A min-max random game on a graph that is not a tree

Jan M. Swart

Joint with Anja Sturm and Natalia Cardona-Tobón (Göttingen)
Prague, June 25, 2024

A random game

Alice and Bob play a game. They play in turn n moves each. Alice starts and Bob plays the last move.

In each turn, Alice and Bob have two moves to choose from.
The outcome is determined by the exact sequences of moves played by each player. As a result, there are $2^{2 n}$ possible outcomes of the game.

Prior to the game, we randomly assign winners to all possible outcomes in an i.i.d. way. For each possible outcome, the probability that Bob is the winner is p.

We call this game $\mathrm{AB}_{n}(p)$ and let $P_{n}^{\mathrm{AB}}(p)$ denote the probability that Bob has a winning strategy.

A random game

Let \mathbb{T} denote the set of all finite words $\mathbf{i}=i_{1} \cdots i_{n}$ made from the alphabet $\{1,2\}$.
We call $|\mathbf{i}|:=n$ the length of the word $\mathbf{i}=i_{1} \cdots i_{n}$

A random game

We write $[\mathbb{T}]_{n}:=\{\mathbf{i} \in \mathbb{T}:|\mathbf{i}| \leq n\}$,
$\langle\mathbb{T}\rangle_{n}:=\{\mathbf{i} \in \mathbb{T}:|\mathbf{i}|<n\}$, and $\partial_{n} \mathbb{T}:=\{\mathbf{i} \in \mathbb{T}:|\mathbf{i}|=n\}$.

A random game

Let $(X(\mathbf{i}))_{\mathbf{i} \in \partial_{2 n} \mathbb{T}}$ be i.i.d. $\{0,1\}$-valued
random variables with $\mathbb{P}[X(\mathbf{i})=1]=p$.
A 0 means a win for Alice and a 1 a win for Bob.

A random game

Bob has the last move and chooses the maximum of $X(\mathbf{i} 1)$ and $X(\mathbf{i} 2)$. We set $\bar{X}(\mathbf{i}):=X(\mathbf{i})\left(\mathbf{i} \in \partial_{2 n} \mathbb{T}\right)$.

A random game

Bob has the last move and chooses the maximum of $X(\mathbf{i} 1)$ and $X(\mathbf{i} 2)$.
We define $\bar{X}(\mathbf{i}):=\bar{X}(\mathbf{i} 1) \vee \bar{X}(\mathbf{i} 1)$ for $\mathbf{i} \in \partial_{k} \mathbb{T}$ with k odd.

A random game

In her last move Alice chooses the minimum of $X(\mathbf{i} 1)$ and $X(\mathbf{i} 2)$.
We define $\bar{X}(\mathbf{i}):=\bar{X}(\mathbf{i} 1) \wedge \bar{X}(\mathbf{i} 1)$ for $\mathbf{i} \in \partial_{k} \mathbb{T}$ with k even.

A random game

In her last move Alice chooses the minimum of $X(\mathbf{i} 1)$ and $X(\mathbf{i} 2)$.
We define $\bar{X}(\mathbf{i}):=\bar{X}(\mathbf{i} 1) \wedge \bar{X}(\mathbf{i})$ for $\mathbf{i} \in \partial_{k} \mathbb{T}$ with k even.

A random game

In the move before that, Bob chooses the maximum again. $\bar{X}(\mathbf{i}):=\bar{X}(\mathbf{i} 1) \vee \bar{X}(\mathbf{i} 1)$ for $\mathbf{i} \in \partial_{k} \mathbb{T}$ with k odd.

A random game

In the move before that, Bob chooses the maximum again. $\bar{X}(\mathbf{i}):=\bar{X}(\mathbf{i} 1) \vee \bar{X}(\mathbf{i} 1)$ for $\mathbf{i} \in \partial_{k} \mathbb{T}$ with k odd.

A random game

And in her first move, Alice chooses the minimum. $\bar{X}(\mathbf{i}):=\bar{X}(\mathbf{i} 1) \wedge \bar{X}(\mathbf{i} 1)$ for $\mathbf{i} \in \partial_{k} \mathbb{T}$ with k odd.

A random game

$X(\varnothing)=0$, so in this game, Alice has a winning strategy.

A random game

These sort of minmax trees or game trees
have long been used in game theory.
The idea to use i.i.d. input is due to J. Pearl (1980).

A random game

$P_{n}^{\mathrm{AB}}(p)$ denotes the probability that Bob has a winning strategy.
Pearl (1980) proved that

$$
P_{n}^{\mathrm{AB}}(p) \underset{n \rightarrow \infty}{\longrightarrow} \begin{cases}0 & \text { if } p<p_{\mathrm{c}}^{\mathrm{AB}} \\ p_{\mathrm{c}}^{\mathrm{AB}} & \text { if } p=p_{\mathrm{c}}^{\mathrm{AB}} \\ 1 & \text { if } p>p_{\mathrm{c}}^{\mathrm{AB}}\end{cases}
$$

where $p_{\mathrm{c}}^{\mathrm{AB}}:=\frac{1}{2}(3-\sqrt{5}) \approx 0.382$, which has the effect that $p_{\mathrm{c}}^{\mathrm{AB}}: 1-p_{\mathrm{c}}^{\mathrm{AB}}$ is the golden ratio.
Note that $p_{\mathrm{c}}^{\mathrm{AB}}<1 / 2$, which is due to the fact that Bob has the last move, which gives him an advantage.

Continuous game-values

In a different variant of the game, prior to the game, we assign i.i.d. Unif[0, 1] distributed random variables $(U(\mathbf{i}))_{\mathbf{i} \in \partial_{2 n} \mathbb{T}}$
to the possible outcomes of the game.
If the game ends in the outcome \mathbf{i}, then the pay-out for Alice $U(\mathbf{i})$
and for Bob is $1-U(\mathbf{i})$.

Continuous game-values

In this game, Bob chooses the minimum.

Continuous game-values

In this game, Bob chooses the minimum.

Continuous game-values

And Alice chooses the maximum.

Continuous game-values

So we set $\bar{U}(\mathbf{i}):=U(\mathbf{i})\left(\mathbf{i} \in \partial_{2 n} \mathbb{T}\right)$

Continuous game-values

And define $\bar{U}(\mathbf{i}):= \begin{cases}\bar{U}(\mathbf{i 1}) \wedge \bar{U}(\mathbf{i}) & \text { for } \mathbf{i} \in \partial_{k} \mathbb{T} \text { with } k \text { odd, } \\ \bar{U}(\mathbf{i} 1) \vee \bar{U}(\mathbf{i} 2) & \text { for } \mathbf{i} \in \partial_{k} \mathbb{T} \text { with } k \text { even }\end{cases}$

Continuous game-values

If we set $\bar{X}(\mathbf{i}):= \begin{cases}0 & \text { if } \bar{U}(\mathbf{i})>p, \\ 1 & \text { if } \bar{U}(\mathbf{i}) \leq p,\end{cases}$ then we obtain the same $(\bar{X}(\mathbf{i}))_{i \in[T]]_{n}}$ as before.
The yields a coupling of processes with different values of p.

$$
P_{n}^{\mathrm{AB}}(p)=\mathbb{P}[\bar{U}(\varnothing) \leq p] \quad(p \in[0,1]) .
$$

A random game

A random game

Ali Kahn, Devroye, and Neininger (2005) have proved that for a suitable choice of $0<\xi<1$,

$$
P_{n}^{\mathrm{AB}}\left(p_{\mathrm{c}}+\xi^{n} q\right) \underset{n \rightarrow \infty}{\longrightarrow} F(q) \quad(q \in \mathbb{R})
$$

for some nontrivial distribution function $F: \mathbb{R} \rightarrow[0,1]$.
Several variants of Pearl's game have been studied where the deterministic tree is replaced by a random tree, such as a Galton-Watson tree, or a tree where for each internal node randomness decides whose turn it is.

More general game-graphs

What if the "game tree" is not a tree?
 What if different game histories can lead to the same outcome?

More general game-graphs

Let $\mathrm{Ab}_{n}(p)$ denote the modified game where the outcome is determined by the exact sequence of moves played by Alice as before, but for Bob all that matters is how often he has played each of the two possible moves.
In this case, there are $2^{n} \cdot(n+1)$ possible outcomes to which we assign winners in an i.i.d. way as before.

More general game-graphs

In this case, the game-graph is not a tree.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

The game-graph of the game $\mathrm{Ab}_{3}(p)$.

More general game-graphs

We can view the game-graph as a sort of "product" $\mathbb{T} \ltimes \mathbb{N}^{2}$ of graphs \mathbb{T} and \mathbb{N}^{2} describing the moves of the individual players.

More general game-graphs

In this way, we can define four different games:
$\mathrm{AB}_{n}(p)$ Pearl's original game with game-graph $\mathbb{T} \ltimes \mathbb{T} \cong \mathbb{T}$.
$\mathrm{Ab}_{n}(p)$ The game with game-graph $\mathbb{T} \ltimes \mathbb{N}^{2}$.
$a B_{n}(p)$ The game with game-graph $\mathbb{N}^{2} \ltimes \mathbb{T}$.
$\operatorname{ab}_{n}(p)$ The game with game-graph $\mathbb{N}^{2} \ltimes \mathbb{N}^{2}$.
We let $P_{n}^{\mathrm{AB}}(p), P_{n}^{\mathrm{Ab}}(p), P_{n}^{\mathrm{aB}}(p)$, and $P_{n}^{\mathrm{ab}}(p)$ denote the probability that Bob has a winning strategy.
[Sturm, Cardona-Tobón \& S. '24] One has

$$
P_{n}^{\mathrm{Ab}}(p) \leq P_{n}^{\mathrm{AB}}(p) \leq P_{n}^{\mathrm{aB}}(p) \quad(p \in[0,1], n \geq 1)
$$

Conjecture

$$
P_{n}^{\mathrm{Ab}}(p) \leq P_{n}^{\mathrm{ab}}(p) \leq P_{n}^{\mathrm{aB}}(p) \quad(p \in[0,1], n \geq 1)
$$

More general game-graphs

[Sturm, Cardona-Tobón \& S. '24] There exist constants $0<p_{\mathrm{c}}^{\mathrm{Ab}}, p_{\mathrm{c}}^{\mathrm{aB}}<1$ such that

$$
\begin{aligned}
& P_{n}^{\mathrm{Ab}}(p) \underset{n \rightarrow \infty}{\longrightarrow} \begin{cases}0 & \text { if and only if } p<p_{\mathrm{c}}^{\mathrm{Ab}}, \\
1 & \text { if } p>p_{\mathrm{c}}^{\mathrm{Ab}},\end{cases} \\
& P_{n}^{\mathrm{aB}}(p) \underset{n \rightarrow \infty}{\longrightarrow} \begin{cases}0 & \text { if } p<p_{\mathrm{c}}^{\mathrm{aB}}, \\
1 & \text { if and only if } p>p_{\mathrm{c}}^{\mathrm{aB}} .\end{cases}
\end{aligned}
$$

One has $1 / 2 \leq p_{\mathrm{c}}^{\mathrm{Ab}} \leq 7 / 8$ and $1 / 16 \leq p_{\mathrm{c}}^{\mathrm{aB}} \leq \frac{1}{2}(3-\sqrt{5})$.
Note that $P_{n}^{\mathrm{AB}}(p) \leq P_{n}^{\mathrm{aB}}(p)$ implies
$p_{\mathrm{c}}^{\mathrm{aB}} \leq p_{\mathrm{c}}^{\mathrm{AB}}=\frac{1}{2}(3-\sqrt{5}) \approx 0.382$.

More general game-graphs

For the game $\mathrm{ab}_{n}(p)$, we can only prove that

$$
P_{n}^{\mathrm{ab}}(p) \underset{n \rightarrow \infty}{\longrightarrow} \begin{cases}0 & \text { if } p<1 / 64 \\ 1 & \text { if } p>15 / 16\end{cases}
$$

More general game-graphs

The bound $1 / 2 \leq p_{\mathrm{c}}^{\mathrm{Ab}}$ follows from the fact that if $p<1 / 2$, then for large n, with high probability, at least one of these sets contains only zeros.

This means that Alice has a winning strategy that does not even react to Bob's moves.

More general game-graphs

Numerical data suggest $p_{\mathrm{C}}^{\mathrm{Ab}} \approx 0.72$
and $\lim _{n \rightarrow \infty} P_{n}^{\mathrm{Ab}}\left(p_{\mathrm{c}}^{\mathrm{Ab}}\right)$ is one or close to one.

More general game-graphs

Numerical data suggest $p_{\mathrm{C}}^{\mathrm{Ab}} \approx 0.72$
and $\lim _{n \rightarrow \infty} P_{n}^{\mathrm{Ab}}\left(p_{\mathrm{c}}^{\mathrm{Ab}}\right)$ is one or close to one.

A cellular automaton

Let $U_{0}=\left(U_{0}(i, j)\right)_{(i, j) \in \mathbb{N}^{2}}$ be i.i.d. Unif $[0,1]$ distributed.
For each of the combinations $\mathrm{xx}=\mathrm{AB}, \mathrm{Ab}, \mathrm{aB}$, and ab , we can define $\left(U_{t}^{\mathrm{xx}}\right)_{t \geq 0}$ by $U_{0}^{\mathrm{xx}}:=U_{0}$ and
A. $\left.\quad U_{t+1}^{\mathrm{xx}}(i, j)=U_{t}^{\mathrm{xx}}(2 i, j) \wedge U_{t}^{\mathrm{xx}}(2 i+1, j),\right\}$
a. $\left.\quad U_{t+1}^{\mathrm{xx}}(i, j)=U_{t}^{\mathrm{xx}}(i, j) \wedge U_{t}^{\mathrm{xx}}(i+1, j) \quad\right\}$
if t is even,
$\left.\begin{array}{l}\text { B. } U_{t+1}^{\mathrm{xx}}(i, j)=U_{t}^{\mathrm{xx}}(i, 2 j) \vee U_{t}^{\mathrm{xx}}(i, 2 j+1), \\ \text { b. } U_{t+1}^{\mathrm{xx}}(i, j)=U_{t}^{\mathrm{xx}}(i, j) \vee U_{t}^{\mathrm{xx}}(i, j+1)\end{array}\right\} \quad$ if t is odd.
We claim that

$$
P_{n}^{\mathrm{xx}}(p)=\mathbb{P}\left[U_{2 n}^{\mathrm{xx}}(0,0) \leq p\right] .
$$

A cellular automaton

We observe that $U_{2 n}^{\mathrm{Ab}}(0,0)$ depends on $\left(U_{0}(i, j)\right)_{(i, j) \in \mathbb{N}^{2}}$ exactly in the way $\bar{U}(\varnothing)$ depends on $(U(v))_{v \in \partial_{2 n}\left(\mathbb{T} \ltimes \mathbb{N}^{2}\right)}$.

A cellular automaton

$$
t=0
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Grayscales indicate a value between zero (white) and one (black).

A cellular automaton

$$
t=1
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Grayscales indicate a value between zero (white) and one (black).

A cellular automaton

$$
t=2
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Grayscales indicate a value between zero (white) and one (black).

A cellular automaton

$$
t=3
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Grayscales indicate a value between zero (white) and one (black).

A cellular automaton

$$
t=4
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Grayscales indicate a value between zero (white) and one (black).

A cellular automaton

$$
t=5
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Grayscales indicate a value between zero (white) and one (black).

A cellular automaton

$$
t=6
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Grayscales indicate a value between zero (white) and one (black).

A cellular automaton

$$
t=7
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Grayscales indicate a value between zero (white) and one (black).

A cellular automaton

$$
t=8
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Grayscales indicate a value between zero (white) and one (black).

A cellular automaton

$$
t=9
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Grayscales indicate a value between zero (white) and one (black).

A cellular automaton

$$
t=10
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Grayscales indicate a value between zero (white) and one (black).

A cellular automaton

$$
t=11
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Grayscales indicate a value between zero (white) and one (black).

A cellular automaton

$$
t=12
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Columns are independent of each other at all times.

A cellular automaton

$$
t=13
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Columns are independent of each other at all times.

A cellular automaton

$$
t=14
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Columns are independent of each other at all times.

A cellular automaton

$$
t=15
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Columns are independent of each other at all times.

A cellular automaton

$$
t=16
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Columns are independent of each other at all times.

A cellular automaton

$$
t=17
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Columns are independent of each other at all times.

A cellular automaton

$$
t=18
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Columns are independent of each other at all times.

A cellular automaton

$$
t=19
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Columns are independent of each other at all times.

A cellular automaton

$$
t=20
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Columns are independent of each other at all times.

A cellular automaton

$$
t=21
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Columns are independent of each other at all times.

A cellular automaton

$$
t=22
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Columns are independent of each other at all times.

A cellular automaton

$$
t=23
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Columns are independent of each other at all times.

A cellular automaton

$$
t=24
$$

The cellular automaton $\left(U_{t}^{\mathrm{Ab}}\right)_{t \geq 0}$.
Columns are independent of each other at all times.

A cellular automaton

For the cellular automaton $\left(U_{t}^{\mathrm{aB}}\right)_{t \geq 0}$, rows are independent of each other at all times.
For the cellular automaton $\left(U_{t}^{\mathrm{AB}}\right)_{t \geq 0}$, all lattice points remain independent of each other at all times.

Bounds on the critical values

To prove the bounds $p_{\mathrm{c}}^{\mathrm{Ab}} \leq 7 / 8$ and $1 / 16 \leq p_{\mathrm{c}}^{\mathrm{aB}}$, as well as the fact that

$$
P_{n}^{\mathrm{ab}}(p) \underset{n \rightarrow \infty}{\longrightarrow} \begin{cases}0 & \text { if } p<1 / 64 \\ 1 & \text { if } p>15 / 16\end{cases}
$$

we use a Peierls argument due to Toom (1980) and further developed by S., Szábo, and Toninelli (2024).

Strategies

A strategy for Alice (Bob) is a function that assigns to each state when it is Alice's (Bob's) turn precisely one of the two moves available to Alice (Bob). Let \mathcal{S}_{1} and \mathcal{S}_{2} denote the set of strategies for Alice and Bob, respectively, and let

$$
o\left(\sigma_{1}, \sigma_{2}\right)
$$

denote the outcome of the game if Alice plays strategy $\sigma_{1} \in \mathcal{S}_{1}$ and Bob plays strategy $\sigma_{2} \in \mathcal{S}_{2}$. We set

$$
Z\left(\sigma_{1}\right):=\left\{o\left(\sigma_{1}, \sigma_{2}\right): \sigma_{2} \in \mathcal{S}_{2}\right\} .
$$

A strategy $\sigma_{1} \in \mathcal{S}_{1}$ is winning for Alice if

$$
X(v)=0 \quad \forall v \in Z\left(\sigma_{1}\right)
$$

Strategies

Construction of the set $Z\left(\sigma_{1}\right)$ for a given strategy of Alice.

Strategies

Construction of the set $Z\left(\sigma_{1}\right)$ for a given strategy of Alice.

Strategies

Construction of the set $Z\left(\sigma_{1}\right)$ for a given strategy of Alice.

Strategies

Construction of the set $Z\left(\sigma_{1}\right)$ for a given strategy of Alice.

Strategies

Construction of the set $Z\left(\sigma_{1}\right)$ for a given strategy of Alice.

Strategies

Construction of the set $Z\left(\sigma_{1}\right)$ for a given strategy of Alice.

Strategies

Construction of the set $Z\left(\sigma_{1}\right)$ for a given strategy of Alice.

Toom cycles

We will construct a Toom cycle that passes through $Z\left(\sigma_{1}\right)$.

Toom cycles

We will construct a Toom cycle that passes through $Z\left(\sigma_{1}\right)$.

Toom cycles

We will construct a Toom cycle that passes through $Z\left(\sigma_{1}\right)$.

Toom cycles

We will construct a Toom cycle that passes through $Z\left(\sigma_{1}\right)$.

Toom cycles

We will construct a Toom cycle that passes through $Z\left(\sigma_{1}\right)$.

Toom cycles

We will construct a Toom cycle that passes through $Z\left(\sigma_{1}\right)$.

Toom cycles

We will construct a Toom cycle that passes through $Z\left(\sigma_{1}\right)$.

Toom cycles

We will construct a Toom cycle that passes through $Z\left(\sigma_{1}\right)$.

Toom cycles

We will construct a Toom cycle that passes through $Z\left(\sigma_{1}\right)$.

Toom cycles

The construction is by induction and uses loop erasion.

Toom cycles

The construction is by induction and uses loop erasion.

Toom cycles

The construction is by induction and uses loop erasion.

Toom cycles

The construction is by induction and uses loop erasion.

Toom cycles

The construction is by induction and uses loop erasion.

Toom cycles

The construction is by induction and uses loop erasion.

Toom cycles

The construction is by induction and uses loop erasion.

Toom cycles

Theorem If Alice has a winning strategy, then there exists a Toom cycle ψ such that $X(v)=0$ for each possible outcome v that ψ passes through.

Lemma For each Toom cycle ψ, there exists an integer $m \geq 0$ such that the cycle makes m steps in each of the six directions straight-up, straight-down, right-up, right-down, left-up, and left-down,
and ψ passes through $m+1$ possible outcomes.
Lemma For each m, there are $\leq 8^{m}$ different Toom cycles.
Consequence:

$$
1-P_{n}^{\mathrm{Ab}}(p) \leq \sum_{m=n}^{\infty} 8^{m}(1-p)^{m+1}
$$

and $p_{\mathrm{C}}^{\mathrm{Ab}} \leq 7 / 8$.

Sharpness of the transition

Let S be a finite set, let $L:\{0,1\}^{S} \rightarrow\{0,1\}$ be a function, and let $X^{p}=\left(X^{p}(v)\right)_{v \in S}$ be i.i.d. with $\mathbb{P}\left[X^{p}(v)=1\right]=p(v \in S)$. Let

$$
X_{v, y}^{p}(w):=\left\{\begin{array}{ll}
y & \text { if } w=v, \\
X(w) & \text { otherwise }
\end{array} \quad(y=0,1)\right.
$$

We say v is pivotal if $L\left(X_{v, 0}^{p}\right) \neq L\left(X_{v, 1}^{p}\right)$. The influence of v is

$$
I^{p}(v):=\mathbb{P}\left[v \text { is pivotal in } X^{p}\right] \quad(v \in S)
$$

If L is monotone, then Russo's formula says that

$$
\frac{\partial}{\partial p} \mathbb{P}\left[L\left(X^{p}\right)=1\right]=\sum_{v \in S} I^{p}(v)
$$

Sharpness of the transition

Bourgain, Kahn, Kalai, Katznelson, and Linial (1992) have proved that there exists a universal constant $c>0$ such that:

$$
(\star) \quad \sum_{v \in S} I^{p}(v) \geq c \operatorname{Var}\left(L\left(X^{p}\right)\right) \log \left(1 / \sup _{v \in S} I^{P}(v)\right) .
$$

If each individual influence is small, and the law of $L\left(X^{p}\right)$ is nontrivial, then the sum of the influences must be large.

We apply this to $S:=\partial_{n}\left(\mathbb{T} \ltimes \mathbb{N}^{2}\right)$ and $L_{n}(x):=1$ iff Bob has a winning strategy for $(x(v))_{v \in \partial_{n}\left(\mathbb{T} \ltimes \mathbb{N}^{2}\right)}$.
We observe that $\operatorname{Var}\left(L_{n}\left(X^{p}\right)\right)=P_{n}^{\mathrm{Ab}}(p)\left(1-P_{n}^{\mathrm{Ab}}(p)\right)$.

Sharpness of the transition

Assume $\varepsilon \leq P_{n}^{\mathrm{Ab}}(p) \leq 1-\varepsilon$.
Formula (\star) tells us that

$$
(\star) \quad \sum_{v \in S} I_{n}^{p}(v) \geq c \varepsilon(1-\varepsilon) \log \left(1 / J_{n}\right)
$$

with $J_{n}:=\sup _{v \in S} I_{n}^{p}(v)$.
Because of the symmetry of $\partial_{n}\left(\mathbb{T} \ltimes \mathbb{N}^{2}\right)$,

$$
\#\left\{v \in \partial_{n}\left(\mathbb{T} \ltimes \mathbb{N}^{2}\right): I_{n}^{p}(v)=J_{n}\right\} \geq 2^{n}
$$

As a consequence,

$$
\sum_{v \in S} I_{n}^{p}(v) \geq 2^{n} J_{n} .
$$

Combining this with (\star) one finds that for some $c^{\prime}>0$

$$
\sum_{v \in S} I_{n}^{p}(v) \geq c^{\prime} \varepsilon(1-\varepsilon) n \quad \text { if } \varepsilon \leq P_{n}^{\mathrm{Ab}}(p) \leq 1-\varepsilon
$$

Sharpness of the transition

By Russo's formula, this implies that

$$
\frac{\partial}{\partial p} P_{n}^{\mathrm{Ab}}(p) \geq c^{\prime} \varepsilon(1-\varepsilon) n \quad \text { if } \varepsilon \leq P_{n}^{\mathrm{Ab}}(p) \leq 1-\varepsilon
$$

which implies that $P_{n}^{\mathrm{Ab}}(p)$ increases from a value $\leq \varepsilon$ to a value $\geq 1-\varepsilon$ in an interval of length $\leq 1 /\left(c^{\prime} \varepsilon(1-\varepsilon) n\right)$.

Sharpness of the transition.

