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Classification task

We assume objects characterized by a number of attributes
X = (X1, . . . ,Xp).

The goal is to classify objects to one of K classes - we want to
predict the value of a class variable Y taking 1, . . . ,K values.

Example
Predict, whether a patient, hospitalized due to a heart attack, will have
a second heart attack. The prediction is to be based on demographic,
diet and clinical measurements for that patient.

Example
Identify the numbers in a handwritten ZIP code, from a digitized image.

Example
Predict the price of a stock in 6 months from now, on the basis of
company performance measures and economic data.
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J. Vomlel (ÚTIA AV ČR) Classification 10th July, 2007 2 / 24



Classification task

We assume objects characterized by a number of attributes
X = (X1, . . . ,Xp).
The goal is to classify objects to one of K classes - we want to
predict the value of a class variable Y taking 1, . . . ,K values.

Example
Predict, whether a patient, hospitalized due to a heart attack, will have
a second heart attack. The prediction is to be based on demographic,
diet and clinical measurements for that patient.

Example
Identify the numbers in a handwritten ZIP code, from a digitized image.

Example
Predict the price of a stock in 6 months from now, on the basis of
company performance measures and economic data.
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Variables (Attributes and the Class)

Nominal variables have values that are distinct symbols. The
values themselves serve as a label or a symbol.

Ordinal variables have values that can be ordered or ranked.
Interval variables have values that can be not only ordered but
also measured in fixed and equal units.
Ratio variables are ones for which which the measurement
method inherently defines a zero point.

In most applications we distinguish only between

Nominal (also called categorical) variables and
Ordinal (also called numerical) variables.
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values themselves serve as a label or a symbol.

Example
Whether variable may have values Sunny, Overcast, and Rainy.

Ordinal variables have values that can be ordered or ranked.
Interval variables have values that can be not only ordered but
also measured in fixed and equal units.
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Example
Boolean variable with values TRUE and FALSE.

Ordinal variables have values that can be ordered or ranked.
Interval variables have values that can be not only ordered but
also measured in fixed and equal units.
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Variables (Attributes and the Class)

Nominal variables have values that are distinct symbols. The
values themselves serve as a label or a symbol.
Ordinal variables have values that can be ordered or ranked.
Interval variables have values that can be not only ordered but
also measured in fixed and equal units.

Example
An example is Temperature measured in degrees of centigrade.

Ratio variables are ones for which which the measurement
method inherently defines a zero point.

In most applications we distinguish only between

Nominal (also called categorical) variables and
Ordinal (also called numerical) variables.
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Variables (Attributes and the Class)

Nominal variables have values that are distinct symbols. The
values themselves serve as a label or a symbol.
Ordinal variables have values that can be ordered or ranked.
Interval variables have values that can be not only ordered but
also measured in fixed and equal units.
Ratio variables are ones for which which the measurement
method inherently defines a zero point.

Example
A distance of two objects.

In most applications we distinguish only between

Nominal (also called categorical) variables and
Ordinal (also called numerical) variables.
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J. Vomlel (ÚTIA AV ČR) Classification 10th July, 2007 3 / 24



Variables (Attributes and the Class)

Nominal variables have values that are distinct symbols. The
values themselves serve as a label or a symbol.
Ordinal variables have values that can be ordered or ranked.
Interval variables have values that can be not only ordered but
also measured in fixed and equal units.
Ratio variables are ones for which which the measurement
method inherently defines a zero point.

In most applications we distinguish only between
Nominal (also called categorical) variables and

Ordinal (also called numerical) variables.
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Classifier performance measures

Typically, we use a testing set of objects and for each classifier we
compute number of objects

classified correctly to the class Y ... tp (true positive),

classified incorrectly to the class Y ... fp (false positive),
classified correctly out of the class Y ... tn (true negative), and
classified incorrectly out of the class Y ... fn (false negative).

Performance measures based on these counts:
precision π =

tp
tp+fp

recall (sensitivity or TP-rate) % =
tp

tp+fn

specificity σ = tn
tn+fp

accuracy η =
tp+tn

tp+tn+fn+fp
F1-measure F1 = 2π%

π+%
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ROC curve

Most classifiers can be tuned so that they sacrifice precision to
high recall or vice versa.

Typically, it can be done by setting a threshold for the predicted
value of the object. The objects with a higher predicted value a
classified as belonging to the class.
ROC (Receiver Operating Characteristic) curve is a plot of
sensitivity vs. specificity.

Example (ROC curves)
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Cross validation

Typically, a training dataset is used to learn classification models.

The learned models may depend too much on the details of the
objects in the training data set. This phenomenon is called the
overfitting problem.
Therefore, the models should be always tested on a different
dataset - a testing dataset.
There are diverse approaches to avoid overfitting models.

Example
Complex models performs well on training data but they get penalized
for their size and simpler models that do not behave that well are
selected instead.
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J. Vomlel (ÚTIA AV ČR) Classification 10th July, 2007 6 / 24



Cross validation

Typically, a training dataset is used to learn classification models.
The learned models may depend too much on the details of the
objects in the training data set. This phenomenon is called the
overfitting problem.
Therefore, the models should be always tested on a different
dataset - a testing dataset.
There are diverse approaches to avoid overfitting models.

Example
Complex models performs well on training data but they get penalized
for their size and simpler models that do not behave that well are
selected instead.
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Linear regression
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Linear regression

Let X1 be the income and β1 = 1 its coefficient.

Let X2 be the age and β2 = −50 its coefficient.
Y be the class variable meaning that the loan is granted if Y ≥ 0
and not granted if Y < 0.
Let X0 be an auxiliary variable always taking value 1 with its
coefficient β0 = −2000 (intercept).

Then we can use for classification a linear model

Y = β0X0 + β1X1 + β2X2

= −2000 + X1 − 50X2

Generally,

Y =

p∑
j=0

βjXj
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .

Example
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .

Definition (A learning algorithm)

β = (0,0, . . . ,0)T ; i = 0; n = 0;
while n < N

i = i + 1; n = n + 1;
if (i > N) then i = 1
if ((ỹ i < 0) ∧ (y i ≥ 0)) then

β = β + x i ; n = 0
if ((ỹ i ≥ 0) ∧ (y i < 0)) then

β = β − x i ; n = 0

Example
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .

Definition (A learning algorithm)

β = (0,0, . . . ,0)T ; i = 0; n = 0;
while n < N

i = i + 1; n = n + 1;
if (i > N) then i = 1
if ((ỹ i < 0) ∧ (y i ≥ 0)) then

β = β + x i ; n = 0
if ((ỹ i ≥ 0) ∧ (y i < 0)) then

β = β − x i ; n = 0

Example

β = (0,0,0)T

i = 0
n = 0
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .

Definition (A learning algorithm)

β = (0,0, . . . ,0)T ; i = 0; n = 0;
while n < N

i = i + 1; n = n + 1;
if (i > N) then i = 1
if ((ỹ i < 0) ∧ (y i ≥ 0)) then

β = β + x i ; n = 0
if ((ỹ i ≥ 0) ∧ (y i < 0)) then

β = β − x i ; n = 0

Example

β = (0,0,0)T

i = 1
n = 1
x1 = (1,2000,30)T
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .

Definition (A learning algorithm)

β = (0,0, . . . ,0)T ; i = 0; n = 0;
while n < N

i = i + 1; n = n + 1;
if (i > N) then i = 1
if ((ỹ i < 0) ∧ (y i ≥ 0)) then

β = β + x i ; n = 0
if ((ỹ i ≥ 0) ∧ (y i < 0)) then

β = β − x i ; n = 0

Example

β = (0,0,0)T

i = 1
n = 1
x1 = (1,2000,30)T

ỹ1 = 0
y1 = −1
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .

Definition (A learning algorithm)

β = (0,0, . . . ,0)T ; i = 0; n = 0;
while n < N

i = i + 1; n = n + 1;
if (i > N) then i = 1
if ((ỹ i < 0) ∧ (y i ≥ 0)) then

β = β + x i ; n = 0
if ((ỹ i ≥ 0) ∧ (y i < 0)) then

β = β − x i ; n = 0

Example

β = (−1,−2000,−30)T

i = 1
n = 0
x1 = (1,2000,30)T

ỹ1 = 0
y1 = −1
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .

Definition (A learning algorithm)

β = (0,0, . . . ,0)T ; i = 0; n = 0;
while n < N

i = i + 1; n = n + 1;
if (i > N) then i = 1
if ((ỹ i < 0) ∧ (y i ≥ 0)) then

β = β + x i ; n = 0
if ((ỹ i ≥ 0) ∧ (y i < 0)) then

β = β − x i ; n = 0

Example

β = (−1,−2000,−30)T

i = 2
n = 1
x2 = (1,4000,30)T

ỹ1 = 0
y1 = −1
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .

Definition (A learning algorithm)

β = (0,0, . . . ,0)T ; i = 0; n = 0;
while n < N

i = i + 1; n = n + 1;
if (i > N) then i = 1
if ((ỹ i < 0) ∧ (y i ≥ 0)) then

β = β + x i ; n = 0
if ((ỹ i ≥ 0) ∧ (y i < 0)) then

β = β − x i ; n = 0

Example

β = (−1,−2000,−30)T

i = 2
n = 1
x2 = (1,4000,30)T

ỹ2 = −8000901
y2 = +1
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .

Definition (A learning algorithm)

β = (0,0, . . . ,0)T ; i = 0; n = 0;
while n < N

i = i + 1; n = n + 1;
if (i > N) then i = 1
if ((ỹ i < 0) ∧ (y i ≥ 0)) then

β = β + x i ; n = 0
if ((ỹ i ≥ 0) ∧ (y i < 0)) then

β = β − x i ; n = 0

Example

β = (0,2000,0)T

i = 2
n = 0
x2 = (1,4000,30)T

ỹ2 = −8000901
y2 = +1
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .

Definition (A learning algorithm)

β = (0,0, . . . ,0)T ; i = 0; n = 0;
while n < N

i = i + 1; n = n + 1;
if (i > N) then i = 1
if ((ỹ i < 0) ∧ (y i ≥ 0)) then

β = β + x i ; n = 0
if ((ỹ i ≥ 0) ∧ (y i < 0)) then

β = β − x i ; n = 0

Example

β = (0,2000,0)T

i = 3
n = 1
x3 = (1,4000,80)T

ỹ2 = −8000901
y2 = +1
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .

Definition (A learning algorithm)

β = (0,0, . . . ,0)T ; i = 0; n = 0;
while n < N

i = i + 1; n = n + 1;
if (i > N) then i = 1
if ((ỹ i < 0) ∧ (y i ≥ 0)) then

β = β + x i ; n = 0
if ((ỹ i ≥ 0) ∧ (y i < 0)) then

β = β − x i ; n = 0

Example

β = (0,2000,0)T

i = 3
n = 1
x3 = (1,4000,80)T

ỹ3 = +8000000
y3 = −1
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .

Definition (A learning algorithm)

β = (0,0, . . . ,0)T ; i = 0; n = 0;
while n < N

i = i + 1; n = n + 1;
if (i > N) then i = 1
if ((ỹ i < 0) ∧ (y i ≥ 0)) then

β = β + x i ; n = 0
if ((ỹ i ≥ 0) ∧ (y i < 0)) then

β = β − x i ; n = 0

Example

β = (−1,−2000,−80)T

i = 3
n = 0
x3 = (1,4000,80)T

ỹ3 = +8000000
y3 = −1
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .

Definition (A learning algorithm)

β = (0,0, . . . ,0)T ; i = 0; n = 0;
while n < N

i = i + 1; n = n + 1;
if (i > N) then i = 1
if ((ỹ i < 0) ∧ (y i ≥ 0)) then

β = β + x i ; n = 0
if ((ỹ i ≥ 0) ∧ (y i < 0)) then

β = β − x i ; n = 0

Example

β = (−1,−2000,−80)T

i = 4
n = 1
x4 = (1,5000,40)T

ỹ3 = +8000000
y3 = −1
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .

Definition (A learning algorithm)

β = (0,0, . . . ,0)T ; i = 0; n = 0;
while n < N

i = i + 1; n = n + 1;
if (i > N) then i = 1
if ((ỹ i < 0) ∧ (y i ≥ 0)) then

β = β + x i ; n = 0
if ((ỹ i ≥ 0) ∧ (y i < 0)) then

β = β − x i ; n = 0

Example

β = (−1,−2000,−80)T

i = 4
n = 1
x4 = (1,5000,40)T

ỹ4 = −20003201
y4 = +1
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .

Definition (A learning algorithm)

β = (0,0, . . . ,0)T ; i = 0; n = 0;
while n < N

i = i + 1; n = n + 1;
if (i > N) then i = 1
if ((ỹ i < 0) ∧ (y i ≥ 0)) then

β = β + x i ; n = 0
if ((ỹ i ≥ 0) ∧ (y i < 0)) then

β = β − x i ; n = 0

Example

β = (0,3000,−40)T

i = 4
n = 0
x4 = (1,5000,40)T

ỹ4 = −20003201
y4 = +1
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Learning linear models

Let (y i ,x i) be the values of the class and the attributes of i-th
object from the training dataset of N objects, where
x i = (1, x i

1, . . . , x
i
p).

Let β = (β0, β1, . . . , βp)T be the vector of coefficients we want to
learn and ỹ i = (x i)T β be the current prediction of y i .
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Example

β = (−839,1000,−66730)T

after 4637 iterations
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Learning linear models - least squares

The residual sum of squares is

RSS(β) =
N∑

i=1

(y i − (x i)T β)2

The least squares method finds β that minimizes RSS(β).
If X denotes the matrix that has vectors x i , i = 1, . . . ,N as its rows
and y = (y1, . . . , yN)T then

RSS(β) = (y − Xβ)T (y − Xβ)

If X T X is nonsingular then the solution is

β̂ = (X T X )−1X T y
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The least squares method finds β that minimizes RSS(β).
If X denotes the matrix that has vectors x i , i = 1, . . . ,N as its rows
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i=1

(y i − (x i)T β)2

The least squares method finds β that minimizes RSS(β).
If X denotes the matrix that has vectors x i , i = 1, . . . ,N as its rows
and y = (y1, . . . , yN)T then

RSS(β) = (y − Xβ)T (y − Xβ)

If X T X is nonsingular then the solution is

β̂ = (X T X )−1X T y
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Learning linear models - least squares

Note that the least squares method finds a solution also when the
training dataset is not linearly separable.
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Note that the least squares method finds a solution also when the
training dataset is not linearly separable.
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The scale of the Y variable

Linear regression
The range of Y was
[−8000,+8000].
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The range of Y is [0,1].
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Logistic function

σ(x) =
exp(x)

1 + exp(x)
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J. Vomlel (ÚTIA AV ČR) Classification 10th July, 2007 13 / 24



Logistic function

σ(x) =
exp(x)

1 + exp(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5  0  5  10

f(
x

)

x

logistic function
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Logistic regression

Let P(Y = 1|X = x) be the probability that the object described by
the vector of attributes x belongs to class 1.

If we define

p(β,x) = P(Y = 1|X = x) = σ(βT x)

we get the logistic regression model for a binary class variable.
Note that

P(Y = 0|X = x) = 1− P(Y = 1|X = x)

= 1− σ(βT x)

=
1

1 + exp(βT x)

J. Vomlel (ÚTIA AV ČR) Classification 10th July, 2007 14 / 24



Logistic regression

Let P(Y = 1|X = x) be the probability that the object described by
the vector of attributes x belongs to class 1.
If we define

p(β,x) = P(Y = 1|X = x) = σ(βT x)

we get the logistic regression model for a binary class variable.
Note that

P(Y = 0|X = x) = 1− P(Y = 1|X = x)

= 1− σ(βT x)

=
1

1 + exp(βT x)
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J. Vomlel (ÚTIA AV ČR) Classification 10th July, 2007 14 / 24



Learning logistic regression models

Let D = {(y i ,x i), i = 1, . . . ,N} be the training dataset.

The probability of data D being generated from the logistic
regression model is

P(D|β) =
N∏

i=1

P(Y = y i |X = x i) · P(X = x i)

The maximum conditional likelihood estimate β̂ of β maximizes
the loglikelihood

`(β) =
N∑

i=1

log P(Y = y i |X = x i)

=
N∑

i=1

y i · log p(β,x i) + (1− y i) · log(1− p(β,x i))
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Learning logistic regression models

To maximize the conditional likelihood we require partial
derivatives to be zero.

∂`(β)

∂β
=

N∑
i=1

(
y ix i − x i exp(βT x i)

1 + exp(βT x i)

)

=
N∑

i=1

x i(y i − p(β,x i)) = 0

which is a system of p + 1 nonlinear equations.
To solve the system we can use Newton-Raphson numerical
method.
Let βold be the value of β from previous iteration.
Then the new value

βnew = βold −
(
∂2`(β)

∂β∂βT

)−1
∂`(β)

∂β
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J. Vomlel (ÚTIA AV ČR) Classification 10th July, 2007 16 / 24



Learning logistic regression models

We use matrix notation:

y = (y1, . . . , yN)T

X =


1 x1

1 . . . x1
p

1 x2
1 . . . x2

p
. . .

1 xN
1 . . . xN

p


p = (p(βold ,x1), . . . ,p(βold ,xN))T

W =


p(βold ,x1)(1− p(βold ,x1)) 0 . . . 0
0 p(βold ,x2)(1− p(βold ,x2)) 0 . . .
. . .

0 . . . 0 p(βold ,xN)(1− p(βold ,xN))


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Learning logistic regression models

Define z = Xβold + W−1(y − p).

One step of the Newton-Raphson algorithm is

βnew = βold − (X T WX )−1X T (y − p)

= (X T WX )−1X T W (Xβold + W−1(y − p))

= (X T WX )−1X T Wz

This formulation of one step of the Newton-Raphson algorithm
corresponds to one step of weighted least squares since one
step of the algorithm is

βnew = arg min
β

(z − Xβ)T W (z − Xβ)

The whole algorithm thus corresponds to iteratively reweighted
least squares (IRLS).
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J. Vomlel (ÚTIA AV ČR) Classification 10th July, 2007 18 / 24



Learning logistic regression models

Define z = Xβold + W−1(y − p).
One step of the Newton-Raphson algorithm is

βnew = βold − (X T WX )−1X T (y − p)

= (X T WX )−1X T W (Xβold + W−1(y − p))

= (X T WX )−1X T Wz

This formulation of one step of the Newton-Raphson algorithm
corresponds to one step of weighted least squares since one
step of the algorithm is

βnew = arg min
β

(z − Xβ)T W (z − Xβ)

The whole algorithm thus corresponds to iteratively reweighted
least squares (IRLS).
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Naı̈ve Bayes classifier

X1 X2 Xp

Y

P(Y |X1, . . . ,Xp) =
P(Y ,X1, . . . ,Xp)

P(X1, . . . ,Xp)

= P(Y )

p∏
j=1

P(Xj |Y )

P(Xj)

The learning algorithm is just the computation of relative frequencies.
Let δ(y , x) = 1 if y = x and 0 otherwise.

P(Y = y) =
1
N

N∑
i=1

δ(y i , y) P(Xj = xj) =
1
N

N∑
i=1

δ(x i
j , x)

P(Xj = xj ,Y = y) =
1
N

N∑
i=1

δ(y i , y) · δ(x i
j , x)

P(Xj = xj |Y = y) =
P(Xj = xj ,Y = y)

P(Y = y)

J. Vomlel (ÚTIA AV ČR) Classification 10th July, 2007 19 / 24



Naı̈ve Bayes classifier

X1 X2 Xp

Y

P(Y |X1, . . . ,Xp) =
P(Y ,X1, . . . ,Xp)

P(X1, . . . ,Xp)

= P(Y )

p∏
j=1

P(Xj |Y )

P(Xj)

The learning algorithm is just the computation of relative frequencies.
Let δ(y , x) = 1 if y = x and 0 otherwise.

P(Y = y) =
1
N

N∑
i=1

δ(y i , y) P(Xj = xj) =
1
N

N∑
i=1

δ(x i
j , x)

P(Xj = xj ,Y = y) =
1
N

N∑
i=1

δ(y i , y) · δ(x i
j , x)

P(Xj = xj |Y = y) =
P(Xj = xj ,Y = y)

P(Y = y)
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Independence vs. Dependence of Attributes

X1 X2 Xp

Y
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What independence relations are assumed in
the Naı̈ve Bayes classifier?
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Independence vs. Dependence of Attributes

X1 X2 Xp

Y

What independence relations are assumed in
the Naı̈ve Bayes classifier?
(Xj ⊥ Xk |Y ) for j , k ∈ {1, . . . ,p}, j 6= k .
It seems unrealistic in many applications.
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Independence vs. Dependence of Attributes

X1 X2 Xp

Y

What independence relations are assumed in
the Naı̈ve Bayes classifier?
(Xj ⊥ Xk |Y ) for j , k ∈ {1, . . . ,p}, j 6= k .
It seems unrealistic in many applications.

Example
Consider a classifier for assessing the risk in
loan applications: it seems counterintuitive to
ignore the correlations between age, education
level, and income.
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Independence vs. Dependence of Attributes

X1 X2 Xp

Y

In Tree Augmented Naı̈ve Bayes (TAN) classi-
fier the correlation are represented by a tree
structure over the attributes, where all edges
are outwards from a selected root node.
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Independence vs. Dependence of Attributes

X1 X2 Xp

Y

In Tree Augmented Naı̈ve Bayes (TAN) classi-
fier the correlation are represented by a tree
structure over the attributes, where all edges
are outwards from a selected root node.
It is no longer assumed that Xj ⊥ Xk |Y for all
j 6= k ∈ {1, . . . ,p}.
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Learning Tree Augmented Naı̈ve Bayes
We will abbreviate P(X = x) as P(x).

Definition (TAN Learning Algorithm)

Compute IP(Xj ,Xk |Y ) between each pair of attributes Xj ,Xk , j 6= k .
Build a complete undirected graph in which the nodes are the
attributes X1, . . . ,Xn. Annotate the weight of an edge connecting
Xj to Xk by IP(Xj ,Xk |Y ).
Build a maximum weighted spanning tree.
Transform the resulting undirected tree to a directed one by
choosing a root variable and setting the direction of all edges to be
outward from it.
Construct a TAN model by adding a vertex labeled by Y and
adding an edge from Y to each Xi .
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We will abbreviate P(X = x) as P(x).

Definition (Conditional mutual information)

IP(Xj ,Xk |Y ) =
∑

xj ,xk ,y

P(xj , xk , y) log
P(xj , xk |y)

P(xj |y) · P(xk |y)
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X2 X3

X4X1

Theorem
Let D be a collection of N instances of Y ,X1, . . . ,Xp. The TAN
Learning Algorithm builds a TAN that maximizes loglikelihood given
data D and has time complexity O(p2 · N).
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Other classification methods

Decision trees and rule-based systems

Support vector machines
Neural networks
k -nearest neighbor
Unrestricted Bayesian networks
Bayesian networks with a local structure (e.g., noisy-or)
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