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Discrete webs

Let p be a probability law on Z and let
supp(p) := {k ∈ Z : p(k) > 0}.

Assume that:

(i) (Symmetry) p(k) = p(−k).

(ii) (Irreducibility)
∀k ∈ Z, ∃k1, . . . , kn ∈ supp(p) s.t. k1 + · · ·+ kn = k .

(iii) (Aperiodicity) The least common divisor of the set{
n ≥ 1 : ∃k1, . . . , kn ∈ supp(p) s.t. k1 + · · ·+ kn = 0

}
is one.

(iv) (Finite variance) σ2 :=
∑
k∈Z

p(k)k2 < ∞.

Let ω =
(
ω(x , s)

)
(x ,s)∈Z2 be i.i.d. with law p.
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Discrete webs

For each z = (x , s) ∈ Z2, there exists a unique path πz with
domain I (πz) := {s, s + 1, . . .} such that

πz(s) = x and π(t + 1) = π(t) + ω
(
πz(t), t

)
(t ≥ s).

For each s ∈ Z := Z ∪ {−∞,∞} we define trivial paths π±
s with

domain I (π±
s ) := {t ∈ Z : t > s} by

π±
s (t) := ±∞ (t ∈ I (π±

s )).

Lemma Almost surely, U :=
{
πz : z ∈ Z2} ∪ {π±

s : s ∈ Z}
is a compact subset of the space Πc of “continuous” paths,
equipped with the Brownian web topology.

With the formalism of my previous talk, no need to interpolate!
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Discrete webs

ε

ε2

An arrow configuration ω.
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Discrete webs

ε

ε2

A path πz (interpolated for better visibility).
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Discrete webs

ε

ε2

Paths coalesce as soon as they meet.
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Discrete webs

ε

ε2

We rescale space by ε and time by ε2.
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Discrete webs

We define diffusive scaling maps by

Sε(x , t) := (εx , ε2t).

We extend Sε continuously to the squeezed space R(R).

We identify a path with its closed graph and set

Sε(π) :=
{
Sε(z) : z ∈ π

}
and Sε(U) :=

{
Sε(π) : π ∈ U

}
.

We are interested in the limit of P
[
Sε(U) ∈ ·

]
as ε → 0.
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The Brownian web

The Brownian web with diffusion rate σ is the unique (in law)

random variable Wσ with values in K+(Π
↑
c) such that:

(i) In each deterministic point z ∈ R2 there almost surely starts
precisely one path πz ∈ Wσ.

(ii) The paths πz1 , . . . , πzk starting in a finite collection
z1, . . . , zk ∈ R2 of deterministic points are distributed as
coalescing Brownian motions with diffusion rate σ2.

(iii) For each deterministic countable dense set D ⊂ Rd , the
Brownian web Wσ is the closure of the set
Wσ(D) := {πz : z ∈ D} of paths starting in D.

Standard Brownian web W := W1.
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Convergence to the Brownian web

Theorem [Freeman, S. ’25] Assume

n3P(n) −→
n→∞

0 with P(n) :=
∞∑
k=n

p(k) (n ≥ 0).

Then
P
[
Sε(U) ∈ ·

]
=⇒
ε→0

P
[
Wσ ∈ ·

]
.

Proved earlier [Belhaouari, Mountford, Sun, and Valle ’06]
under the assumption α > 3, where

α := sup
{
β ≥ 0 :

∑
k∈Z

p(k)|k |β < ∞
}

= sup
{
β ≥ 0 : nβP(n) −→

n→∞
0
}
.
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Convergence to the Brownian web

The condition n3P(n) −→
n→∞

0 is sharp. Set

X :=
{
(x , y , t) : (x , t) ∈ Z2, y = x + ω(x , t)

}
,

Sε(X ) :=
{
(εx , εy , ε2t) : (x , y , t) ∈ X

}
.

Assume n3P(n) −→
n→∞

c > 0. Then

P
[
Sε(X ) ∈ ·

]
=⇒
ε→0

P
[
Ξc ∈ ·

]
,

where Ξc is a Poisson point process on
{
(x , y , t) ∈ R3 : x ̸= y

}
with intensity measure cµ, where

µ
(
d(x , y , t)

)
:= |x − y |−4 dx dy dt.
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The augmented Brownian web

For each x ∈ R and π ∈ Π↑ with starting time σπ = s ∈ R, we
define π(x) ∈ Π↑ with domain I (π(x)) := I (π) by

π(x)(s−) := x and π(x)(t±) := π(t±) in all other cases.

Let Wσ be a Brownian web and let Ξc be an independent Poisson
point process on

{
(x , y , t) ∈ R3 : x ̸= y

}
with intensity cµ.

Then we define the augmented Brownian web Wσ,c by

Wσ,c := Wσ ∪
{
π
(x)
(y ,t) : (x , y , t) ∈ Ξc

}
,

where π(y ,t) is the a.s. unique path in Wσ starting at (y , t).
Similarly, we define

Wσ,∞ := Wσ ∪
{
π(x) : π ∈ Wσ, σπ ∈ R

}
.
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Convergence to the Brownian web

Recall
α := sup

{
β ≥ 0 :

∑
k∈Z

p(k)|k |β < ∞
}

Theorem [Freeman, S. ’25] Assume α > 9/4 and

n3P(n) −→
n→∞

c ∈ [0,∞] with P(n) :=
∞∑
k=n

p(k) (n ≥ 0).

Then
P
[
Sε(U) ∈ ·

]
=⇒
ε→0

P
[
Wσ,c ∈ ·

]
,

where ⇒ denotes weak convergence on Π with respect to
Skorohod’s J1 topology, and paths in U are not interpolated.
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Convergence to the Brownian web

The condition α > 9/4 is sharp in the sense that for α < 9/4 the
statement of the theorem is false.

The reason is that for α < 9/4, in the diffusive scaling limit, there
appear paths that make two macroscopic jumps near their starting
time, which contradicts convergence in Skorohod’s J1 topology.

In the remainder of this talk,
I will explain where the 9/4 comes from.

Presumably, it would be possible to prove convergence statements
also for α < 9/4 but this would require significant work to define
an appropriate topology and also the limit object becomes
significantly more involved.

Removing the symmetry assumption on the jump distribution p is
much easier but a notational nuisance.
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A multiscale decomposition of discrete webs

Define sublattices Z2 = Λ0 ⊃ Λ1 ⊃ Λ2 ⊃ · · · by

Λd :=
{
(rd + 2dx , 4d t) : (x , t) ∈ Zd

}
with rd :=

d−1∑
i=0

(−2)i .

For (x , s), (y , t) ∈ Z2, set

ℓ0(x , s) := sup
{
d ≥ 0 : (x , s) ∈ Λd

}
,

ℓ(y , t) := sup
{
d ≥ 0 : ∃(x , s) ∈ Λd s.t. s ≤ t, π(x ,s)(t) = y

}
.

Then I (π) ∋ t 7→ ℓ
(
π(t), t

)
is nondecreasing for each π ∈ U .
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A multiscale decomposition of discrete webs
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A multiscale decomposition of discrete webs

Recall that ℓ(y , t) is the level of the highest-level path that passes
through (y , t). We let

τd(z) := inf
{
t ≥ 0 : ℓ

(
πz(σπz + t), t

)
≥ d

}
denote the time before the path started at z coalesces with a path
of level d or higher.

Lemma There exists constants C < ∞ and λ > 0 such that

P
[
τd(z) > t4d

]
≤ Ce−λt (t ≥ 0, d ≥ 1, z ∈ Z2).
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A multiscale decomposition of discrete webs

Recall Sε(x , s) := (εx , ε2s). Let

ΛD :=
{
(x , s) ∈ Z2 : 0 ≤ x < 2D , 0 ≤ t < 4D

}
denote the diffusive window and let Λd

D := Λd ∩ ΛD . The number
of points of level d or higher in the diffusive window is

|Λd
D | = 8D−d (0 ≤ d ≤ D).

Because of the exponential tails, for each ε > 0,
there exists a constant C < ∞ such that with probability ≥ 1− ε,
all paths started in Λd

D level up within a time ≤ C (D − d)4d ,
uniformly in D and d .
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Density estimates

Side remark Let

ρt := P
[
∃π ∈ U s.t. σπ = 0, π(t) = 0

]
.

denote the density of coalescing random walks, starting from each
point in space. Using the previous lemma, it should be easy to
show that

ρt ≍ t−1/2 as t → ∞.

In fact, the method should also work for random walks in the
domain of attraction of an α-stable Lévy process, with 1 < α < 2.
In this case,

ρt ≍ t−1/α as t → ∞,

the sublattices should be defined differently, corresponding to the
scaling map Sα

ε (x , s) := (εx , εαs), and one should use that
α-stable Lévy processes with 1 < α < 2 are point recurrent.
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Thinned-out lattices

Let π|r :=
{
(x , t) ∈ π : t ≥ σπ + r

}
and U|r :=

{
π|r : π ∈ U

}
.

Recall α := sup
{
β ≥ 0 :

∑
k∈Z

p(k)|k |β < ∞
}
.

Theorem Assume α > 2 and choose 3− α < β < 1. Then

P
[
Sε(U|ε−2β ) ∈ ·

]
=⇒
ε→0

P
[
Wσ ∈ ·

]
.

Proof sketch Recall

ℓ0(x , s) := sup
{
d ≥ 0 : (x , s) ∈ Λd

}
,

ℓ(y , t) := sup
{
d ≥ 0 : ∃(x , s) ∈ Λd s.t. s ≤ t, π(x ,s)(t) = y

}
.

Because of the lemma,∣∣{z ∈ ΛD : ℓ(z) = d}
∣∣ ≈ 8D−d · 4d = 23D−d .
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Thinned-out lattices

It follows that
∣∣{z ∈ ΛD : ℓ(z) = d , |ω(z)| ≥ 2θD}

∣∣
≈ 23D−d · 2−αθD = 2(3−αθ)D−d .

This quantity is of order one for θ = (3D − d)/(αD), so

sup
{
|ω(z)| : z ∈ ΛD , ℓ(z) ≥ βD

}
≈ 2(3−β)D/α.

We have 2(3−β)D/α ≪ 2D as long as
(3− β)/α < 1 ⇔ 3− α < β, so

P
[
S2−D (U(ΛβD) ∈ ·

]
=⇒
D→∞

P
[
Wσ ∈ ·

]
.

Setting ε = 2−D , using that all paths reach level βD within a time
of order 4βD = ε−2β, the claim follows.
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Two macroscopic jumps

Let N(D, d , d ′) denote the number of paths starting in Λd
D that

make two jumps of size ≥ 2D , the first one while they are at level
d and the second one when they have reached level d ′ ≥ d . Then

E
[
N(D, d , d ′)

]
≈ 8D−d · 4d2−αD · 4d ′

2−αD = 2(3−2α)D−d+2d ′
.

By our earlier argument we can restrict to d ′ ≤ (3− α)D.

The number of paths starting in ΛD and making two jumps ≥ 2D is

≈
(3−α)D∑
d=0

(3−α)D∑
d ′=d

2(3−2α)D−d+2d ′ ≈ 2(9−4α)D ,

which comes from the term with d = 0 and d ′ = (3− α)D.
As long as α > 9/4, this tends to zero as D → ∞.
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A multiscale argument

ε−1 ε−1

δε−2

2δε−2

[Belhaouari, Mountford, Sun, & Valle ’06]
used a different multiscale argument for discrete webs.
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A multiscale argument

ε−1 ε−1

δε−2

2δε−2

For tightness one needs to show that the probability of this event
tends to zero for δ → 0, uniformly in ε.
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A multiscale argument

ε−1 ε−1

2δε−2

In each step, they let the coalescing random walks of two
subsequent times evolve until the next time.
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A multiscale argument

By controlling the number of particles and their displacement in
each step, Belhaouari, Mountford, Sun, & Valle in 2006 were able
to control the maximal displacement of all paths started in the
block of size ε−1 × δε−2.

The argument is a bit lossy, which is why they needed the condition
α > 3, which is slightly weaker than our optimal condition

n3P(n) −→
n→∞

0 with P(n) :=
∞∑
k=n

p(k) (n ≥ 0).

The advantage of our multiscale argument is that one first controls
the time till coalescence, which is easy, and only later has to care
about the displacement before coalescence.
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