Topologies on sets of paths

Jan M. Swart (Czech Academy of Sciences)

joint with Nic Freeman

> < 물 > < 물 >

Jan M. Swart (Czech Academy of Sciences) Topologies on sets of paths

The Hausdorff metric

Let (\mathcal{X}, d) be a metric space. Let $\mathcal{K}_+(\mathcal{X})$ be the set of nonempty compact subsets of \mathcal{X} . The *Hausdorff metric* on $\mathcal{K}_+(\mathcal{X})$ is defined as

$$d_{\mathrm{H}}(A,B) := \sup_{a \in A} d(a,B) \vee \sup_{b \in B} d(b,A)$$

where

$$d(a,B) := \inf_{b\in B} d(a,b).$$

• • = • • =

A correspondence between two sets A_1, A_2 is a set $R \subset A_1 \times A_2$ such that

$$\forall x_1 \in A_1 \ \exists x_2 \in A_2 \text{ s.t. } (x_1, x_2) \in R,$$

$$\forall x_2 \in A_2 \ \exists x_1 \in A_1 \text{ s.t. } (x_1, x_2) \in R.$$

Let $Cor(A_1, A_2)$ denote the set of all correspondences between A_1 and A_2 .

$$d_{\mathrm{H}}(\kappa_1,\kappa_2) = \inf_{R \in \mathrm{Cor}(\kappa_1,\kappa_2)} \sup_{(x_1,x_2) \in R} d(x_1,x_2).$$

(*) * 문 * * 문 * · · ·

크

For $K_n, K \in \mathcal{K}_+(\mathcal{X})$ one has $d_{\mathrm{H}}(K_n, K) \to 0$ iff

(i)
$$\exists C \in \mathcal{K}_{+}(\mathcal{X}) \text{ s.t. } K_{n} \subset C \quad \forall n,$$

(ii) $K \subset \{x \in \mathcal{X} : K_{n} \ni x_{n} \xrightarrow[n \to \infty]{n \to \infty} x\}$
 $\subset \{x \in \mathcal{X} : x \text{ is a cluster point of } x_{n} \in K_{n}\} \subset K.$

As a consequence, the topology on $\mathcal{K}_+(\mathcal{X})$ generated by d_{H} does not depend on the choice of the metric d on \mathcal{X} .

We call this the Hausdorff topology.

4 B K 4 B K

- If (\mathcal{X}, d) is separable, then so is $(\mathcal{K}_+(\mathcal{X}), d_H)$.
- If (\mathcal{X}, d) is complete, then so is $(\mathcal{K}_+(\mathcal{X}), d_H)$.
- If (\mathcal{X}, d) is compact, then so is $(\mathcal{K}_+(\mathcal{X}), d_H)$.

More generally, $\mathcal{A} \subset \mathcal{K}_+(\mathcal{X})$ is precompact iff $\exists C \in \mathcal{K}_+(\mathcal{X})$ s.t. $K \subset C \quad \forall K \in \mathcal{A}$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

A *compactification* of a topological space \mathcal{X} is a compact topological space $\overline{\mathcal{X}}$ such that \mathcal{X} is a dense subset of $\overline{\mathcal{X}}$.

Let ${\mathcal X}$ be a metrisable topological space that satisfies the equivalent conditions:

- $(i) \ \mathcal{X}$ is locally compact and separable,
- (ii) \mathcal{X} is an open subset of some, and hence of all of its metrisable compactifications $\overline{\mathcal{X}}$.
- Let $\operatorname{Clos}(\mathcal{X})$ denote the set of closed subsets of \mathcal{X} .

The one-point compactification $\mathcal{X}_\infty:=\mathcal{X}\cup\{\infty\}$ is defined by

$$\operatorname{Clos}(\mathcal{X}_{\infty}) := \big\{ A \subset \mathcal{X}_{\infty} : A \cap \mathcal{X} \in \operatorname{Clos}(\mathcal{X}) \text{ and if } A \cap \mathcal{X} \\ \text{ is not compact, then } \infty \in A \big\}.$$

Now \mathcal{X}_{∞} is a compact metrisable space.

Let ${\mathcal X}$ be locally compact and separable. Then

$$\mathcal{C}:=ig\{A\in\mathcal{K}_+(\mathcal{X}_\infty):\infty\in Aig\}$$

is a closed subset of $\mathcal{K}_+(\mathcal{X}_\infty),$ and

$$\operatorname{Clos}(\mathcal{X}) \ni A \mapsto A \cup \{\infty\} \in \mathcal{C}$$

is a bijection. The topology on $\operatorname{Clos}(\mathcal{X})$ generated by

$$d_{\mathrm{V}}(A,B) := d_{\mathrm{H}}(A \cup \{\infty\}, A \cup \{\infty\})$$

is the Vietoris topology.

The space $(\operatorname{Clos}(\mathcal{X}), d_{\mathrm{V}})$ is compact and its topology does not depend on the choice of the metric d on \mathcal{X} .

(A) (E) (A) (E) (A)

The Hausdorff and Vietoris topologies coincide if $\boldsymbol{\mathcal{X}}$ is compact.

Both topologies can be defined on $Clos(\mathcal{X})$ for any metric space (\mathcal{X}, d) , but in this generality their properties are not so good.

For example, the Hausdorff topology on $\operatorname{Clos}(\mathcal{X})$ may depend on the choice of the metric d on \mathcal{X} and the Vietoris topology may not be metrisable.

Best to define the Hausdorff topology only on $\mathcal{K}_+(\mathcal{X})$,

and the Vietoris topology on $\operatorname{Clos}(\mathcal{X})$ only for locally compact, separable, metrisable \mathcal{X} .

• • = • • = •

Squeezed space

For any metric space \mathcal{X} we define the squeezed space $\mathcal{R}(\mathcal{X}) := (\mathcal{X} \times \mathbb{R}) \cup \{(*, -\infty), (*, \infty)\}.$

Lemma There exists a metric d_{sqz} on $\mathcal{R}(\mathcal{X})$ such that $d((x_n, t_n), (x, t)) \xrightarrow[n \to \infty]{} 0 \quad \Leftrightarrow$ (i) $t_n \to t$ in the topology on $\overline{\mathbb{R}} := [-\infty, \infty]$, (ii) if $t \in \mathbb{R}$, then also $x_n \to x$ in the topology on \mathcal{X} . **Proof** Let $d_{\overline{\mathbb{R}}}$ generate the topology on $\overline{\mathbb{R}}$. Let $\varphi : \overline{\mathbb{R}} \to [0, \infty)$ satisfy $\varphi(t) > 0 \Leftrightarrow t \in \mathbb{R}$. Then $d_{sqz}((x, s), (y, t)) :=$ $(\varphi(s) \land \varphi(t))(d(x, y) \land 1) + |\varphi(s) - \varphi(t)| + d_{\overline{\mathbb{R}}}(s, t)$

does the trick.

Idea: care less about spatial distances when the time coordinates are large.

・ロト ・回ト ・ヨト ・ヨト

<ロ> <四> <四> <四> <三</td>

The split real line is the set $\mathbb{R}_{\mathfrak{s}}$ consisting of all pairs $t\pm$ consisting of a real number $t \in \mathbb{R}$ and a sign $\pm \in \{-,+\}$. For an element $\tau = t \pm$ of $\mathbb{R}_{\mathfrak{s}}$ we let $\tau := t$ denote its real part and $\mathfrak{s}(\tau) := \pm$ its sign. We equip $\mathbb{R}_{\mathfrak{s}}$ with the lexographic order, in which $\sigma < \tau$ if and only if $\sigma < \tau$ or $\sigma = \tau$ and $\mathfrak{s}(\sigma) < \mathfrak{s}(\tau)$. We write $\sigma < \tau$ iff $\sigma < \tau$ and $\sigma \neq \tau$ and define intervals $(\!(\sigma,\rho)\!) := \{\tau \in \mathbb{R}_{\mathfrak{s}} : \sigma < \tau < \rho\}, \qquad [\![\sigma,\rho]\!] := \{\tau \in \mathbb{R}_{\mathfrak{s}} : \sigma < \tau < \rho\},$ $[\![\sigma,\rho]\!] := \{ \tau \in \mathbb{R}_{\mathfrak{s}} : \sigma < \tau < \rho \}, \qquad [\![\sigma,\rho]\!] := \{ \tau \in \mathbb{R}_{\mathfrak{s}} : \sigma < \tau < \rho \}.$

イロン イヨン イヨン ・

There is some redundancy, e.g., (s-, r+] = [s+, r+].

We equip the split real line $\mathbb{R}_{\mathfrak{s}}$ with the *order topology*. A basis for the topology is formed by all open intervals (σ, ρ) with $\sigma, \rho \in \mathbb{R}_{\mathfrak{s}}, \sigma < \rho$.

(i) $\tau_n \to t + \text{ iff } \underline{\tau}_n \to t \text{ and } \tau_n \ge t + \text{ for } n \text{ sufficiently large.}$

(ii) $\tau_n \rightarrow t - \text{ iff } \underline{\tau}_n \rightarrow t \text{ and } \tau_n \leq t - \text{ for } n \text{ sufficiently large.}$

Lemma $\mathbb{R}_{\mathfrak{s}}$ is first countable, Hausdorff and separable, but not second countable and not metrisable.

Lemma For $C \subset \mathbb{R}^d_{\mathfrak{s}}$, the following are equivalent:

- (i) C is compact,
- (ii) C is sequentially compact,
- (iii) C is closed and bounded.

(日) (日) (日) (日)

Paths

For each closed $I \subset \mathbb{R}$ write $I_{\mathfrak{s}} := \{t \pm : t \in I\}.$

Let \mathcal{X} be a metrisable topological space. A *path* with values in \mathcal{X} is a pair $\pi = (I, f)$ where $I \subset \mathbb{R}$ is a closed set and $f : I_{\mathfrak{s}} \to \mathcal{X}$ is continuous. We write $I(\pi) := I$ and $\pi(\tau) := f(\tau)$ ($\tau \in I_{\mathfrak{s}}(\pi)$).

We identify π with its *closed graph*

$$\pi = ig\{ig(\pi(au), \underline{ au}ig): au \in I_{\mathfrak{s}}(\pi)ig\} \cup ig\{(*, -\infty), (*, \infty)ig\}.$$

The set $\pi \in \Pi(\mathcal{X})$ has a natural total order defined as

$$(\pi(\sigma), \underline{\sigma}) \preceq (\pi(\tau), \underline{\tau}) \quad \Leftrightarrow \quad \sigma \leq \tau.$$

The pair (π, \preceq) uniquely determines $I(\pi)$ and $\pi(t\pm)$ for $t \in I(\pi)$. We let $\Pi(\mathcal{X})$ denote the set of paths with values in \mathcal{X} .

・ 同 ト ・ 三 ト ・ 三 ト -

The total order \leq on π has nice properties:

(i)
$$(x, s) \leq (y, t)$$
 for all $s < t$,
(ii) $\{(z, z') : z \leq z'\}$ is a closed subset of π^2 .

Lemma There is a one-to-one correspondence between paths and totally ordered compact subsets (π, \preceq) of $\mathcal{R}(\mathcal{X})$ that satisfy (i) and (ii) as well as

(iii)
$$(*, \pm \infty) \in \pi$$
,
(iv) $|\{x \in \mathcal{X} : (x, t) \in \pi\}| \le 2 \quad \forall t \in \mathbb{R}$

> < E > < E >

Paths

Paths

We set $\Pi^{|}(\mathcal{X}) := \{\pi \in \Pi : I \text{ is an interval}\}.$ For $\pi \in \Pi^{|}(\mathcal{X})$ we set $\sigma_{\pi} := \inf I(\pi)$ and $\tau_{\pi} := \sup I(\pi)$. Note that a path π can jump at its starting time σ_{π} . We set¹

$$\begin{split} &\Pi_{\mathrm{c}}(\mathcal{X}) := \big\{ \pi \in \Pi(\mathcal{X}) : \pi(t-) = \pi(t+) \; \forall t \in I(\pi) \big\}, \\ &\Pi^{\uparrow}(\mathcal{X}) := \big\{ \pi \in \Pi^{\mid}(\mathcal{X}) : \tau_{\pi} = \infty \big\}, \\ &\Pi^{\downarrow}(\mathcal{X}) := \big\{ \pi \in \Pi^{\mid}(\mathcal{X}) : \sigma_{\pi} = -\infty \big\}. \end{split}$$

Then $\Pi_c^{\uparrow}(\overline{\mathbb{R}}) := \Pi_c(\overline{\mathbb{R}}) \cap \Pi^{\uparrow}(\overline{\mathbb{R}})$ is the classical path space introduced by Fontes, Isopi, Newman, and Ravishankar (AoP 2004).

¹For $I(\pi) = \emptyset$ we use the conventions $\sigma_{\pi} := -\infty, \ \tau_{\overline{\pi}} := \infty$.

We equip $\Pi_{c}(\mathcal{X})$ with the metric:

$$d_{\mathrm{H}}(\pi_1,\pi_2) = \inf_{R \in \mathrm{Cor}(\pi_1,\pi_2)} \sup_{((x_1,t_1),(x_2,t_2)) \in R} d_{\mathrm{sqz}}((x_1,t_1),(x_2,t_2)).$$

This corresponds to *locally uniform convergence*.

The topology on $\Pi_{c}(\mathcal{X})$ does not depend on the choice of the metric *d* on \mathcal{X} .

The topology on $\Pi_c^{\uparrow}(\mathbb{R})$ corresponds to the one introduced by Fontes, Isopi, Newman, and Ravishankar (AoP 2004).

4 B K 4 B K

Recall that \preceq denotes the natural total order on π , defined as

$$(\pi(\sigma), \underline{\sigma}) \preceq (\pi(\tau), \underline{\tau}) \quad \Leftrightarrow \quad \sigma \leq \tau.$$

For totally ordered compact sets K_1, K_2 , let $\operatorname{Cor}_+(K_1, K_2)$ denote the set of correspondences $R \in \operatorname{Cor}(K_1, K_2)$ that are *monotone* in the sense that:

 $\not\exists (x_1, x_2), (y_1, y_2) \in R \text{ such that } x_1 \prec y_1 \text{ and } y_2 \prec x_2,$

where $x \prec y$ means $x \preceq y$ and $x \neq y$.

We equip $\Pi(\mathcal{X})$ with the metric:

$$d_{\mathrm{J1}}(\pi_1,\pi_2) = \inf_{R \in \mathrm{Cor}_+(\pi_1,\pi_2)} \sup_{((x_1,t_1),(x_2,t_2)) \in R} d_{\mathrm{sqz}}((x_1,t_1),(x_2,t_2)).$$

• E •

This corresponds to convergence in Skorohod's J1 topology.

A monotone correspondence between two totally ordered sets A and B.

A sequence that converges in $d_{\rm H}$ but not in $d_{\rm J1}$.

∢ ≣⇒

A sequence that converges in $d_{\rm H}$ but not in $d_{\rm J1}$.

A sequence that converges in $d_{\rm H}$ but not in $d_{\rm J1}$.

・ロト ・回ト ・ヨト ・ヨト

A sequence that converges in $d_{\rm H}$ but not in $d_{\rm J1}$.

イロト イヨト イヨト イヨト

A sequence that converges in $d_{\rm H}$ but not in $d_{\rm J1}$.

∢ ≣⇒

The topology on Π(X) does not depend on the choice of the metric d on X.

The topology on $\Pi_c(\mathcal{X})$ is the induced topology from $\Pi(\mathcal{X})$. Recall that a topological space is *Polish* if it is separable and there exists a complete metric generating the topology.

- If \mathcal{X} is separable, then so are $\Pi_{c}(\mathcal{X})$ and $\Pi(\mathcal{X})$.
- If \mathcal{X} is Polish, then so are $\Pi_{c}(\mathcal{X})$ and $\Pi(\mathcal{X})$.

However, $d_{\rm H}$ and $d_{\rm J1}$ are typically not complete even when d is.

伺下 イヨト イヨト

• $\Pi^{\mid}_{c}(\mathcal{X})$ is a closed subspace of $\Pi(\mathcal{X})$.

Set
$$\langle s, t \rangle := [s \wedge t, s \vee t]$$
 $(s, t \in \mathbb{R})$.
The filled graph of $\pi \in \Pi(\overline{\mathbb{R}})$ is
 $\overline{\pi} := \{(x, t) : t \in I(\pi) : x \in \langle \pi(t-), \pi(t+) \rangle \} \cup \{(-\infty, *), (\infty, *)\}.$
Write $(x_1, t_1) \preceq (x_2, t_2)$ if $t_1 < t_2$ or $t_1 = t_2 =: t$ and x_2 is closer
to $\pi(t+)$ than x_1 . The M1 topology on $\Pi(\overline{\mathbb{R}})$ is generated by
 $d_{J1}(\pi_1, \pi_2) = \inf_{R \in Cor_+(\overline{\pi}_1, \overline{\pi}_2)} \sup_{(z_1, z_2) \in R} d_{sqz}(z_1, z_2).$

This corresponds to convergence in Skorohod's M1 topology.

▲御▶ ▲屋▶ ▲屋▶

臣

The M1 topology

Jan M. Swart (Czech Academy of Sciences) Topologies on sets of paths

The M1 topology

æ

Set $\Pi := \Pi(\mathbb{R})$. $\Delta_T^2 \delta(\pi) := \{ (x_1, x_2) : (x_1, t_1) \preceq (x_2, t_2) \}$ $(x_i, t_i) \in \pi, t_i \in [-T, T], t_2 - t_1 < \delta$ $\Delta_{T,\delta}^3(\pi) := \{ (x_1, x_2, x_3) : (x_1, t_1) \prec (x_2, t_2) \prec (x_3, t_3) \}$ $(x_i, t_i) \in \pi, t_i \in [-T, T], t_3 - t_1 \leq \delta$ $\Pi^+_{T,\delta,\varepsilon,r} := \{\pi : \exists \vec{x} \in \Delta^2_{T,\delta}(\pi) \text{ s.t. } x_1 \le r, \ r + \varepsilon \le x_2\},\$ $\Pi^{-}_{T,\delta,\varepsilon,r} := \{ \pi : \exists \vec{x} \in \Delta^{2}_{T,\delta}(\pi) \text{ s.t. } x_{2} \leq r, \ r + \varepsilon \leq x_{1} \},\$ $\Pi_{\tau,\delta,\varepsilon,r}^{+-} := \{\pi : \exists \vec{x} \in \Delta^3 \text{ s.t. } x_1, x_3 \leq r, \ r + \varepsilon \leq x_2\},\$ $\Pi_{\tau, \delta, \varepsilon, r}^{-+} := \{ \pi : \exists \vec{x} \in \Delta^3 \text{ s.t. } x_2 \leq r, \ r + \varepsilon \leq x_1, x_3 \},\$ $\Pi_{T,\delta\varepsilon,r}^{++} := \{\pi : \exists \vec{x} \text{ s.t. } x_1 \leq r, \ r + \varepsilon \leq x_2 \leq r + 2\varepsilon, \ r + 3\varepsilon \leq x_3\},\$ $\Pi_{T,\delta\varepsilon,r}^{--} := \{ \pi : \exists \vec{x} \text{ s.t. } x_3 \leq r, \ r + \varepsilon \leq x_2 \leq r + 2\varepsilon, \ r + 3\varepsilon \leq x_1 \}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

A path
$$\pi \in \Pi^+_{\mathcal{T},\delta,\varepsilon,r}$$

・ロト ・回ト ・ヨト ・ヨト

æ

A path $\pi \in \Pi^{-}_{T,\delta,\varepsilon,r}$.

ヘロア 人間 アメヨア 人間 アー

크

A path $\pi \in \Pi^{+-}_{T,\delta,\varepsilon,r}$.

ヘロア 人間 アメヨア 人間 アー

크

A path
$$\pi \in \Pi^{-+}_{T,\delta,\varepsilon,r}$$
.

ヘロン ヘロン ヘビン ヘビン

Ð,

<ロ> <四> <四> <三</td>

<ロ> <四> <四> <三</td>

We equip $\mathcal{K}_+(\Pi_c)$ and $\mathcal{K}_+(\Pi)$ with the Hausdorff topology, under which they are Polish.

Theorem A sequence A_n of random variables with values in $\mathcal{K}_+(\Pi_c)$ is tight if and only if

$$\lim_{\delta\to 0}\sup_{n}\mathbb{P}\big[\Pi^{2}_{T,\delta,\varepsilon,r}\cap\mathcal{A}_{n}\neq\emptyset\big]=0\quad\forall T,\varepsilon,r,$$

▶ ★ E ▶ ★ E ▶

where $\Pi^2_{\mathcal{T},\delta,\varepsilon,r} := \Pi^+_{\mathcal{T},\delta,\varepsilon,r} \cup \Pi^-_{\mathcal{T},\delta,\varepsilon,r}$.

Theorem A sequence A_n of random variables with values in $\mathcal{K}_+(\Pi)$ is tight with respect to the J1 or M1 topologies if and only if

$$\lim_{\delta\to 0}\sup_{n}\mathbb{P}\big[\Pi^{\mathbf{X}}_{T,\delta,\varepsilon,r}\cap\mathcal{A}_{n}\neq\emptyset\big]=0\quad\forall T,\varepsilon,r,$$

where for X = J1 or M1,

$$\begin{aligned} \Pi^{\mathrm{J1}}_{\mathcal{T},\delta,\varepsilon,r} &:= \Pi^{++}_{\mathcal{T},\delta,\varepsilon,r} \cup \Pi^{+-}_{\mathcal{T},\delta,\varepsilon,r} \cup \Pi^{-+}_{\mathcal{T},\delta,\varepsilon,r} \cup \Pi^{--}_{\mathcal{T},\delta,\varepsilon,r}, \\ \Pi^{\mathrm{M1}}_{\mathcal{T},\delta,\varepsilon,r} &:= \Pi^{+-}_{\mathcal{T},\delta,\varepsilon,r} \cup \Pi^{-+}_{\mathcal{T},\delta,\varepsilon,r}. \end{aligned}$$

4 B K 4 B K

For
$$\pi_1, \pi_2 \in \Pi^{|}$$
 write $\pi_1 \lhd \pi_2$ if π_1, π_2 can be extended to
paths $\pi'_1, \pi'_2 \in \Pi^{\updownarrow}$ such that $\pi'_1(t\pm) \le \pi'_2(t\pm)$ for all $t \in \mathbb{R}$.
Let $\mathcal{K}_{nc}(\Pi^{|}) := \{\mathcal{A} \in \mathcal{K}_+(\Pi^{|}) : \pi_1 \lhd \pi_2 \text{ or } \pi_2 \lhd \pi_1 \forall \pi_1, \pi_2 \in \mathcal{A}\}.$
 $\Gamma^{M1}_{T,\delta,\varepsilon,r} := \{(\pi_1, \pi_2) \in \Pi^2 : \exists (x_i, y_i) \in \Delta^2_{T,\delta}(\pi_i),$
s.t. $(t_1 \lor t_2) - (s_1 \land s_2) \le \delta, x_1, y_2 \le r, r + \varepsilon \le y_1, x_2\}.$

Theorem A sequence A_n of random variables with values in $\mathcal{K}_{nc}(\Pi^{|})$ is tight with respect to the M1 topology if and only if

$$\lim_{\delta\to 0}\sup_{n}\mathbb{P}\big[\Gamma^{\mathrm{M1}}_{T,\delta,\varepsilon,r}\cap(\mathcal{A}_n\times\mathcal{A}_n)\neq\emptyset\big]=0\quad\forall T,\varepsilon,r.$$

• • = • • = •

Noncrossing sets of paths

A pair of paths
$$(\pi_1, \pi_2) \in \Gamma^{M1}_{\mathcal{T}, \delta, \varepsilon, r}$$
.

ヘロア 人間 アメヨア 人間 アー

æ