A numerical search for intertwining relations

Jan M. Swart

Singapore, August 13, 2024

Work in progress!

Jan M. Swart [A numerical search for intertwining relations](#page-80-0)

 $2Q$

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

A relation between square matrices of the form

$$
PK = KQ \qquad (*)
$$

is called an *intertwining relation* and K is the *intertwiner*. If K is invertible, then we can rewrite (\star) as

$$
Q = K^{-1}PK \quad \text{or} \quad P = KQK^{-1}.
$$

This says that P and Q are similar.

By definition, P is diagonalisable if K can be chosen such that Q is diagonal.

An
$$
d \times d
$$
 matrix *P* is a probability *kernel* if
\n(i) $P(x, y) \ge 0$ $(1 \le x, y \le d)$,
\n(ii) $\sum_{y=1}^{d} P(x, y) = 1$ $(1 \le x \le d)$.

Its n -th power $Pⁿ$ describes the n -step transition probabilities of the Markov chain with transition kernel P.

If we can diagonalise P , then we have good control over its powers, since

$$
P^n = KQ^nK^{-1} \qquad (t \geq 0),
$$

and it is trivial to calculate the n -th power of a diagonal matrix.

In practice, it can be hard to have good control over the eigenvalues of P and the intertwiner K that diagonalises P .

Also, by diagonalising P , we leave the space of probability kernels, so in a sense we forget about the special property that P is a probability kernel (in particular, the nonnegativity of its elements).

In view of this, as an alternative to diagonalisation, we can look for intertwining relations of the form

(i)
$$
PK = KQ
$$
 or (ii) $KP = QK$,

where P, Q, K are all probability kernels, and Q is "as simple as possible".

 $\mathbf{A} = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{B} + \mathbf{A}$

Note that

(i)
$$
PK = KQ
$$
 implies $P^nK = KQ^n$
\n(ii) $KP = QK$ implies $KP^n = Q^nK$ $(n \ge 0)$.

In case (i), let's say that Q is intertwined on top of P and in case (ii), let's say that Q is intertwined below P .

 $PK = KQ$ implies $K^{-1}P = QK^{-1}$, but \mathcal{K}^{-1} is in general not a probability kernel.

a Bara Ba

Continuous time

A Markov semigroup is a family $(P_t)_{t\geq0}$ of square probability kernels such that $t\mapsto P_t$ is continuous, $P_0 = 1$, and $P_s P_t = P_{s+t}$ (s, $t \ge 0$).

Each Markov semigroup is of the form

$$
P_t = e^{tG} := \sum_{k=0}^{\infty} \frac{1}{k!} t^k G^k,
$$

where the *generator G* satisfies

\n- (i)
$$
G(x, y) \geq 0
$$
 $\forall x \neq y$,
\n- (ii) $\sum_{y=1}^{n} G(x, y) = 0$ $\forall x$.
\n- For $x \neq y$, we call $G(x, y)$ the *rate* of jumps from *x* to *y*.
\n

For semigroups $(P_t)_{t\geq 0}$ and $(Q_t)_{t\geq 0}$ with generators G, H , one has

(i) $GK = KH$ implies $P_tK = KQ_t$ $\left(\mathrm{ii}\right)$ KG $=$ HK implies $\mathsf{KP}_t = Q_t \mathsf{K}$ λ $(t \geq 0).$

In case (i), we say that H is intertwined on top of G and in case (ii), we say that H is intertwined below G .

つくい

Assume that Q is intertwined on top of P, i.e., $PK = KQ$.

Then it is possible to construct a Markov chain $(X_n, Y_n)_{n>0}$ such that

$$
\mathbb{P}[Y_0 \in \cdot | X_0] = K(X_0, \cdot) \quad \text{a.s.}
$$

implies that

$$
\mathbb{P}[Y_n \in \cdot \big| (X_k)_{0 \leq k \leq n}] = K(X_n, \cdot) \quad \text{a.s.} \quad (n \geq 0).
$$

Moreover (note that Y is *autonomous* but X is not):

$$
\mathbb{P}[X_{n+1} = x | (X_k)_{0 \le k \le n}] = P(X_n, x) \quad \text{a.s.},
$$

$$
\mathbb{P}[Y_{n+1} = y | (X_k, Y_k)_{0 \le k \le n}] = Q(Y_n, y) \quad \text{a.s.}
$$

An analogue result holds on the continuous-time case. [Rogers & Pitman '81, Fill '92]

 $2Q$

Consider a continuous-time process on $\{0, \ldots, d\}$ that jumps with rate β_k from $k-1$ to k and with rate δ_k from k to $k - 1$ ($1 \le k \le d$).

Assume that $\delta_d = 0$ so that d is a trap.

つへへ

In [Diaconis & Miclos '09] It has been shown that it is possible to intertwine the generator H of a pure birth process below G , whose jump rates $\lambda_d > \cdots > \lambda_1$ are the negatives of the nontrivial eigenvalues of G.

 Ω

The proof is based on a repeated application of the Perron-Frobenius theorem.

 $2Q$

€

The proof is based on a repeated application of the Perron-Frobenius theorem.

 \leftarrow

重

 $2Q$

The proof is based on a repeated application of the Perron-Frobenius theorem.

 \leftarrow

重

 \sim $\left\{ \begin{array}{c} 1 \end{array} \right.$ $2Q$

The proof is based on a repeated application of the Perron-Frobenius theorem.

重

In '10, I showed that it is similarly possible to intertwine the generator H of a pure birth process on top of the generator G of a birth-and-death process.

The example of birth-and-death chains shows that:

- \triangleright For some transition kernels P, it is possible to find a simpler transition kernel Q and an intertwining kernel K such that $PK = KQ$ (Q on top of P) or $KP = QK$ (Q below P).
- \triangleright Using the simpler kernel Q, it is possible to get information about the long-time behaviour of the Markov chain with transition kernel P (such as the time till absorption).
- \triangleright Even though Q is not diagonal, there is a relation between Q and the eigenvalues of P.

(In our example, $P = P_t$ and $Q = Q_t$ are the transition kernels of a continuous-time Markov process.)

桐 トラ ミトラ ミト

Questions remain:

- \blacktriangleright Is there a similar picture for discrete-time birth-and-death chains?
- \triangleright To what extent does this generalise beyond birth-and-death chains?
- \blacktriangleright For example, if P has one absorbing state, then can one always choose K and Q so that they are triangular?
- \triangleright What if P does not have an absorbing state but is ergodic?

To investigate these and related questions, we will look at numerical methods that aim to find Q and K given P .

We will focus on the problem of finding Q that are intertwined on top of P.

医骨盆 医骨盆

A simple idea:

Let P be a probability kernel of size $d \times d$. Let 1 denote the identity matrix of size $d \times d$. Let K_0, K_1, \ldots be inductively defined by

$$
\mathcal{K}_0:=1\quad\text{and}\quad \mathcal{K}_{s+1}:=\mathcal{K}_s+\mathit{PK}_s-\mathcal{K}_sQ_s\quad(s\geq 0),
$$

where $Q_{\mathsf{s}} = \mathcal{Q}(P,K_{\mathsf{s}})$ is some function of P and \mathcal{K}_{s} . Assume that

$$
\mathsf{K}_{\mathsf{s}} \underset{s\to\infty}{\longrightarrow} \mathsf{K} \quad \text{and} \quad \mathsf{Q}_{\mathsf{s}} \underset{s\to\infty}{\longrightarrow} \mathsf{Q}.
$$

Then $PK - KQ = \lim_{s \to \infty} (PK_s - K_sQ_s) = \lim_{s \to \infty} (K_{s+1} - K_s) = 0.$

How to choose the function $\mathcal{Q}(P,K_s)$?

AD - 4 E - 4 E -

Here's an idea:

Let K be the space of probability kernels of size $d \times d$. Let $[d] := \{1, ..., d\}$. Fix $Z \subset \{(x, y) \in [d]^2 : x \neq y\}$. Set

$$
\mathcal{K}_Z := \{ K \in \mathcal{K} : K(x, y) = 0 \ \forall (x, y) \in Z \},
$$

$$
\mathcal{C}_Z(P, K) := \{ Q \in \mathcal{K} : K' := K + PK - KQ \in \mathcal{K}_Z \},
$$

and define

$$
Q_Z(P, K) :=
$$
 the unique minimiser of

$$
Q \mapsto \sum_{x \neq y} Q(x, y) \text{ on } C_Z(P, K).
$$

Assuming the minimiser exists and is unique!

 $2Q$

∍

An evolution equation

Recall $K_{s+1} := K_s + PK_s - K_sQ_s$.

- ▶ Need to choose Q_s such that $K_{s+1} := K_s + PK_s K_sQ_s$ is a probability kernel.
- ▶ By minimising $Q \mapsto \sum_{x \neq y} Q(x, y)$ we try to choose Q_s as "simple" as possible.
- \triangleright Without further restrictions on K_{s+1} , the minimiser is $Q_s = 1$, which gives the trivial evolution $\mathcal{K}_{s+1} := \mathcal{P}\mathcal{K}_{s}.$
- ▶ By requiring that $K_{s+1}(x, y) = 0$ for $(x, y) \in Z$, we can use our intuition about what the intertwiner should look like.

This is (so far) nonrigorous: no proof that the minimiser exists, or is unique, or that the limits $K := \lim_{s\to\infty} K_s$ and $Q := \lim_{s\to\infty} Q_s$ exist.

オロメ オ桐 トラ ミトラ ミント

つくい

An evolution equation

Given probability kernels $P \in \mathcal{K}$ and $K \in \mathcal{K}_Z$, $C_Z(P,K)$ is the space of all $d \times d$ matrices such that:

(i)
$$
Q(x, y) \ge 0
$$
 $\forall x, y,$
\n(ii) $\sum_{y=1}^{d} Q(x, y) = 1$ $\forall x,$
\n(iii) $KQ(x, y) = K(x, y) + PK(x, y) \quad \forall (x, y) \in Z,$
\n(iv) $KQ(x, y) \le K(x, y) + PK(x, y) \quad \forall (x, y) \notin Z.$

Here (i) and (ii) say that Q is a probability kernel, while (iii) and (iv) say that $K':=K+PK-KQ$ is nonnegative with $K'(x, y) = 0$ for $(x, y) \in Z$.

The fact that $\sum_{\mathsf y} \mathsf K'(\mathsf x,\mathsf y) = 1\;\forall \mathsf x$ follows from the fact that P , K , and Q have this property.

An evolution equation

To calculate $Q = Q_{\rm Z}(P,K)$, we have to minimise

$$
Q \mapsto \sum_{x \neq y} Q(x, y)
$$

subject to the constraints

(i)
$$
Q(x, y) \ge 0
$$
 $\forall x, y,$
\n(ii) $\sum_{y=1}^{d} Q(x, y) = 1$ $\forall x,$
\n(iii) $KQ(x, y) = K(x, y) + PK(x, y) \quad \forall (x, y) \in Z,$
\n(iv) $KQ(x, y) \le K(x, y) + PK(x, y) \quad \forall (x, y) \notin Z.$

This is a standard exercise in linear optimisation. There exist fast algorithms that give you a solution, if it exists.

国際 あい 重 $2Q$

I have written a couple of scripts in the scientific programming language GNU Octave that numerically solve the equation

$$
\mathcal{K}_0:=1\quad\text{and}\quad \mathcal{K}_{s+1}:=\mathcal{K}_s+\mathit{PK}_s-\mathcal{K}_s\mathit{Q}_s\quad(s\geq 0)\qquad(*).
$$

with $Q_s = Q_Z(P, K_s)$.

The input are a probability kernel P of size $d \times d$ and a matrix Z of size $d \times d$ containing only zeros and ones, where $Z(x, y) = 1$ means that $(x, y) \in Z$.

The program runs (\star) until $PK_s - K_sQ_s$ is close enough to zero.

These scripts are available from my homepage with instructions on how to use them. so you can give them a try if you wish.

NATIONAL

Let P be the transition kernel of a *discrete*-time Markov chain on $\{0,\ldots,d\}$ that jumps with probability b_k from $k-1$ to k, with probability c_k from k to k and with probability d_k from k to $k - 1$.

Assume that $c_d = 1$ so that d is a trap.

We are looking for an intertwining relation of the form

 $PK = KO$

where $K(k, k + 1) = 0$ for $k = 0, ..., d - 1$ and Q is as simple as possible.

つへへ

Numerically, we find that such an intertwining really exists. Here $1 = \gamma_0 \geq \cdots \geq \gamma_d$ are the eigenvalues of P.

 $\epsilon = 1$

É

 $2Q$

Numerically, we find that such an intertwining really exists. Here $1 = \gamma_0 \geq \cdots \geq \gamma_d$ are the eigenvalues of P. I am cheating a bit: this works if P is a *lazy kernel* which means that $P=\frac{1}{2}$ $\frac{1}{2}(1+P')$ for some kernel P' , which guarantees that $\gamma_i \geq 0$ $\forall i = 0, \ldots, d$.

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

メロメメ 御 メメ きょく きょうき

Instead of requiring only $K(k, k + 1) = 0$ for $k = 0, \ldots, d - 1$ it is interesting to also require that $K(k, k-2) = 0$ for $k = 2, \ldots, d$.

 $2Q$

∍

In this case we find an intertwining $PK = KQ$ where K is particularly simple.

 \leftarrow \Box

∍ **II** \equiv \rightarrow É

 $2Q$

This construction can be repeated, leading to the intertwining we have already seen.

 $2Q$

Note 1 This inductive construction is not how I proved the existence of the intertwining in the continuous-time setting.

Note 2 The eigenvalue γ_4 is the *smallest* eigenvalue, so this is not the Perron-Frobenius eigenvalue associated with the killed process on $\{0, \ldots, d-1\}$.

Numerically, we have found that a known intertwining for continuous-time birth-and-death chains also holds for lazy discrete-time birth-and-death chains.

Moreover, we have numerically found a hitherto unknown intertwining for such birth-and-death chains.

This asks for a rigorous proof.

It also makes one wonder what other intertwinings wait to be discovered numerically.

I encourage everybody to try out my scripts.

However, the first indications are that outside of the world of birth-and-death chains, things may not always work so smoothly.

桐 トラ ミトラ ミト

The contact process

Let Λ be a finite set and let $S:=\{0,1\}^{\Lambda}$ be the set of functions $x : \Lambda \to \{0, 1\}.$ For each $i,j\in \Lambda$, define birth $_{ij}:S\rightarrow S$ and $\mathtt{dth}_i:S\rightarrow S$ by

$$
\text{birth}_{ij}(x)(k) := \left\{ \begin{array}{ll} 1 & \text{if } x(i) = 1, \ k = j, \\ x(k) & \text{otherwise} \end{array} \right.
$$

and

$$
\mathrm{dth}_i(x)(k) := \left\{ \begin{array}{ll} 0 & \text{if } k = i, \\ x(k) & \text{otherwise.} \end{array} \right.
$$

Let p be a probability kernel on Λ and let $0 \leq \lambda \leq 1$. Let P be the probability kernel on S defined as

$$
P(x,y) := \frac{1}{|\Lambda|} \sum_{i \in \Lambda} \left[\lambda \sum_{j \in \Lambda} p(i,j) 1_{\{y = \text{birth}_{ij}(x)\}} + (1 - \lambda) 1_{\{y = \text{dth}_i(x)\}} \right].
$$

The Markov chain with transition kernel P has the following description:

- \blacktriangleright In each step, we first choose a site *i* uniformly from Λ .
- \triangleright Next, we choose to give birth with probability λ or to die with probability $1 - \lambda$.
- In case of birth, we choose j according to $p(i, \cdot)$ and apply birth ii .
- In case of death, we apply d th_i.
- If Λ is large, then it makes sense to rescale time by $|\Lambda|^{-1}.$

Often, there is a limit process as Λ increases to an infinite lattice: the contact process with birth rate λ and death rate $1 - \lambda$.

 \mathcal{A} and \mathcal{A} is a set of \mathcal{B} is a set of \mathcal{B} is a set of \mathcal{B} is a set of \mathcal{B}

 Ω

On finite lattices, the Markov chain eventually gets trapped in the all-zero state 0.

We would like to understand how fast.

For many large lattices, it has been proved that there is a sharp transition at some $0 < \lambda_c < 1$.

For $\lambda < \lambda_c$, the time till extinction is of order log $|\Lambda|$. For $\lambda > \lambda_c$, the time till extinction is of order $e^{|\Lambda|}$.

Can intertwining help us understand this better?

Let us look at a continuous-time contact process with state space $\mathcal{S}_m:=\{0,1\}^{\mathsf{\Lambda}_m}$ where $\mathsf{\Lambda}_m:=\{1,2\}^m.$

We denote the death rate by δ and assume that the birth rates $\lambda(i, j) = \lambda_{|i-j|}$ depend only on the hierarchical distance $|i - j| := \inf\{k : i_k \neq i_k\}$ between i and j.

It is useful to picture Λ_m as the set of leaves of a binary tree.

 $2Q$

€

Intertwining and coupling

Assume that H is intertwined on top of G, i.e., $GK = KH$. Then by [Fill '92] it is possible to construct a Markov process $(X_t,Y_t)_{t\geq 0}$ such that

$$
\mathbb{P}[Y_0 \in \cdot | X_0] = K(X_0, \cdot) \quad \text{a.s.}
$$

implies that

$$
\mathbb{P}\big[\,Y_t\in\,\cdot\,\big|\,(X_s)_{0\leq s\leq t}\big]=K(X_t,\,\cdot\,\big)\quad\text{a.s.}\quad(t\geq 0).
$$

Moreover

$$
\mathbb{P}\big[X_{t+\varepsilon}=x\big|\left(X_s\right)_{0\leq s\leq t}\big]=1(X_t,x)+\varepsilon G(X_t,x)+O(\varepsilon^2),\\ \mathbb{P}\big[Y_{t+\varepsilon}=y\big|\left(X_s,Y_s\right)_{0\leq s\leq t}\big]=1(Y_t,y)+\varepsilon H(Y_t,y)+O(\varepsilon^2).
$$

医骨盆 医骨盆

 $2Q$

For each x, let H_x be a Markov generator. Assume that

$$
GK=\hat{K}\hat{H},
$$

where

$$
\hat{K}f(x) := \sum_{y} K(x,y)f(x,y) \text{ and } \hat{H}f(x,y) := \sum_{y'} H_x(y,y')f(y').
$$

Then by [Athreya & S. '10] the result of [Fill '92] remains true except that now

$$
\mathbb{P}[Y_{t+\varepsilon}=y|(X_s,Y_s)_{0\leq s\leq t}]=1(Y_t,y)+\varepsilon H_{X_t}(Y_t,y)+O(\varepsilon^2).
$$

This is especially useful if H_x "does not depend too much" on x.

 \rightarrow \equiv \rightarrow

 $2Q$

Let
$$
S_m := \{0, 1\}^{\Lambda_m}
$$
 with $\Lambda_m := \{1, 2\}^m$.

We define a kernel K from S_m to S_{m-1} by independently replacing blocks consisting of two sites by a single site according to the following stochastic rules:

$$
00 \mapsto 0, \qquad 11 \mapsto 1,
$$

01 or $10 \mapsto \begin{cases} 0 & \text{with probability } \xi, \\ 1 & \text{with probability } 1 - \xi, \end{cases}$

where $\xi\in(0,\frac{1}{2})$ $\frac{1}{2}$] is a constant, to be determined later.
A multiscale argument

The probability of this transition is $1 \cdot (1 - \xi) \cdot \xi \cdot 1$.

 $-4.171 +$

化重新化重新

 \sim

重

A multiscale argument

We let X be the contact process with state space S_m , birth rates $\lambda_1, \ldots, \lambda_m$, and death rate δ . We define K from S_m to S_{m-1} as described with

$$
\xi := \gamma - \sqrt{\gamma^2 - \frac{1}{2}} \quad \text{with} \quad \gamma := \frac{1}{4} \left(3 + \frac{\lambda_1}{2\delta} \right).
$$

Then we can construct a Markov process $(X_t,Y_t)_{t\geq 0}$ such that the generator H_x of Y in the presence of X does not depend too much on x.

In particular, Y can stochastically be estimated from below by a contact process Y' on S_{m-1} with birth rates $\lambda'_1,\ldots,\lambda'_{m-1}$ and death rate δ' , where

$$
\lambda'_k:=\tfrac{1}{2}\lambda_{k+1}\quad\text{and}\quad\delta':=2\xi\delta.
$$

へのへ

We may view the map

$$
(\delta,\lambda_1,\ldots,\lambda_m)\mapsto (\delta',\lambda'_1,\ldots,\lambda'_{m-1})
$$

as an approximate renormalisation transformation.

This can be used to derive lower bounds on the probability that the contact process survives for a long time.

Open problem Do something similar on $\Lambda = \{1, \ldots, d\}.$

AD - 4 E - 4 E -

P

Let P be the transition kernel of the discrete-time contact process with state space $\mathcal{S} = \{0,1\}^2$, birth probability $0 \leq \lambda \leq 1$, and death probability $\delta := 1 - \lambda$.

Ξ

We are looking for an intertwining of the form $PK = KQ$ where $K(00, 00) = 1$ and $K(x, \cdot)$ concentrated on $\{y : x \le y\}.$

This means that we choose the set Z (or its indicator Z) as follows:

Z

Let's try this for $\lambda = 0.6$.

```
kern : octave-qui - Konsole
 File
        Edit
               View
                         Bookmarks
                                        Plugins
                                                    Settings
                                                                   Help
  \Box New Tab \Box Split View \vee□ Copy ■ Paste Q Find
octave:2> PP -1.0000
                        \bullet\boldsymbol{\omega}0.20000.5000
                                      \bullet0.30000.2000\boldsymbol{0}0.5000
                                            0.3000\omega0.20000.20000.6000octave: 3 > 7|z|\begin{array}{cccccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{array}octave: 4>twine : bash \times kern : bash \times kern : octave-gui \times
```
メロメ メ御 メメ ヨメ メヨメー

重

Let's try this for $\lambda = 0.6$.

Let's try this for $\lambda = 0.6$.

メロメ メ御 メメ きょ メ ヨメー

活

 299

What happens here is that after setting $K_0 := 1$ we can calculate $Q_1 := Q_{\overline{Z}}(P, K_0)$ and $K_1 := K_0 + PK_0 - K_0Q_1$ all right, but when we try to calculate $Q_2 := Q_{\mathcal{Z}}(P, K_1)$ we run into the problem that $C_7(P,K_1) = \emptyset$ so there is no minimiser.

Work in progress...

A BAY A BA

へのへ