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Simple diagnostic example - 1

A medical doctor inspects a patient.
Possible diagnosis are: tuberculosis, lung cancer, or bronchitis.
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Simple diagnostic example - 2

We do not know anything about
the patient.

The patient is a smoker.
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Simple diagnostic example - 3

The patient is a smoker.

... and he suffers from dyspnoea.
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Simple diagnostic example - 4

The patient is a smoker
and he suffers from dyspnoea.

... and his X-ray is positive
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Simple diagnostic example - 5

The patient is a smoker,
he suffers from dyspnoea
and his X-ray is positive

... and he visited Asia recently.
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Example written more formally

X1 “Visit to Asia?”
X2 “Smoker?”
X3 “Has tuberculosis?”
X4 “Has lung cancer?”
X5 “Has bronchitis?”
X6 “Tuberculosis or cancer”
X7 “Positive X-ray?”
X8 “Dyspnoea”

X1

X6

X5

X7

X4X3

X8

X2

The joint probability distribution defined by the Bayesian network:

P(X1,X2, . . . ,X8) =
8∏

i=1

P(Xi |
{

Xj
}

j∈Pa(i))

= P(X8|X6,X5) · P(X7|X6) · P(X6|X3,X4)

·P(X5|X2) · P(X4|X2) · P(X3|X1) · P(X2) · P(X1)

J. Vomlel (ÚTIA AV ČR) Inference 9th July, 2007 7 / 26



Example written more formally

X1 “Visit to Asia?”
X2 “Smoker?”
X3 “Has tuberculosis?”
X4 “Has lung cancer?”
X5 “Has bronchitis?”
X6 “Tuberculosis or cancer”
X7 “Positive X-ray?”
X8 “Dyspnoea”

X1

X6

X5

X7

X4X3

X8

X2

The joint probability distribution defined by the Bayesian network:

P(X1,X2, . . . ,X8) =
8∏

i=1

P(Xi |
{

Xj
}

j∈Pa(i))

= P(X8|X6,X5) · P(X7|X6) · P(X6|X3,X4)

·P(X5|X2) · P(X4|X2) · P(X3|X1) · P(X2) · P(X1)
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Conditional probability

“What is the probability that the patient has tuberculosis given he is a
smoker and suffers from dyspnoea?”

X1

X6

X5

X7

X4X3

X8

X2

The conditional probability distribution corresponding to the query:

P(X3, |X2 = 1,X8 = 1) =
P(X2 = 1,X3,X8 = 1)∑
X3

P(X2 = 1,X3,X8 = 1)

P(X2 = 1,X3,X8 = 1) =
∑

X1,X4,X5,X6,X7

P(X1,X2 = 1,X3, . . . ,X7,X8 = 1)
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Distributive law for probability distributions

P(X ,Y ) · P(Y ,Z ) =
X = 0 X = 1

Y = 0 a c
Y = 1 b d

·
Z = 0 Z = 1

Y = 0 e g
Y = 1 f h

=

X = 0 X = 1
Z = 0 Z = 1 Z = 0 Z = 1

Y = 0 ae ag ce cg
Y = 1 bf bh df dh

∑
Z

P(X ,Y ) · P(Y ,Z ) =

X = 0 X = 1
Y = 0 ae + ag ce + cg
Y = 1 bf + bh df + dh

=

X = 0 X = 1
Y = 0 a c
Y = 1 b d

· Y = 0 e + g
Y = 1 f + h

= P(X ,Y ) ·

(∑
Z

P(Y ,Z )

)
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Direct computation of a marginal probability

P(X2 = 1,X3,X8 = 1)

=
∑

X1,X4,X5,X6,X7

P(X1,X2 = 1,X3, . . . ,X7,X8 = 1)

=
∑

X1,X4,X5,X6,X7

 P(X8 = 1|X6,X5) · P(X7|X6) · P(X6|X3,X4)
·P(X5|X2 = 1) · P(X4|X2 = 1) · P(X3|X1)
·P(X2 = 1) · P(X1)



ψ(X1,X2 = 1,X3, . . . ,X7,X8 = 1)
→ ψ(X2 = 1,X3,X8 = 1)

The largest table has size 26 = 64.

J. Vomlel (ÚTIA AV ČR) Inference 9th July, 2007 10 / 26



Direct computation of a marginal probability

P(X2 = 1,X3,X8 = 1)

=
∑

X1,X4,X5,X6,X7

P(X1,X2 = 1,X3, . . . ,X7,X8 = 1)

=
∑

X1,X4,X5,X6,X7

 P(X8 = 1|X6,X5) · P(X7|X6) · P(X6|X3,X4)
·P(X5|X2 = 1) · P(X4|X2 = 1) · P(X3|X1)
·P(X2 = 1) · P(X1)



ψ(X1,X2 = 1,X3, . . . ,X7,X8 = 1)
→ ψ(X2 = 1,X3,X8 = 1)

The largest table has size 26 = 64.
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Efficient computation of a marginal probability

P(X2 = 1,X3,X8 = 1) = P(X2 = 1) ·
∑
X1

(P(X3|X1) · P(X1))

·
∑
X6

 ∑
X7

P(X7|X6)

·
∑

X4
(P(X6|X3,X4) · P(X4|X2 = 1))

·
∑

X5
(P(X8 = 1|X6,X5) · P(X5|X2 = 1))



P(X2 = 1,X3,X8 = 1)

∑
X6

ψ(X3,X6)

ψ(X6)

ψ(X3)

ψ(X3,X4,X6)

ψ(X6,X7)

ψ(X1,X3)

P(X2 = 1)

ψ(X3,X6)

ψ(X6)

ψ(X3)

P(X2 = 1)

∑
X7

∑
X1

∑
X4

∑
X5

ψ(X5,X6)
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J. Vomlel (ÚTIA AV ČR) Inference 9th July, 2007 11 / 26



Efficient computation of a marginal probability

P(X2 = 1,X3,X8 = 1) = P(X2 = 1) ·
∑
X1

(P(X3|X1) · P(X1))

·
∑
X6

 ∑
X7

P(X7|X6)

·
∑

X4
(P(X6|X3,X4) · P(X4|X2 = 1))

·
∑

X5
(P(X8 = 1|X6,X5) · P(X5|X2 = 1))


∑

X5
ψ(X5,X6)→ ψ(X6)∑

X4
ψ(X3,X4,X6)→ ψ(X3,X6)∑

X7
ψ(X6,X7)→ 1

ψ(X6) · ψ(X3,X6)→ ψ′(X3,X6)∑
X6
ψ′(X3,X6)→ ψ(X3)∑

X1
ψ(X1,X3)→ ψ′(X3)

ψ(X3) · ψ′(X3) · P(X2 = 1)→ P(X2 = 1,X3,X8 = 1)

The largest table has size 23 = 8.

P(X2 = 1,X3,X8 = 1)

∑
X6

ψ(X3,X6)

ψ(X6)

ψ(X3)

ψ(X3,X4,X6)

ψ(X6,X7)

ψ(X1,X3)

P(X2 = 1)

ψ(X3,X6)

ψ(X6)

ψ(X3)

P(X2 = 1)

∑
X7

∑
X1

∑
X4

∑
X5

ψ(X5,X6)
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Efficient computation of marginal probabilities

How can we find an ordering of summations and products that
requires only small tables during computation?

Can we reuse the ordering if we want to compute other marginals?
What shall we do if we want to compute all marginals?

Looking closer:

Generally, computing a marginal probability in a Bayesian network
is NP-hard.
However, for some families of Bayesian network models we have
efficient procedures.
Junction Tree Algorithm
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J. Vomlel (ÚTIA AV ČR) Inference 9th July, 2007 12 / 26



Efficient computation of marginal probabilities

How can we find an ordering of summations and products that
requires only small tables during computation?
Can we reuse the ordering if we want to compute other marginals?
What shall we do if we want to compute all marginals?

Looking closer:

Generally, computing a marginal probability in a Bayesian network
is NP-hard.
However, for some families of Bayesian network models we have
efficient procedures.
Junction Tree Algorithm

J. Vomlel (ÚTIA AV ČR) Inference 9th July, 2007 12 / 26



Efficient computation of marginal probabilities

How can we find an ordering of summations and products that
requires only small tables during computation?
Can we reuse the ordering if we want to compute other marginals?
What shall we do if we want to compute all marginals?

Looking closer:
Generally, computing a marginal probability in a Bayesian network
is NP-hard.

However, for some families of Bayesian network models we have
efficient procedures.
Junction Tree Algorithm
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Domain graph

Recall, the joint probability distribution of the Bayesian network

P(X1, . . . ,Xn) =
n∏

i=1

P(Xi |
{

Xj
}

j∈Pa(i))

Di = {Xi} ∪
{

Xj
}

j∈Pa(i) is the domain of P(Xi |
{

Xj
}

j∈Pa(i)).
The domain graph is an undirected graph with variables X1, . . . ,Xn as
nodes and with an edge between a pair of variables Xa,Xb if there
exists P(Xi |

{
Xj
}

j∈Pa(i)) such that Xa,Xb ∈ Di .

X1

X6

X5

X7

X4X3

X8

X2 X1

X6

X5

X7

X4X3

X8

X2
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J. Vomlel (ÚTIA AV ČR) Inference 9th July, 2007 13 / 26



Domain graph

Recall, the joint probability distribution of the Bayesian network

P(X1, . . . ,Xn) =
n∏

i=1

P(Xi |
{

Xj
}

j∈Pa(i))

Di = {Xi} ∪
{

Xj
}

j∈Pa(i) is the domain of P(Xi |
{

Xj
}

j∈Pa(i)).
The domain graph is an undirected graph with variables X1, . . . ,Xn as
nodes and with an edge between a pair of variables Xa,Xb if there
exists P(Xi |

{
Xj
}

j∈Pa(i)) such that Xa,Xb ∈ Di .

X1

X6

X5

X7

X4X3

X8

X2 X1

X6

X5

X7

X4X3

X8

X2
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Triangulated graph

A path is a sequence A1, . . . ,A` of distinct nodes connected by edges
{Ai ,Ai+1}.

A cycle is a sequence A1, . . . ,A`+1 = A1 of nodes, where A1, . . . ,A` is
a path and {A`,A`+1} is an edge; ` is the length of the cycle.
A chord in a cycle A1, . . . ,A`+1 is an edge between two not
consecutive nodes in the cycle.

X1

X6

X5

X7

X4X3

X8

X2

An undirected graph is triangulated if it does not contain a cycle of
length four or more without a chord.
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J. Vomlel (ÚTIA AV ČR) Inference 9th July, 2007 14 / 26



Triangulated graph

A path is a sequence A1, . . . ,A` of distinct nodes connected by edges
{Ai ,Ai+1}.
A cycle is a sequence A1, . . . ,A`+1 = A1 of nodes, where A1, . . . ,A` is
a path and {A`,A`+1} is an edge; ` is the length of the cycle.
A chord in a cycle A1, . . . ,A`+1 is an edge between two not
consecutive nodes in the cycle.

X1

X6

X5

X7

X4X3

X8

X2

An undirected graph is triangulated if it does not contain a cycle of
length four or more without a chord.
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Graph-theoretic concepts

Nodes connected by an edge to node X are called neighbors of X .

Neighbors of X plus X are family of X .
A set of nodes is complete if all nodes are pairwise connected by an
edge.
A maximal complete set with respect to set inclusion is called clique.
A node with a complete neighbor set is simplicial.

not a simplicial node

X1

X6

X5

X7

X4X3

X8

X2
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J. Vomlel (ÚTIA AV ČR) Inference 9th July, 2007 15 / 26



Graph-theoretic concepts

Nodes connected by an edge to node X are called neighbors of X .
Neighbors of X plus X are family of X .
A set of nodes is complete if all nodes are pairwise connected by an
edge.
A maximal complete set with respect to set inclusion is called clique.

not a clique

X1

X6

X5

X7

X4X3

X8

X2

A node with a complete neighbor set is simplicial.

not a simplicial node

X1

X6

X5

X7

X4X3

X8

X2
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Elimination sequence

P(X2 = 1,X3,X8 = 1) = P(X2 = 1) ·
∑
X1

(P(X3|X1) · P(X1))

·
∑
X6

 ∑
X7

P(X7|X6)

·
∑

X4
(P(X6|X3,X4) · P(X4|X2 = 1))

·
∑

X5
(P(X8 = 1|X6,X5) · P(X5|X2 = 1))



An elimination sequence of the above computation was

X5,X4,X7,X6,X1

X1 eliminated

X3
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Elimination sequence

P(X2 = 1,X3,X8 = 1) = P(X2 = 1) ·
∑
X1

(P(X3|X1) · P(X1))

·
∑
X6

 ∑
X7

P(X7|X6)

·
∑

X4
(P(X6|X3,X4) · P(X4|X2 = 1))

·
∑

X5
(P(X8 = 1|X6,X5) · P(X5|X2 = 1))


An elimination sequence of the above computation was

X5,X4,X7,X6,X1

domain graph

X1

X6

X5

X7

X4X3

X8

X2

X1 eliminated

X3
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Elimination sequence

P(X2 = 1,X3,X8 = 1) = P(X2 = 1) ·
∑
X1

(P(X3|X1) · P(X1))

·
∑
X6

 ∑
X7

P(X7|X6)

·
∑

X4
(P(X6|X3,X4) · P(X4|X2 = 1))

·
∑

X5
(P(X8 = 1|X6,X5) · P(X5|X2 = 1))


An elimination sequence of the above computation was

X5,X4,X7,X6,X1

nodes with
evidence
eliminated

X1

X6

X5

X7

X4X3

X1 eliminated

X3
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Elimination sequence

P(X2 = 1,X3,X8 = 1) = P(X2 = 1) ·
∑
X1

(P(X3|X1) · P(X1))

·
∑
X6

 ∑
X7

P(X7|X6)

·
∑

X4
(P(X6|X3,X4) · P(X4|X2 = 1))

·
∑

X5
(P(X8 = 1|X6,X5) · P(X5|X2 = 1))


An elimination sequence of the above computation was

X5,X4,X7,X6,X1

eliminating X5

X1

X6

X5

X7

X4X3

X1 eliminated

X3
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Elimination sequence

P(X2 = 1,X3,X8 = 1) = P(X2 = 1) ·
∑
X1

(P(X3|X1) · P(X1))

·
∑
X6

 ∑
X7

P(X7|X6)

·
∑

X4
(P(X6|X3,X4) · P(X4|X2 = 1))

·
∑

X5
(P(X8 = 1|X6,X5) · P(X5|X2 = 1))


An elimination sequence of the above computation was

X5,X4,X7,X6,X1

X5 eliminated

X1

X6

X7

X4X3

X1 eliminated

X3
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Elimination sequence

P(X2 = 1,X3,X8 = 1) = P(X2 = 1) ·
∑
X1

(P(X3|X1) · P(X1))

·
∑
X6

 ∑
X7

P(X7|X6)

·
∑

X4
(P(X6|X3,X4) · P(X4|X2 = 1))

·
∑

X5
(P(X8 = 1|X6,X5) · P(X5|X2 = 1))


An elimination sequence of the above computation was

X5,X4,X7,X6,X1

eliminating X4

X1

X6

X7

X4X3

X1 eliminated

X3
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Elimination sequence

P(X2 = 1,X3,X8 = 1) = P(X2 = 1) ·
∑
X1

(P(X3|X1) · P(X1))

·
∑
X6

 ∑
X7

P(X7|X6)

·
∑

X4
(P(X6|X3,X4) · P(X4|X2 = 1))

·
∑

X5
(P(X8 = 1|X6,X5) · P(X5|X2 = 1))


An elimination sequence of the above computation was

X5,X4,X7,X6,X1

X4 eliminated
X6

X7

X3

X1

X1 eliminated

X3
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Elimination sequence

P(X2 = 1,X3,X8 = 1) = P(X2 = 1) ·
∑
X1

(P(X3|X1) · P(X1))

·
∑
X6

 ∑
X7

P(X7|X6)

·
∑

X4
(P(X6|X3,X4) · P(X4|X2 = 1))

·
∑

X5
(P(X8 = 1|X6,X5) · P(X5|X2 = 1))


An elimination sequence of the above computation was

X5,X4,X7,X6,X1

eliminating X7

X1

X6

X7

X3

X1 eliminated

X3
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Elimination sequence

P(X2 = 1,X3,X8 = 1) = P(X2 = 1) ·
∑
X1

(P(X3|X1) · P(X1))

·
∑
X6

 ∑
X7

P(X7|X6)

·
∑

X4
(P(X6|X3,X4) · P(X4|X2 = 1))

·
∑

X5
(P(X8 = 1|X6,X5) · P(X5|X2 = 1))


An elimination sequence of the above computation was

X5,X4,X7,X6,X1

X7 eliminated
X6

X3

X1

X1 eliminated

X3
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Elimination sequence

P(X2 = 1,X3,X8 = 1) = P(X2 = 1) ·
∑
X1

(P(X3|X1) · P(X1))

·
∑
X6

 ∑
X7

P(X7|X6)

·
∑

X4
(P(X6|X3,X4) · P(X4|X2 = 1))

·
∑

X5
(P(X8 = 1|X6,X5) · P(X5|X2 = 1))


An elimination sequence of the above computation was

X5,X4,X7,X6,X1

eliminating X6

X1

X6

X3

X1 eliminated

X3

J. Vomlel (ÚTIA AV ČR) Inference 9th July, 2007 16 / 26



Elimination sequence

P(X2 = 1,X3,X8 = 1) = P(X2 = 1) ·
∑
X1

(P(X3|X1) · P(X1))

·
∑
X6

 ∑
X7

P(X7|X6)

·
∑

X4
(P(X6|X3,X4) · P(X4|X2 = 1))

·
∑

X5
(P(X8 = 1|X6,X5) · P(X5|X2 = 1))


An elimination sequence of the above computation was

X5,X4,X7,X6,X1

X6 eliminated

X1

X3

X1 eliminated

X3
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Elimination sequence

P(X2 = 1,X3,X8 = 1) = P(X2 = 1) ·
∑
X1

(P(X3|X1) · P(X1))

·
∑
X6

 ∑
X7

P(X7|X6)

·
∑

X4
(P(X6|X3,X4) · P(X4|X2 = 1))

·
∑

X5
(P(X8 = 1|X6,X5) · P(X5|X2 = 1))


An elimination sequence of the above computation was

X5,X4,X7,X6,X1

eliminating X1

X1

X3

X1 eliminated

X3
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Elimination sequence

P(X2 = 1,X3,X8 = 1) = P(X2 = 1) ·
∑
X1

(P(X3|X1) · P(X1))

·
∑
X6

 ∑
X7

P(X7|X6)

·
∑

X4
(P(X6|X3,X4) · P(X4|X2 = 1))

·
∑

X5
(P(X8 = 1|X6,X5) · P(X5|X2 = 1))


An elimination sequence of the above computation was

X5,X4,X7,X6,X1

X1 eliminated

X3
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Perfect elimination sequence

When eliminating a variable X we need to multiply all probability
tables containing this variable.

The domain of this product is the family of X .
When eliminating X we pairwise connect all neighbors of X .
The added edges are called fill-ins.
The more fill-ins we have the larger tables we get during the
computation.
Elimination sequence of variables is better (requires less space) if
it introduces less fill-ins.
Perfect elimination sequence is elimination sequence that does
not introduce any fill-ins.
The sequence of the previous example was perfect.
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Elimination sequence of variables is better (requires less space) if
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Perfect elimination sequence is elimination sequence that does
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J. Vomlel (ÚTIA AV ČR) Inference 9th July, 2007 17 / 26



Perfect elimination sequence

When eliminating a variable X we need to multiply all probability
tables containing this variable.
The domain of this product is the family of X .
When eliminating X we pairwise connect all neighbors of X .

The added edges are called fill-ins.
The more fill-ins we have the larger tables we get during the
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Elimination sequence of variables is better (requires less space) if
it introduces less fill-ins.
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Perfect elimination sequence

When eliminating a variable X we need to multiply all probability
tables containing this variable.
The domain of this product is the family of X .
When eliminating X we pairwise connect all neighbors of X .
The added edges are called fill-ins.

The more fill-ins we have the larger tables we get during the
computation.
Elimination sequence of variables is better (requires less space) if
it introduces less fill-ins.
Perfect elimination sequence is elimination sequence that does
not introduce any fill-ins.
The sequence of the previous example was perfect.

J. Vomlel (ÚTIA AV ČR) Inference 9th July, 2007 17 / 26



Perfect elimination sequence

When eliminating a variable X we need to multiply all probability
tables containing this variable.
The domain of this product is the family of X .
When eliminating X we pairwise connect all neighbors of X .
The added edges are called fill-ins.
The more fill-ins we have the larger tables we get during the
computation.

Elimination sequence of variables is better (requires less space) if
it introduces less fill-ins.
Perfect elimination sequence is elimination sequence that does
not introduce any fill-ins.
The sequence of the previous example was perfect.
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Perfect elimination sequence

When eliminating a variable X we need to multiply all probability
tables containing this variable.
The domain of this product is the family of X .
When eliminating X we pairwise connect all neighbors of X .
The added edges are called fill-ins.
The more fill-ins we have the larger tables we get during the
computation.
Elimination sequence of variables is better (requires less space) if
it introduces less fill-ins.

Perfect elimination sequence is elimination sequence that does
not introduce any fill-ins.
The sequence of the previous example was perfect.
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Perfect elimination sequence

When eliminating a variable X we need to multiply all probability
tables containing this variable.
The domain of this product is the family of X .
When eliminating X we pairwise connect all neighbors of X .
The added edges are called fill-ins.
The more fill-ins we have the larger tables we get during the
computation.
Elimination sequence of variables is better (requires less space) if
it introduces less fill-ins.
Perfect elimination sequence is elimination sequence that does
not introduce any fill-ins.

The sequence of the previous example was perfect.
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Perfect elimination sequence

When eliminating a variable X we need to multiply all probability
tables containing this variable.
The domain of this product is the family of X .
When eliminating X we pairwise connect all neighbors of X .
The added edges are called fill-ins.
The more fill-ins we have the larger tables we get during the
computation.
Elimination sequence of variables is better (requires less space) if
it introduces less fill-ins.
Perfect elimination sequence is elimination sequence that does
not introduce any fill-ins.
The sequence of the previous example was perfect.
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

domain graph

X1

X6

X5

X7

X4X3

X8

X2

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

eliminating X8

X1

X6

X5

X7

X4X3

X8

X2

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

X8 eliminated

X1

X6

X5

X7

X4X3

X2

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

eliminating X7

X1

X6

X5

X7

X4X3

X2

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

X7 eliminated

X1

X6

X5X4X3

X2

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

eliminating X1

X1

X6

X5X4X3

X2

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

X1 eliminated
now, there is no simplicial
node among nodes to be
eliminated

X6

X5X4X3

X2

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

X2 eliminated
X6

X5X4X3

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!

J. Vomlel (ÚTIA AV ČR) Inference 9th July, 2007 18 / 26



A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

eliminating X5
X6

X5X4X3

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

X5 eliminated
X6

X4X3

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

eliminating X4
X6

X4X3

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

X4 eliminated
X6

X3

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

eliminating X6
X6

X3

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!

J. Vomlel (ÚTIA AV ČR) Inference 9th July, 2007 18 / 26



A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

X6 eliminated
X3

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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A non-perfect sequence

Compute P(X3), i.e., a marginal probability of X3 without any evidence.

Observe that the added edge is exactly the same as the one we added
to make the graph triangulated.

eliminating X2
filling in edge {X4,X5}

X2

X6

X5X4X3

In a triangulated graph we can always find a perfect elimination
sequence!
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Join tree

Join tree of an undirected graph is a undirected graph such that:
nodes corresponds to cliques of the graph

nodes are connected by edges so that the graph is a tree
(connected graph without cycles)
for all pairs of nodes C1 and C2 it holds that all cliques
corresponding to nodes on the path between C1 and C2 contain
C1 ∩ C2.

X1

X6

X5

X7

X4X3

X8

X2

C6

X1

X6

X5

X7

X4X3

X8

C1

C2

C3

C5

C4

X2

C1

{X3, X4, X6}
{X4, X5, X6}

{X2, X4, X5}

{X5, X6, X8}

{X1, X3}

{X6, X7}

C2

C3

C4

C6

C5

For a triangulated graph we can always construct a join tree.
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Junction tree

Junction tree is a join tree extended by:
probability tables attached to a node whose clique contains its
domain

to each edge {Ci ,Cj} the separator set Ci ∩ Cj is attached
each separator contains two mailboxes for probability tables - for
each direction one

X1

X6

X5

X7

X4X3

X8

X2

C1

{X3, X4, X6}
{X4, X5, X6}

{X2, X4, X5}

{X5, X6, X8}

{X1, X3}

{X6, X7}

C2

C3

C4

C6

C5

C3

C1

C6

C5

P(X1), P(X3|X1)

C2 C4

P(X2), P(X4|X2)
P(X5|X2)

P(X6|X3, X4)

P(X7|X6) P(X8|X4, X6)
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Computation of marginal probabilities in junction tree

The rules for sending messages:
each node can send message only if it has received messages in
all mailboxes except the mailbox where it is going to send the
message,

a message from Ci to Cj is computed by marginalizing to Ci ∩ Cj
the product of all probability tables attached to Ci and all tables in
incoming mailboxes of Ci except the mailbox from Cj to Ci .

C6

ψ(X6)
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ψ
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4
)

C3

C1 C5

P(X8|X4, X6)

1∑
X3,X4

P(X6|X3, X4) · ψ(X3) · ψ(X4) =

P(X1), P(X3|X1)

C2 C4

P(X2), P(X4|X2)
P(X5|X2)

P(X7|X6)

P(X6|X3, X4)

1

ψ(X3)
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Computation of marginal probabilities in junction tree

To get a marginal probability table we just need to:
(1) find a clique containing its domain,
(2) compute the product of all probability tables attached to this
clique and all tables in incoming mailboxes, and
(3) marginalize it to the domain of the marginal, if necessary.

The process is finished when all nodes have all mailboxes full.
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J. Vomlel (ÚTIA AV ČR) Inference 9th July, 2007 22 / 26



Example of the computation of P(X3) in junction tree

1 C4

P(X2), P(X4|X2)
P(X5|X2)

P(X7|X6)

P(X6|X3, X4)

C3

C1 C5

P(X8|X4, X6) C6

P(X1), P(X3|X1)

C2
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Example of the computation of P(X3) in junction tree
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Example of the computation of P(X3) in junction tree
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Other inference methods

Exact methods: Lauritzen-Spiegelhalter method, Shenoy-Shafer
method, Lazy propagation (A. Madsen and F. V. Jensen), Variable
elimination - e.g., Bucket elimination (R. Dechter et al.).

Approximate methods: Markov Chain Monte Carlo (MCMC)
methods - e.g., Gibbs sampling, Penniless propagation (A. Cano,
S. Moral, and A. Salmerón), Loopy belief propagation (J. Pearl),
Variational methods (T. Jaakkola and M. Jordan).
Exact methods exploiting local structure of tables: Algebraic
circuits (A. Darwiche et al.).
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Other tasks solved in Bayesian networks

Maximum aposteriori configuration (MAP)

Sensitivity analysis
Decision making maximizing expected utility when also utility and
decision nodes are included (decision diagrams)
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J. Vomlel (ÚTIA AV ČR) Inference 9th July, 2007 26 / 26

http://bndg.cs.aau.dk
http://www.hugin.com
http://genie.sis.pitt.edu/

	Simple diagnostic example
	Conditional and marginal probability
	Junction Tree Algorithm
	Concluding part

