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The Hausdorff metric

Let (X , d) be a metric space.
Let K+(X ) be the set of nonempty compact subsets of X .
The Hausdorff metric on K+(X ) is defined as

dH(A,B) := sup
a∈A

d(a,B) ∨ sup
b∈B

d(b,A)

where
d(a,B) := inf

b∈B
d(a, b).

A B

supa∈A d(a,B) supb∈B d(b,A)
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The Hausdorff metric

A correspondence between two sets A1,A2 is a set R ⊂ A1 × A2

such that
∀x1 ∈ A1 ∃x2 ∈ A2 s.t. (x1, x2) ∈ R,

∀x2 ∈ A2 ∃x1 ∈ A1 s.t. (x1, x2) ∈ R.

Let Cor(A1,A2) denote the set of all correspondences between A1

and A2.

dH(K1,K2) = inf
R∈Cor(K1,K2)

sup
(x1,x2)∈R

d(x1, x2).
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The Hausdorff topology

For Kn,K ∈ K+(X ) one has dH(Kn,K ) → 0 iff

(i) ∃C ∈ K+(X ) s.t. Kn ⊂ C ∀n,
(ii) K ⊂

{
x ∈ X : Kn ∋ xn −→

n→∞
x
}

⊂
{
x ∈ X : x is a cluster point of xn ∈ Kn

}
⊂ K .

As a consequence, the topology on K+(X ) generated by dH
does not depend on the choice of the metric d on X .

We call this the Hausdorff topology.
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The Hausdorff topology

▶ If (X , d) is separable, then so is (K+(X ), dH).

▶ If (X , d) is complete, then so is (K+(X ), dH).

▶ If (X , d) is compact, then so is (K+(X ), dH).

More generally, A ⊂ K+(X ) is precompact iff
∃C ∈ K+(X ) s.t. K ⊂ C ∀K ∈ A.
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The one-point compactification

A compactification of a topological space X is a compact
topological space X such that X is a dense subset of X .

Let X be a metrisable topological space that satisfies the
equivalent conditions:

(i) X is locally compact and separable,

(ii) X is an open subset of some, and hence of all of its
metrisable compactifications X .

Let Clos(X ) denote the set of closed subsets of X .

The one-point compactification X∞ := X ∪ {∞} is defined by

Clos(X∞) :=
{
A ⊂ X∞ :A ∩ X ∈ Clos(X ) and if A ∩ X

is not compact, then ∞ ∈ A
}
.

Now X∞ is a compact metrisable space.
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The Vietoris topology

Let X be locally compact and separable. Then

C :=
{
A ∈ K+(X∞) : ∞ ∈ A

}
is a closed subset of K+(X∞), and

Clos(X ) ∋ A 7→ A ∪ {∞} ∈ C

is a bijection. The topology on Clos(X ) generated by

dV(A,B) := dH
(
A ∪ {∞},A ∪ {∞}

)
is the Vietoris topology.

The space
(
Clos(X ), dV

)
is compact and its topology does not

depend on the choice of the metric d on X .
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The Hausdorff and Vietoris topologies

The Hausdorff and Vietoris topologies coincide if X is compact.

Both topologies can be defined on Clos(X )
for any metric space (X , d),
but in this generality their properties are not so good.

For example, the Hausdorff topology on Clos(X )
may depend on the choice of the metric d on X
and the Vietoris topology may not be metrisable.

Best to define the Hausdorff topology only on K+(X ),

and the Vietoris topology on Clos(X )
only for locally compact, separable, metrisable X .
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Squeezed space

For any metric space X we define the squeezed space
R(X ) := (X × R) ∪

{
(∗,−∞), (∗,∞)

}
.

Lemma There exists a metric dsqz on R(X ) such that
d
(
(xn, tn), (x , t)

)
−→
n→∞

0 ⇔

(i) tn → t in the topology on R := [−∞,∞],

(ii) if t ∈ R, then also xn → x in the topology on X .

Proof Let dR generate the topology on R.
Let φ : R → [0,∞) satisfy φ(t) > 0 ⇔ t ∈ R.

Then dsqz
(
(x , s), (y , t)

)
:=(

φ(s) ∧ φ(t)
)(
d(x , y) ∧ 1

)
+
∣∣φ(s)− φ(t)

∣∣+ dR(s, t)
does the trick.

Idea: care less about spatial distances
when the time coordinates are large.
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Squeezed space

R(R)

(0, 0)

(∗,∞)

(∗,−∞)

(−∞,−1)

(∞, 2)
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The split real line

The split real line is the set Rs consisting of all pairs t± consisting
of a real number t ∈ R and a sign ± ∈ {−,+}.
For an element τ = t± of Rs we let τ := t denote its real part
and s(τ) := ± its sign.
We equip Rs with the lexographic order, in which σ ≤ τ
if and only if σ < τ or σ = τ and s(σ) ≤ s(τ).
We write σ < τ iff σ ≤ τ and σ ̸= τ and define intervals

((σ, ρ)) := {τ ∈ Rs : σ < τ < ρ}, [[σ, ρ)) := {τ ∈ Rs : σ ≤ τ < ρ},
((σ, ρ]] := {τ ∈ Rs : σ < τ ≤ ρ}, [[σ, ρ]] := {τ ∈ Rs : σ ≤ τ ≤ ρ}.

There is some redundancy, e.g., ((s−, r+]] = [[s+, r+]].
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The split real line

We equip the split real line Rs with the order topology.
A basis for the topology is formed by all open intervals ((σ, ρ)) with
σ, ρ ∈ Rs, σ < ρ.

(i) τn → t+ iff τn → t and τn ≥ t+ for n sufficiently large.

(ii) τn → t− iff τn → t and τn ≤ t− for n sufficiently large.

Lemma Rs is first countable, Hausdorff and separable,
but not second countable and not metrisable.

Lemma For C ⊂ Rd
s , the following are equivalent:

(i) C is compact,

(ii) C is sequentially compact,

(iii) C is closed and bounded.
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Paths

For each closed I ⊂ R write Is := {t± : t ∈ I}.

Let X be a metrisable topological space.
A path with values in X is a pair π = (I , f )
where I ⊂ R is a closed set and f : Is → X is continuous.
We write I (π) := I and π(τ) := f (τ)

(
τ ∈ Is(π)

)
.

We identify π with its closed graph

π =
{(

π(τ), τ
)
: τ ∈ Is(π)

}
∪
{
(∗,−∞), (∗,∞)

}
.

The set π ∈ Π(X ) has a natural total order defined as(
π(σ), σ

)
⪯

(
π(τ), τ

)
⇔ σ ≤ τ.

The pair (π,⪯) uniquely determines I (π) and π(t±) for t ∈ I (π).

We let Π(X ) denote the set of paths with values in X .
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Paths

The total order ⪯ on π has nice properties:

(i) (x , s) ⪯ (y , t) for all s < t,

(ii) {(z , z ′) : z ⪯ z ′} is a closed subset of π2.

Lemma There is a one-to-one correspondence between paths and
totally ordered compact subsets (π,⪯) of R(X ) that satisfy (i)
and (ii) as well as

(iii) (∗,±∞) ∈ π,

(iv)
∣∣{x ∈ X : (x , t) ∈ π

}∣∣ ≤ 2 ∀t ∈ R.
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Paths

R

X

π

I (π)

Paths more or less correspond to cadlag functions.
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Paths

π

The closed graph as a subset of R(X ).
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Paths

We set Π|(X ) :=
{
π ∈ Π : I is an interval

}
.

For π ∈ Π|(X ) we set σπ := inf I (π) and τπ := sup I (π).

Note that a path π can jump at its starting time σπ.

We set1

Πc(X ) :=
{
π ∈ Π(X ) : π(t−) = π(t+) ∀t ∈ I (π)

}
,

Π↑(X ) :=
{
π ∈ Π|(X ) : τπ = ∞

}
,

Π↓(X ) :=
{
π ∈ Π|(X ) : σπ = −∞

}
.

Then Π↑
c(R) := Πc(R) ∩ Π↑(R) is the classical path space

introduced by Fontes, Isopi, Newman, and Ravishankar
(AoP 2004).

1For I (π) = ∅ we use the conventions σπ := −∞, τπ := ∞.
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Convergence of paths

We equip Πc(X ) with the metric:

dH(π1, π2) = inf
R∈Cor(π1,π2)

sup
((x1,t1),(x2,t2))∈R

dsqz
(
(x1, t1), (x2, t2)

)
.

This corresponds to locally uniform convergence.

The topology on Πc(X ) does not depend
on the choice of the metric d on X .

The topology on Π↑
c(R) corresponds to the one introduced

by Fontes, Isopi, Newman, and Ravishankar (AoP 2004).
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Convergence of paths

Recall that ⪯ denotes the natural total order on π, defined as(
π(σ), σ

)
⪯

(
π(τ), τ

)
⇔ σ ≤ τ.

For totally ordered compact sets K1,K2, let Cor+(K1,K2) denote
the set of correspondences R ∈ Cor(K1,K2) that are monotone in
the sense that:

̸ ∃ (x1, x2), (y1, y2) ∈ R such that x1 ≺ y1 and y2 ≺ x2,

where x ≺ y means x ⪯ y and x ̸= y .

We equip Π(X ) with the metric:

dJ1(π1, π2) = inf
R∈Cor+(π1,π2)

sup
((x1,t1),(x2,t2))∈R

dsqz
(
(x1, t1), (x2, t2)

)
.

This corresponds to convergence in Skorohod’s J1 topology.
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Convergence of paths

A B

A monotone correspondence between
two totally ordered sets A and B.
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Convergence of paths

A sequence that converges in dH but not in dJ1.
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Convergence of paths

A sequence that converges in dH but not in dJ1.
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Convergence of paths
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Convergence of paths

A sequence that converges in dH but not in dJ1.
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Convergence of paths

A sequence that converges in dH but not in dJ1.
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Convergence of paths

▶ The topology on Π(X ) does not depend
on the choice of the metric d on X .

▶ The topology on Πc(X ) is the induced topology from Π(X ).

Recall that a topological space is Polish if it is separable and there
exists a complete metric generating the topology.

▶ If X is separable, then so are Πc(X ) and Π(X ).

▶ If X is Polish, then so are Πc(X ) and Π(X ).

However, dH and dJ1 are typically not complete even when d is.

▶ Π
|
c(X ) is a closed subspace of Π(X ).
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The M1 topology

Set ⟨s, t⟩ := [s ∧ t, s ∨ t] (s, t ∈ R).

The filled graph of π ∈ Π(R) is

π :=
{
(x , t) : t ∈ I (π) : x ∈ ⟨π(t−), π(t+)⟩

}
∪
{
(−∞, ∗), (∞, ∗)

}
.

Write (x1, t1) ⪯ (x2, t2) if t1 < t2 or t1 = t2 =: t and x2 is closer
to π(t+) than x1. The M1 topology on Π(R) is generated by

dJ1(π1, π2) = inf
R∈Cor+(π1,π2)

sup
(z1,z2)∈R

dsqz(z1, z2).

This corresponds to convergence in Skorohod’s M1 topology.
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The M1 topology

π

The closed graph π.
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The M1 topology

π

The filled graph π.
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Pathological paths

Set Π := Π(R).

∆2
T ,δ(π) :=

{
(x1, x2) : (x1, t1) ⪯ (x2, t2)

(xi , ti ) ∈ π, ti ∈ [−T ,T ], t2 − t1 ≤ δ
}
,

∆3
T ,δ(π) :=

{
(x1, x2, x3) : (x1, t1) ⪯ (x2, t2) ⪯ (x3, t3)

(xi , ti ) ∈ π, ti ∈ [−T ,T ], t3 − t1 ≤ δ
}
.

Π+
T ,δ,ε,r :=

{
π : ∃x⃗ ∈ ∆2

T ,δ(π) s.t. x1 ≤ r , r + ε ≤ x2
}
,

Π−
T ,δ,ε,r :=

{
π : ∃x⃗ ∈ ∆2

T ,δ(π) s.t. x2 ≤ r , r + ε ≤ x1
}
,

Π+−
T ,δ,ε,r :=

{
π : ∃x⃗ ∈ ∆3 s.t. x1, x3 ≤ r , r + ε ≤ x2

}
,

Π−+
T ,δ,ε,r :=

{
π : ∃x⃗ ∈ ∆3 s.t. x2 ≤ r , r + ε ≤ x1, x3

}
,

Π++
T ,δ,ε,r :=

{
π : ∃x⃗ s.t. x1 ≤ r , r + ε ≤ x2 ≤ r + 2ε, r + 3ε ≤ x3

}
,

Π−−
T ,δ,ε,r :=

{
π : ∃x⃗ s.t. x3 ≤ r , r + ε ≤ x2 ≤ r + 2ε, r + 3ε ≤ x1

}
.
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Pathological paths

−T

T

r r + ε

≤ δ

A path π ∈ Π+
T ,δ,ε,r .
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Pathological paths

−T

T

r r + ε

≤ δ

A path π ∈ Π−
T ,δ,ε,r .
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Pathological paths

−T

T

r r + ε

≤ δ

A path π ∈ Π+−
T ,δ,ε,r .
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Pathological paths

−T

T

r r + ε

≤ δ

A path π ∈ Π−+
T ,δ,ε,r .
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Pathological paths

−T

T

r r + ε r + 2ε r + 3ε

≤ δ

A path π ∈ Π++
T ,δ,ε,r .
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Pathological paths

−T

T

r r + ε r + 2ε r + 3ε

≤ δ

A path π ∈ Π−−
T ,δ,ε,r .
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Random sets of paths

We equip K+(Πc) and K+(Π) with the Hausdorff topology,
under which they are Polish.

Theorem A sequence An of random variables with values in
K+(Πc) is tight if and only if

lim
δ→0

sup
n

P
[
Π2
T ,δ,ε,r ∩ An ̸= ∅

]
= 0 ∀T , ε, r ,

where Π2
T ,δ,ε,r := Π+

T ,δ,ε,r ∪ Π−
T ,δ,ε,r .
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Random sets of paths

Theorem A sequence An of random variables with values in
K+(Π) is tight with respect to the J1 or M1 topologies if and only
if

lim
δ→0

sup
n

P
[
ΠX
T ,δ,ε,r ∩ An ̸= ∅

]
= 0 ∀T , ε, r ,

where for X = J1 or M1,

ΠJ1
T ,δ,ε,r :=Π++

T ,δ,ε,r ∪ Π+−
T ,δ,ε,r ∪ Π−+

T ,δ,ε,r ∪ Π−−
T ,δ,ε,r ,

ΠM1
T ,δ,ε,r :=Π+−

T ,δ,ε,r ∪ Π−+
T ,δ,ε,r .
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Noncrossing sets of paths

For π1, π2 ∈ Π| write π1 ◁ π2 if π1, π2 can be extended to
paths π′

1, π
′
2 ∈ Π↕ such that π′

1(t±) ≤ π′
2(t±) for all t ∈ R.

Let Knc(Π
|) :=

{
A ∈ K+(Π

|) : π1 ◁ π2 or π2 ◁ π1 ∀π1, π2 ∈ A
}
.

ΓM1
T ,δ,ε,r :=

{
(π1, π2) ∈ Π2 : ∃(xi , yi ) ∈ ∆2

T ,δ(πi ),

s.t. (t1 ∨ t2)− (s1 ∧ s2) ≤ δ, x1, y2 ≤ r , r + ε ≤ y1, x2
}
.

Theorem A sequence An of random variables with values in
Knc(Π

|) is tight with respect to the M1 topology if and only if

lim
δ→0

sup
n

P
[
ΓM1
T ,δ,ε,r ∩ (An ×An) ̸= ∅

]
= 0 ∀T , ε, r .
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Noncrossing sets of paths

−T

T

r r + ε

≤ δ

A pair of paths (π1, π2) ∈ ΓM1
T ,δ,ε,r .
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