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A discrete web

0 2 -2 1 -3 2 1 0

1 0 1 1 2 1 1 -1

-1 -3 0 -1 -2 -1 -2 -1

0 2 0 -1 2 -3 -1 3

-1 -2 -2 -1 3 2 3 2

Let
(
ω(x , t)

)
(x ,t)∈Z2 be i.i.d. Z-valued

random variables with common law a.
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A discrete web

For each (x , t) ∈ Z2, draw an arrow
from (x , t) to

(
x + ω(x , t), t + 1

)
.
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A discrete web

At each (x , t) there starts a unique path
that is a random walk with increment law a.
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A discrete web

Paths evolve independently until they coalesce.
Hi
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A discrete web

ε

ε2

We rescale space by ε
and time by ε2.
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The diffusive scaling limit

We are interested in the diffusive scaling limit of the collection of
all open paths, i.e., paths that follow the arrows.

We assume that∑
k∈Z

a(k)k = 0 and σ2 :=
∑
k∈Z

a(k)k2 < ∞.

Then the diffusive scaling limit of a single path is
Brownian motion with diffusion rate σ2.

If moreover a is irreducible and aperiodic, then in the diffusive
scaling limit, two Brownian paths coalesce as soon as they meet.

Aim Describe the scaling limit of the set of all paths.
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Topological matters

(0, 0)

(∞, 2)

(−∞,−1)

(−1,∞)

(∞,−∞)

We first compactify R2 to R2
= [−∞,∞]2. . .
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Topological matters

R2
c

(0, 0)

(∗,∞)

(∗,−∞)

(−∞,−1)

(2,∞)

. . . and then contract [−∞,∞]× {−∞}
and [−∞,∞]× {∞} to single points.
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Topological matters

R2
c

Alternatively, map R2 into itself with the map

Θ(x , t) :=
( tanh(x)
1 + |t|

, tanh(t)
)
,

and take the closure.
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Topological matters

R2
c

Another equivalent formulation is: take the
completion of R2 w.r.t. the metric

d(z , z ′) :=
∣∣Θ(z)−Θ(z ′)

∣∣.
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Topological matters

R2
c

A path is a compact set π ⊂ R2
c such that:

▶
{
t : ∃x s.t. (x , t) ∈ π

}
= [σπ,∞] for some −∞ ≤ σπ ≤ ∞,

▶ ∀t ∈ [σπ,∞], ∃! π(t) s.t.
(
π(t), t

)
∈ π.
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Topological matters

R2
c

For each path π, the function [σπ,∞) ∋ t 7→ π(t) is continuous
and π\{(∗,∞)} is the graph of this function.
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Topological matters

π2

π1

d(π1,π2)

We equip the space Π of all paths with the Hausdorff metric

dH(π1, π2) = sup
z1∈π1

inf
z2∈π2

d(z1, z2) ∨ sup
z2∈π2

inf
z1∈π1

d(z1, z2).
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Coalescing Brownian motions

Let (zi )i≥1 = (xi , ti )i≥1 be points in R2.
Let (Bi )i≥1 with Bi =

(
Bi (t)

)
t≥ti

be independent Brownian

motions started from Bi (ti ) = xi .

Define inductively τi := inf{t ≥ ti :
(
Bi (t), t

)
∈
⋃i−1

k=1 Ak

}
with Ai :=

{(
Bi (t), t

)
: ti ≤ t < τi

}
.

For i ≥ 2 define κ(i) < i by
(
Bi (τi ), τi

)
∈ Aκ(i).

Then we can inductively define
coalescing Brownian motions (Pi )i≥1 started from (zi )i≥1 by:

Pi (t) := Bi (t) (ti ≤ t < τi )
Pi (t) := Pκ(i)(t) (τi ≤ t < ∞)

Jan M. Swart Universality of the Brownian net



Coalescing Brownian motions

Coalescing Brownian motions.
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Coalescing Brownian motions

Coalescing Brownian motions.
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Coalescing Brownian motions

Coalescing Brownian motions.
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Coalescing Brownian motions

Coalescing Brownian motions.
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Coalescing Brownian motions

Coalescing Brownian motions.
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Coalescing Brownian motions

Coalescing Brownian motions.
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The Brownian web

[Fontes, Isopi, Newman & Ravishankar (AoP 2004)]
Let (Pi )i≥1 be coalescing Brownian motions started from (zi )i≥1.
Assume that {zi : i ∈ N+} is dense in R2.
Then {Pi : i ∈ N+} ⊂ Π is precompact and the law of

W := {Pi : i ∈ N+}

does not depend on {zi : i ∈ N+}.

The random compact set W is called the Brownian web.

We let Wσ denote the Brownian web with diffusion rate σ2.
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The Brownian web

Artist’s impression of the Brownian web.
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Discrete webs

Recall that
(
ω(x , t)

)
(x ,t)∈Z2 are i.i.d. Z-valued with common law a.

Let U be the space of paths π such that

▶ σπ ∈ Z := Z ∪ {±∞},
and either

▶ π(t) ∈ Z for σπ ≤ t ∈ Z with linear interpolation,

▶ π(t + 1) = π(t) + ω
(
π(t), t

)
(σπ ≤ t ∈ Z),

or π(t) = −∞ for all σπ ≤ t < ∞,
or π(t) = +∞ for all σπ ≤ t < ∞.

Lemma U is a.s. a compact subset of Π.
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Scaling limit of discrete webs

The discrete web U and the Brownian web W
are a.s. compact subsets of Π.

We equip the space K(Π) of compact subsets of Π with the
Hausdorff metric

dH(U1,U2) = sup
π1∈U1

inf
π2∈U2

dH(π1, π2) ∨ sup
π2∈U2

inf
π1∈U1

dH(π1, π2).

We define diffusive scaling maps Sε : R2
c → R2

c by

Sε(x , t) := (εx , ε2t),

and set

Sε(π) :=
{
Sε(x , t) : (x , t) ∈ π

}
and Sε(U) :=

{
Sε(π) : π ∈ U

}
.
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Scaling limit of discrete webs

Theorem [Belhaouari, Mountford, Sun, & Valle ’06]

Assume that
∑
k∈Z

a(k)|k|3+δ < ∞ for some δ > 0. Then

P
[
Sε(U) ∈ ·

]
=⇒
ε→0

P
[
Wσ ∈ ·

]
,

where ⇒ denotes weak convergence on K(Π).

[Newman, Ravishankar, & Sun ’05] proved convergence if∑
k∈Z

a(k)|k |5 < ∞.

[Fontes, Isopi, Newman & Ravishankar ’04] proved it for

a(−1) = 1
2 = a(1).
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The third moment condition

The third moment condition is sharp. Assume that a(k) = a(−k)
and set

A(n) :=
∞∑
k=n

a(k) (n ≥ 0).

Then
sup

{
β ≥ 0 :

∑
k∈Z

a(k)|k |β < ∞
}

= sup
{
β ≥ 0 : lim

n→∞
A(n)nβ = 0

}
.

If lim supn→∞ A(n)n3 > 0, then in the diffusive scaling limit there
are macroscopic jumps all over the place.
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Macroscopic jumps

Define Tε(x , y , t) := (εx , εy , ε2t) and let

J :=
{
(x , y , t) : (x , t) ∈ Z2, y = x + ω(x , t)

}
.

Assume that c := limn→∞ A(n)n3 > 0. Then

P
[
Tε(J) ∈ ·

]
=⇒
ε→0

P
[
Ξc ∈ ·

]
,

where Ξc is a Poisson point set on {(x , y , t) ∈ R3 : x ̸= y} with
intensity measure

µ
(
d(x , y , t)

)
:= c |x − y |−4 dx dy dt.

[Berestycki, Garban, & Sen ’15] have shown that if you use a
topology that ignores the piece of a path near its starting time,
then for convergence to Wσ it suffices if

∑
k∈Z a(k)k

2 < ∞.
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Modified webs

ε

ε2

We select an ε-fraction of our arrows.
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Modified webs

ε

ε2

And resample them.
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Modified webs

In the diffusive scaling limit, we obtain two coupled Brownian webs.

Following [Howitt and Warren ’09], a pair of sticky Brownian
motions with parameter θ is a pair (B1

t ,B
2
t )t≥0 of standard

Brownian motions adapted to a filtration (Ft)t≥0 such that

(i) B1
t B

2
t −

∫ t

0
1{B1

s =B2
s }ds,

(ii) |B1
t − B2

t | − 2θ

∫ t

0
1{B1

s =B2
s }ds,

are martingales w.r.t. (Ft)t≥0.

Sticky Brownian motions spend positive Lebesgue time together.
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Sticky webs

Following [Howitt and Warren ’09], a pair of sticky Brownian
webs with parameter θ is a pair (W1,W2) of standard Brownian
webs such that for each x1, x2, s ∈ R, the a.s. unique paths
πi ∈ W i started at (xi , s) (i = 1, 2) form a pair of Brownian
motions with parameter θ that is adapted to the natural filtration
generated by the Brownian webs (W1,W2).

It can be shown that this determines the joint law of (W1,W2)
uniquely.
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Convergence to sticky webs

Theorem Let (U1
ε ,U2

ε ) be a pair of sticky discrete webs and let
Sσ
ε denote the scaling map

Sσ
ε (x , t) := (εx , σ2ε2t).

Then
P
[
Sσ
ε (U1

ε ,U2
ε ) ∈ ·

]
=⇒
ε→0

P
[
(W1,W2) ∈ ·

]
,

where (W1,W2) is a pair of sticky Brownian webs with
parameter 1.
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Discrete nets

ε

ε2

If we overlay the two modified discrete webs. . .
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Discrete nets

ε

ε2

If we overlay the two modified discrete webs. . .
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Discrete nets

ε

ε2

Then we obtain a discrete net.
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Discrete nets

The discrete net Vε is the collection of paths π such that

▶ π(t + 1)− π(t) ∈
{
ω1

(
π(t), t

)
, ω2

(
π(t), t

)}
(σπ ≤ t ∈ Z).

[Sun, S. & Yu ’24] Assume that
∑
k∈Z

a(k)|k |3+δ < ∞ for some

δ > 0. Then
P
[
Sσ
ε (Vε) ∈ ·

]
=⇒
ε→0

P
[
N ∈ ·

]
,

where ⇒ denotes weak convergence on K(Π) and N is a random
compact set of paths called the Brownian net.

[Sun & S. ’08] proved convergence if

a(−1) = 1
2 = a(1).

For the Brownian web, analogue results were proved in ’04 and ’06.

What took us so long?
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The nearest-neighbour case

The random walk kernel a(−1) = 1
2 = a(1) is periodic.

This forces us to restrict ourselves to the even sublattice

Z2
even :=

{
(x , t) ∈ Z2 : x + t is even

}
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Left- and right-most paths

With probability 1
2ε there are two arrows.

We can define left- and right-most paths that always
choose the left of right arrow, if there is a choice.
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Left- and right-most paths

In the limit, left- and right-most paths interact with a form of
sticky interaction:

dLt =1{Lt ̸=Rt}dB
l
t + 1{Lt=Rt}dB

s
t − dt,

dRt =1{Lt ̸=Rt}dB
r
t + 1{Lt=Rt}dB

s
t + dt,

where B l
t ,B

r
t ,B

s
t are independent Brownian motions,

and Lt and Rt are subject to the constraint that
Lt ≤ Rt for all t ≥ τ := inf{u ≥ 0 : Lu = Ru}.
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Left- and right-most paths

Alternatively, we can describe the joint evolution of (Lt ,Rt)t≥0 as
before by a martingale problem. In this case, (Lt)t≥0 and (Rt)t≥0

are Brownian motions with drift −1 and +1, respectively, adapted
to a filtration (Ft)t≥0, such that

(i) LtRt −
∫ t

0
1{Ls=Rs}ds,

(ii) |Lt − Rt | − 2

∫ t

0
1{Ls=Rs}ds,

are martingales w.r.t. (Ft)t≥0.
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The left-right Brownian web

This gives rise to a coupled left and right Brownian web (W l,W2).
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The left-right Brownian web

This gives rise to a coupled left and right Brownian web (W l,W2).
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Hopping construction of the Brownian net

By definition, an intersection time of two paths π1, π2 is a time
t > σπ1 ∨ σπ2 such that π1(t) = π2(t).
We may concatenate two paths at an intersection time by putting

π(s) :=

{
π1(s)

(
s ∈ [σπ1 , t]

)
,

π2(s)
(
s ∈ [t,∞]

)
.

Let D ⊂ R2 be deterministic, countable, and dense.
Let W l(D) and Wr(D) denote the sets of paths in W l and Wr

started from D.

Let Hop
(
W l(D) ∪Wr(D)

)
denote the smallest set containing

W l(D) ∪Wr(D) that is closed under concatenation of open paths
at intersection times.

Hopping construction N := Hop
(
W l(D) ∪Wr(D)

)
.
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Hopping construction of the Brownian net

Paths in W l(D) ∪Wr(D).
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Hopping construction of the Brownian net

A path in Hop
(
W l(D) ∪Wr(D)

)
.

Jan M. Swart Universality of the Brownian net



Hopping construction of the Brownian net

Let (W l(D),Wr(D)) be sticky Brownian webs with
drifts −1 and +1 and stickiness parameter 1.

Let (W1,W2) be sticky Brownian webs with
drift 0 and stickiness parameter 1.

It follows from results in [Schertzer, Sun, & S. ’14] that

N := Hop
(
W l(D) ∪Wr(D)

)
= Hop

(
W1(D) ∪W2(D)

)
.
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Convergence to the Brownian net

The proof that P
[
Sσ
ε (Vε) ∈ ·

]
=⇒
ε→0

P
[
N ∈ ·

]
consists of three

steps:

I. Show tightness of the laws
{
P
[
Sσ
ε (Vε) ∈ ·

]
: 0 < ε ≤ 1

}
.

By Shorohod’s representation theorem, this allows us to select a
subsequence such that

Sσ
ε (U i ) −→

ε→0
W i (i = 1, 2) and Sσ

ε (Vε) −→
ε→0

N∗.

Setting N := Hop
(
W1(D) ∪W2(D)

)
, it then remains to show

that:
II. N ⊂ N∗ and III. N∗ ⊂ N .

The lower bound II. follows from the hopping construction.
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The upper bound

Once we have the lower bound N ⊂ N∗, in order to prove the
upper bound N∗ ⊂ N , it should suffice to prove E[N∗] ≤ E[N ].
The process (ξt)t≥0 defined as

ξt :=
{
π(t) : π ∈ N , σπ = 0

}
(t ≥ 0)

is called the branching-coalescing point set.
It is known that (ξt)t≥0 comes down from infinity:

E
[
|ξt ∩ [a, b]|

]
< ∞ ∀t > 0, a < b,

and has a reversible invariant law that is the law of a
Poisson point set with intensity 2.
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The branching-coalescing point set

The branching-coalescing point set.
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The upper bound

Let ξ0 be a Poisson point set with intensity 2, independent of N
and N∗, and set

ξt :=
{
π(t) : π ∈ N , σπ = 0, π(0) ∈ ξ0

}
,

ξ∗t :=
{
π(t) : π ∈ N∗, σπ = 0, π(0) ∈ ξ0

} (t ≥ 0)

Then ξt is a Poisson point set with intensity 2.
By a finite energy argument, to prove the upper bound N∗ ⊂ N , it
suffices to prove

E
[
|ξ∗t ∩ [a, b]|

]
≤ 2(b − a) (t > 0, a < b).
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The upper bound

In the discrete setting, for given X0 ⊂ Z, we define a system of
branching and coalescing random walks by

X ε
t := {π(t) : π ∈ Vε, σπ = 0, π(0) ∈ X0}.

One may hope that this has a product measure as reversible
invariant law, but this is not true.

It becomes true, however, if we slightly change the definition of Vε.
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The upper bound

Independently for all x , y , t in Z, draw an arrow from (x , t) to
(y , t + 1) with probability

1− e−ra(y − x) where 1− ε =:
r

er − 1
,

and then condition on the event that each (x , t) ∈ Z2 is the
starting point of at least one arrow. Let Ṽε denote the resulting
discrete net and let (X̃ ε

t )t≥0 be the associated branching and
coalescing random walks. Then:

▶ Ṽε stochastically dominates Vε.

▶ (X̃ ε
t )t≥0 has product measure with intensity

1− e−r = 2ε+ O(ε2) as reversible invariant law.
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Tightness

Our proofs of II. the lower bound and III. the upper bound are
dependent on I. tightness.

This is not just a formality. Our proofs of II. and III. have not

used the condition
∑
k∈Z

a(k)|k |3+δ < ∞.

Yet, we know that as soon as lim supn→∞ A(n)n3 > 0, with
A(n) :=

∑∞
k=m a(k), there are macroscopic jumps in the limit.

It is hard to imagine what else could go wrong,
so we believe lim

n→∞
A(n)n3 = 0 should be sufficient.

But that is not a proof.
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The dual picture

Associated to each discrete nearest-neighbour web U
there is a dual discrete nearest-neighbour web Û .
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The dual picture

Likewise, associated with each Brownian web W
there is a dual web Ŵ.
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The dual picture

In the discrete non-nearest neighbour case, we can make the dual
web visible by looking at the set of all (x , t) with t ≤ 0 such that
the path π that starts at (x , t) satisfied π(0) ≥ 0.
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The dual picture

If we turn the picture upside down, then this defines a Markov
chain: a discrete time voter model (or spatial Moran model).
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The discrete time voter model

Let {0, 1}Z be the space of functions y : Z → {0, 1}.
Let

(
ω(x , t)

)
(x ,t)∈Z2 be i.i.d. with law a.

The discrete time voter model (or spatial Moran model)
with initial state Y0 ∈ {0, 1}Z is defined as

Yt(x) := Yt−1

(
x − ω(x , t)

)
(t ≥ 1).

We are especially interested in the initial state

Y0(k) := 1 (k < 0) and Y0(k) := 0 (k ≥ 0).

Define Lt ,Rt ∈ Z+ 1
2 by

Lt := sup
{
z ∈ Z+ 1

2 : Yt(k) = 1 ∀k < z
}
,

Rt := inf
{
z ∈ Z+ 1

2 : Yt(k) = 0 ∀z < k
}

If rescaled discrete webs converge to the Brownian web, then

P
[(
εLσ2ε−2t , εRσ2ε−2t

)
t≥0

∈ ·
]
=⇒
ε→0

P
[
(Bt ,Bt)t≥0 ∈ ·

]
,

for some standard Brownian motion (Bt)t≥0.
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The discrete time biased voter model

Let
(
ω1(x , t)

)
(x ,t)∈Z2 be i.i.d. with law a and let

(
ω2(x , t)

)
(x ,t)∈Z2

be obtained by resampling an ε-fraction of the points (x , t) ∈ Z2.
The biased discrete time voter model is defined as

Yt(x) := Yt−1

(
x − ω1(x , t)

)
∨ Yt−1

(
x − ω2(x , t)

)
(t ≥ 1).

If rescaled discrete nets converge to the Brownian web, then

P
[(
εLσ2ε−2t , εRσ2ε−2t

)
t≥0

∈ ·
]
=⇒
ε→0

P
[
(Bt+t,Bt+t)t≥0 ∈ ·

]
(1)

for some standard Brownian motion (Bt)t≥0.

Conversely, to prove tightness of the law of diffusively rescaled
discrete nets, it suffices to prove (1).

Note that (1) fails if there are macroscopic jumps in the limit!
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Interface tightness

Let S10 :=
{
y ∈ {0, 1}Z : limk→−∞ y(k) = 1, limk→∞ y(k) = 0

}
.

For y , y ′ ∈ S10, write y ∼ y ′ if y ′ is a translation of y and let
y := {y ′ ∈ S01 : y ∼ y ′} denote the equivalence class containing y .

By definition, interface tightness holds if (Y t)t≥0 is a positive

recurrent Markov chain with state space S
10

:=
{
y : y ∈ S10

}
.

[Cox & Durrett ’95] proved interface tightness for continuous
time voter models with

∑
k∈Z a(k)|k |3 < ∞.

[Belhaouari, Mountford, & Valle ’07] relaxed this to∑
k∈Z a(k)k

2 < ∞, which is optimal.

[Sun, S., & Yu ’19] proved interface tightness for
biased voter models.
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The weighted midpoint

For each y ∈ S10, let M(y) ∈ Z+ 1
2 be defined by

#
{
k < M(y) : y(k) = 0

}
= #

{
k > M(y) : y(k) = 1

}
.

[Sun, S., & Yu ’21] showed that for biased voter models,

P
[(
εM(Yσ2ε−2t)

)
t≥0

∈ ·
]
=⇒
ε→0

P
[
(Bt + t)t≥0 ∈ ·

]
,

where (Bt)t≥0 is a standard Brownian motion.

Moreover, the measure-valued process µε
t := ε

∑
k∈Z

Yσ2ε−2tδεk

converges weakly in law as a process to

µt(dx) := 1(−∞,Bt+t](x)dx .

All this needs only σ2 :=
∑

k a(k)k
2 < ∞.
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The weighted midpoint

Now we “only” needed to show that if
∑
k∈Z

a(k)|k |3+δ < ∞,

then the previous statement can be boosted to

P
[(
εLσ2ε−2t , εRσ2ε−2t

)
t≥0

∈ ·
]
=⇒
ε→0

P
[
(Bt + t,Bt + t)t≥0 ∈ ·

]
.

We could do this based on a reasonable conjecture for the tail of
the equilibrium distribution of Rt − Lt .

Unfortunately, we did not manage to solve this conjecture.

Back to the drawing board.

Jan M. Swart Universality of the Brownian net



A multiscale argument

ε−1 ε−1

δε−2

2δε−2

[Belhaouari, Mountford, Sun, & Valle ’06]
used a multiscale argument for discrete webs.
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A multiscale argument

ε−1 ε−1

δε−2

2δε−2

We need to show that the probability of this event
tends to zero for δ → 0, uniformly in ε.
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A multiscale argument

ε−1 ε−1

2δε−2

In each step, we let the coalescing random walks of two
subsequent times evolve until the next time.
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A multiscale argument

ε−1 ε−1

2δε−2

In each step, we let the coalescing random walks of two
subsequent times evolve until the next time.

Jan M. Swart Universality of the Brownian net



A multiscale argument

ε−1 ε−1

2δε−2

In each step, we let the coalescing random walks of two
subsequent times evolve until the next time.

Jan M. Swart Universality of the Brownian net



A multiscale argument

By controlling the number of particles and their displacement in
each step, Belhaouari, Mountford, Sun, & Valle in 2006 were able
to control the maximal displacement of all paths started in the
block of size ε−1 × δε−2.

The argument is a bit lossy, which is why they needed the condition∑
k∈Z

a(k)|k |3+δ < ∞ for some δ > 0,

that is a bit stronger than the optimal condition

lim sup
n→∞

A(n)n3 = 0 with A(n) :=
∞∑

k=m

a(k).
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A multiscale argument

In the presence of branching, the argument (that is already quite
heavy) becomes a lot harder, which is why we could not pull it
through for many years.

The way we managed, in the end, is quite interesting, but does not
fit in the time frame of this talk.
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