ∈ Π↑ : π does not enter meshes of (W l,Wr)}.

Jan M. Swart The Brownian net and its meshes



Meshes

Paths in the Brownian net starting at time zero.
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Meshes

The connected components
of the complement of all paths are meshes.
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Meshes

Paths in the Brownian net and the dual Brownian net
started from fixed times.
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Meshes

Dual net paths exit forward meshes via their bottom points.
These are the relevant separation points
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Relevant separation points

A relevant separation point.
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Convergence

The original proof that arrow configurations with a small branching
rate converge to the Brownian net is based on the hopping and
wedge constructions:

▶ Tightness of rescaled discrete nets follows from tightness of
the left and right webs.

▶ Each cluster point N satisfies Nhop ⊂ N ⊂ Nwedge.

Open Problem: Prove convergence based on meshes rather than
wedges.
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Mesh-paths

Once a left and right path separate,
they try to get away from each other.
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Mesh-paths

Instead, one can look at pairs of paths that once they separate,
try to get back together as soon as possible.
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Mesh-paths

The open areas enclosed by such a mesh-pair
are meshes.
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Mesh-paths

Open problem: Characterise the joint law of
the scaling limit of several mesh-pairs.
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The branching-coalescing point set

Let Clos(R) be the space of closed subsets of R.
For any A ∈ Clos(R), setting

ξAt :=
{
π(t) : π ∈ N

(
A× {0}

)}
defines a Markov process (ξAt )t≥0 with values in Clos(R), the
branching-coalescing point set.

▶ ξAt is a.s. locally finite for deterministic t > 0.

▶ Poisson point set with intensity 2 is reversible.

▶ There are random times when ξAt has no isolated points.

▶ Feller process with compact state space Clos(R).
Open problem: Generator characterisation of (ξAt )t≥0.
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The branching-coalescing point set

The backbone of the Brownian net.
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The branching-coalescing point set
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For a separation point z , let ϕ(z) be the first meeting point of the
left-most and right-most paths starting at z .
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The branching-coalescing point set
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For a meeting point z , define ϕ(z) analogously by turning the
picture upside down.
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The branching-coalescing point set
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Call a point of type I.n if z 7→ ϕ(z) 7→ ϕ2(x) 7→ · · ·
reaches (∗,±∞) after n steps.
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The branching-coalescing point set
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Call a point of type II.n if z 7→ ϕ(z) 7→ ϕ2(x) 7→ · · ·
reaches a point z ′ with ϕ2(z ′) = z ′ after n steps.
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The branching-coalescing point set
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Bubble hypothesis: All separation and meeting points
are of type I.n or II.n for some finite n.
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The branching-coalescing point set
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Bubble complexity hypothesis: Points of types II.0 and II.1 are
dense on the backbone and all others are locally finite.
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The branching-coalescing point set

Open problem: Relation to Feynman diagrams? Only two
diagrams need to be renormalised?

Open problem: Relation to a quantum field theory?
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