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A random game

Alice and Bob play a game. They play in turn n moves each.
Alice starts and Bob plays the last move.

In each turn, Alice and Bob have two moves to choose from.
The outcome is determined by the exact sequences
of moves played by each player.
As a result, there are 22n possible outcomes of the game.

Prior to the game, we randomly assign winners to all possible
outcomes in an i.i.d. way. For each possible outcome, the
probability that Bob is the winner is p.

We call this game ABn(p) and let PAB
n (p) denote the probability

that Bob has a winning strategy.
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A random game

∅

1 2

11 12 21 22

111 112 121 122 211 212 221 222

Let T denote the set of all finite words i = i1 · · · in
made from the alphabet {1, 2}.

We call |i| := n the length of the word i = i1 · · · in
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A random game

∅

1 2

11 12 21 22

111 112 121 122 211 212 221 222

We write [T]n :=
{
i ∈ T : |i| ≤ n

}
,

⟨T⟩n :=
{
i ∈ T : |i| < n

}
,

and ∂nT :=
{
i ∈ T : |i| = n

}
.
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A random game

∧

∨ ∨

∧ ∧ ∧ ∧

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0

Let
(
X (i)

)
i∈∂2nT

be i.i.d. {0, 1}-valued
random variables with P

[
X (i) = 1

]
= p.

A 0 means a win for Alice and a 1 a win for Bob.
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A random game

∧

∨ ∨

∧ ∧ ∧ ∧

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0

Bob has the last move and chooses
the maximum of X (i1) and X (i2).
We set X (i) := X (i) (i ∈ ∂2nT).
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A random game

∧

∨ ∨

∧ ∧ ∧ ∧

1 0 0 1 1 1 1 1

1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0

Bob has the last move and chooses
the maximum of X (i1) and X (i2).

We define X (i) := X (i1) ∨ X (i1) for i ∈ ∂kT with k odd.
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A random game

∧

∨ ∨

∧ ∧ ∧ ∧

1 0 0 1 1 1 1 1

1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0

In her last move Alice chooses
the minimum of X (i1) and X (i2).

We define X (i) := X (i1) ∧ X (i1) for i ∈ ∂kT with k even.
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A random game

∧

∨ ∨

0 0 1 1

1 0 0 1 1 1 1 1

1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0

In her last move Alice chooses
the minimum of X (i1) and X (i2).

We define X (i) := X (i1) ∧ X (i1) for i ∈ ∂kT with k even.
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A random game

∧

∨ ∨

0 0 1 1

1 0 0 1 1 1 1 1

1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0

In the move before that, Bob chooses the maximum again.
X (i) := X (i1) ∨ X (i1) for i ∈ ∂kT with k odd.
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A random game

∧

0 1

0 0 1 1

1 0 0 1 1 1 1 1

1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0

In the move before that, Bob chooses the maximum again.
X (i) := X (i1) ∨ X (i1) for i ∈ ∂kT with k odd.
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A random game

∧

0 1

0 0 1 1

1 0 0 1 1 1 1 1

1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0

And in her first move, Alice chooses the minimum.
X (i) := X (i1) ∧ X (i1) for i ∈ ∂kT with k odd.
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A random game

0

0 1

0 0 1 1

1 0 0 1 1 1 1 1

1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0

X (∅) = 0, so in this game, Alice has a winning strategy.
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A random game

∧

∨ ∨

∧ ∧ ∧ ∧

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0

These sort of minmax trees or game trees
have long been used in game theory.

The idea to use i.i.d. input is due to Judea Pearl (1980).
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A random game

PAB
n (p) denotes the probability that Bob has a winning strategy.

Pearl (1980) proved that

PAB
n (p) −→

n→∞


0 if p < pAB

c ,
pAB
c if p = pAB

c ,
1 if p > pAB

c ,

where pAB
c := 1

2(3−
√
5) ≈ 0.382, which has the effect

that pAB
c : 1− pAB

c is the golden ratio.

Note that pAB
c < 1/2, which is due to the fact that Bob has the

last move, which gives him an advantage.
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Continuous game-values

In a different variant of the game, prior to the game,
we assign i.i.d. Unif[0, 1] distributed
random variables

(
U(i)

)
i∈∂2nT

to the possible outcomes of the game.

If the game ends in the outcome i,
then the pay-out for Alice U(i)
and for Bob is 1− U(i).
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Continuous game-values

∨

∧ ∧

∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

In this game, Bob chooses the minimum.
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Continuous game-values

∨

∧ ∧

∨ ∨ ∨ ∨

In this game, Bob chooses the minimum.
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Continuous game-values

∨

∧ ∧

And Alice chooses the maximum.
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Continuous game-values

∨

So we set U(i) := U(i) (i ∈ ∂2nT)
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Continuous game-values

And define U(i) :=

{
U(i1) ∧ U(i2) for i ∈ ∂kT with k odd,

U(i1) ∨ U(i2) for i ∈ ∂kT with k even
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Continuous game-values

If we set X (i) :=

{
0 if U(i) > p,

1 if U(i) ≤ p,

then we obtain the same
(
X (i)

)
i∈[T]n as before.

The yields a coupling of processes with different values of p.

PAB
n (p) = P

[
U(∅) ≤ p

] (
p ∈ [0, 1]

)
.
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A random game
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A random game
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A random game
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A random game
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A random game
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A random game
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A random game
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A random game
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A random game
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A random game
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A random game
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A random game

Ali Kahn, Devroye, and Neininger (2005) have proved that for a
suitable choice of 0 < ξ < 1,

PAB
n (pc + ξnq) −→

n→∞
F (q) (q ∈ R),

for some nontrivial distribution function F : R → [0, 1].

Several variants of Pearl’s game have been studied where the
deterministic tree is replaced by a random tree, such as a
Galton-Watson tree, or a tree where for each internal node
randomness decides whose turn it is.
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More general game-graphs

What if the “game tree” is not a tree?

What if different game histories can lead to the same outcome?
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More general game-graphs

Let Abn(p) denote the modified game where the outcome is
determined by the exact sequence of moves played by Alice as
before, but for Bob all that matters is how often he has played
each of the two possible moves.

In this case, there are 2n · (n + 1) possible outcomes
to which we assign winners in an i.i.d. way as before.
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More general game-graphs

In this case, the game-graph is not a tree.
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More general game-graphs

The game-graph of the game Ab3(p).
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More general game-graphs

The game-graph of the game Ab3(p).
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More general game-graphs
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More general game-graphs

The game-graph of the game Ab3(p).
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More general game-graphs

T

N2

T ⋉ N2

We can view the game-graph as a sort of “product” T ⋉ N2 of
graphs T and N2 describing the moves of the individual players.
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More general game-graphs

In this way, we can define four different games:

ABn(p) Pearl’s original game with game-graph T ⋉ T ∼= T.
Abn(p) The game with game-graph T ⋉ N2.

aBn(p) The game with game-graph N2 ⋉ T.
abn(p) The game with game-graph N2 ⋉N2.

We let PAB
n (p), PAb

n (p), PaB
n (p), and Pab

n (p) denote the
probability that Bob has a winning strategy.

[Sturm, Cardona-Tobón & S. ’24] One has

PAb
n (p) ≤ PAB

n (p) ≤ PaB
n (p)

(
p ∈ [0, 1], n ≥ 1).

Conjecture

PAb
n (p) ≤ Pab

n (p) ≤ PaB
n (p)

(
p ∈ [0, 1], n ≥ 1).
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More general game-graphs

[Sturm, Cardona-Tobón & S. ’24] There exist constants
0 < pAb

c , paBc < 1 such that

PAb
n (p) −→

n→∞

{
0 if and only if p < pAb

c ,
1 if p > pAb

c ,

PaB
n (p) −→

n→∞

{
0 if p < paBc ,
1 if and only if p > paBc .

One has 1/2 ≤ pAb
c ≤ 7/8 and 1/16 ≤ paBc ≤ 1

2(3−
√
5).

Note that PAB
n (p) ≤ PaB

n (p) implies
paBc ≤ pAB

c = 1
2(3−

√
5) ≈ 0.382.
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More general game-graphs

For the game abn(p), we can only prove that

Pab
n (p) −→

n→∞

{
0 if p < 1/64,
1 if p > 15/16.
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More general game-graphs

The bound 1/2 ≤ pAb
c

follows from the fact that
if p < 1/2, then for large
n, with high probability,
at least one of these
sets contains only zeros.

This means that Alice
has a winning strategy
that does not even react
to Bob’s moves.

0000
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More general game-graphs
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Numerical data suggest pAb
c ≈ 0.72

and limn→∞ PAb
n (pAb

c ) is one or close to one.
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More general game-graphs
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A cellular automaton

Let U0 =
(
U0(i , j)

)
(i ,j)∈N2 be i.i.d. Unif[0, 1] distributed.

For each of the combinations xx = AB, Ab, aB, and ab, we can
define (Uxx

t )t≥0 by Uxx
0 := U0 and

A. Uxx
t+1(i , j) = Uxx

t (2i , j) ∨ Uxx
t (2i + 1, j),

a. Uxx
t+1(i , j) = Uxx

t (i , j) ∨ Uxx
t (i + 1, j)

}
if t is odd,

B. Uxx
t+1(i , j) = Uxx

t (i , 2j) ∧ Uxx
t (i , 2j + 1),

b. Uxx
t+1(i , j) = Uxx

t (i , j) ∧ Uxx
t (i , j + 1)

}
if t is even.

We claim that
Pxx
n (p) = P

[
Uxx
2n (0, 0) ≤ p

]
.
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A cellular automaton

We observe that UAb
2n (0, 0) depends on

(
U0(i , j)

)
(i ,j)∈N2 exactly in

the way U(∅) depends on
(
U(v)

)
v∈∂2n(T⋉N2)

.
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A cellular automaton

t = 0

The cellular automaton (UAb
t )t≥0.

Grayscales indicate a value between zero (white) and one (black).
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A cellular automaton

t = 1

The cellular automaton (UAb
t )t≥0.

Grayscales indicate a value between zero (white) and one (black).
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A cellular automaton

t = 2

The cellular automaton (UAb
t )t≥0.

Grayscales indicate a value between zero (white) and one (black).
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A cellular automaton

t = 3

The cellular automaton (UAb
t )t≥0.

Grayscales indicate a value between zero (white) and one (black).
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A cellular automaton

t = 4

The cellular automaton (UAb
t )t≥0.

Grayscales indicate a value between zero (white) and one (black).
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A cellular automaton

t = 5

The cellular automaton (UAb
t )t≥0.

Grayscales indicate a value between zero (white) and one (black).
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A cellular automaton

t = 6

The cellular automaton (UAb
t )t≥0.

Grayscales indicate a value between zero (white) and one (black).
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A cellular automaton

t = 7

The cellular automaton (UAb
t )t≥0.

Grayscales indicate a value between zero (white) and one (black).
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A cellular automaton

t = 8

The cellular automaton (UAb
t )t≥0.

Grayscales indicate a value between zero (white) and one (black).
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A cellular automaton

t = 9

The cellular automaton (UAb
t )t≥0.

Grayscales indicate a value between zero (white) and one (black).
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A cellular automaton

t = 10

The cellular automaton (UAb
t )t≥0.

Grayscales indicate a value between zero (white) and one (black).
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A cellular automaton

t = 11

The cellular automaton (UAb
t )t≥0.

Grayscales indicate a value between zero (white) and one (black).
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A cellular automaton

t = 12

The cellular automaton (UAb
t )t≥0.

Columns are independent of each other at all times.
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A cellular automaton

t = 13

The cellular automaton (UAb
t )t≥0.

Columns are independent of each other at all times.
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A cellular automaton

t = 14

The cellular automaton (UAb
t )t≥0.

Columns are independent of each other at all times.
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A cellular automaton

t = 15

The cellular automaton (UAb
t )t≥0.

Columns are independent of each other at all times.
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A cellular automaton

t = 16

The cellular automaton (UAb
t )t≥0.

Columns are independent of each other at all times.
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A cellular automaton

t = 17

The cellular automaton (UAb
t )t≥0.

Columns are independent of each other at all times.
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A cellular automaton

t = 18

The cellular automaton (UAb
t )t≥0.

Columns are independent of each other at all times.
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A cellular automaton

t = 19

The cellular automaton (UAb
t )t≥0.

Columns are independent of each other at all times.
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A cellular automaton

t = 20

The cellular automaton (UAb
t )t≥0.

Columns are independent of each other at all times.
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A cellular automaton

t = 21

The cellular automaton (UAb
t )t≥0.

Columns are independent of each other at all times.
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A cellular automaton

t = 22

The cellular automaton (UAb
t )t≥0.

Columns are independent of each other at all times.
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A cellular automaton

t = 23

The cellular automaton (UAb
t )t≥0.

Columns are independent of each other at all times.
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A cellular automaton

t = 24

The cellular automaton (UAb
t )t≥0.

Columns are independent of each other at all times.
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A cellular automaton

For the cellular automaton (UaB
t )t≥0, rows are independent of each

other at all times.

For the cellular automaton (UAB
t )t≥0, all lattice points remain

independent of each other at all times.
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Bounds on the critical values

To prove the bounds pAb
c ≤ 7/8 and 1/16 ≤ paBc , as well as the

fact that

Pab
n (p) −→

n→∞

{
0 if p < 1/64,
1 if p > 15/16,

we use a Peierls argument due to Toom (1980) and further
developed by S., Szábo, and Toninelli (2024).
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Strategies

A strategy for Alice (Bob) is a function that assigns to each state
in which it is Alice’s (Bob’s) turn precisely one of the two moves
available to Alice (Bob). Let S1 and S2 denote the set of
strategies for Alice and Bob, respectively, and let

o(σ1, σ2)

denote the outcome of the game if Alice plays strategy σ1 ∈ S1

and Bob plays strategy σ2 ∈ S2. We set

Z (σ1) :=
{
o(σ1, σ2) : σ2 ∈ S2

}
.

A strategy σ1 ∈ S1 is winning for Alice if

X (v) = 0 ∀v ∈ Z (σ1).
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Strategies

Construction of the set Z (σ1) for a given strategy of Alice.
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Toom cycles

We will construct a Toom cycle that passes through Z (σ1).
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Toom cycles

H H

The construction is by induction and uses loop erasion.
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Toom cycles

Theorem If Alice has a winning strategy, then there exists a Toom
cycle ψ such that X (v) = 0 for each possible outcome v that ψ
passes through.

Lemma For each Toom cycle ψ, there exists an integer m ≥ 0
such that the cycle makes m steps in each of the six directions

straight-up, straight-down, right-up, right-down, left-up,
and left-down,

and ψ passes through m + 1 possible outcomes.

Lemma For each m, there are ≤ 8m different Toom cycles.

Consequence:

1− PAb
n (p) ≤

∞∑
m=n

8m(1− p)m+1,

and pAb
c ≤ 7/8.
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Sharpness of the transition

Let S be a finite set, let L : {0, 1}S → {0, 1} be a function, and let
X p =

(
X p(v)

)
v∈S be i.i.d. with P[X p(v) = 1] = p (v ∈ S). Let

X p
v ,y (w) :=

{
y if w = v ,

X p(w) otherwise,
(y = 0, 1).

We say v is pivotal if L(X p
v ,0) ̸= L(X p

v ,1). The influence of v is

I p(v) := P
[
v is pivotal in X p

]
(v ∈ S).

If L is monotone, then Russo’s formula says that

∂
∂pP

[
L(X p) = 1

]
=

∑
v∈S

I p(v).
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Sharpness of the transition

Bourgain, Kahn, Kalai, Katznelson, and Linial (1992) have proved
that there exists a universal constant c > 0 such that:

(⋆)
∑
v∈S

I p(v) ≥ cVar
(
L(X p)

)
log

(
1/ sup

v∈S
I p(v)

)
.

If each individual influence is small, and the law of L(X p) is
nontrivial, then the sum of the influences must be large.

We apply this to S := ∂n(T ⋉ N2) and Ln(x) := 1 iff Bob has a
winning strategy for

(
x(v)

)
v∈∂n(T⋉N2)

.

We observe that Var
(
Ln(X

p)
)
= PAb

n (p)
(
1− PAb

n (p)
)
.
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Sharpness of the transition

Assume ε ≤ PAb
n (p) ≤ 1− ε.

Formula (⋆) tells us that

(⋆)
∑
v∈S

I pn (v) ≥ cε(1− ε) log(1/Jn)

with Jn := supv∈S I
p
n (v).

Because of the symmetry of ∂n(T ⋉ N2),

#
{
v ∈ ∂n(T ⋉ N2) : I pn (v) = Jn

}
≥ 2n.

As a consequence, ∑
v∈S

I pn (v) ≥ 2nJn.

Combining this with (⋆) one finds that for some c ′ > 0∑
v∈S

I pn (v) ≥ c ′ε(1− ε)n if ε ≤ PAb
n (p) ≤ 1− ε.
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Sharpness of the transition

p

PAB
n (p)

ε

1− ε

By Russo’s formula, this implies that

∂
∂pP

Ab
n (p) ≥ c ′ε(1− ε)n if ε ≤ PAb

n (p) ≤ 1− ε,

which implies that PAb
n (p) increases from a value ≤ ε to a value

≥ 1− ε in an interval of length ≤ 1/(c ′ε(1− ε)n).

Sharpness of the transition.
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